system_api.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. // Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "esp_system.h"
  16. #include "esp_attr.h"
  17. #include "esp_wifi.h"
  18. #include "esp_wifi_internal.h"
  19. #include "esp_log.h"
  20. #include "sdkconfig.h"
  21. #include "rom/efuse.h"
  22. #include "rom/cache.h"
  23. #include "rom/uart.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/gpio_reg.h"
  26. #include "soc/efuse_reg.h"
  27. #include "soc/rtc_cntl_reg.h"
  28. #include "soc/timer_group_reg.h"
  29. #include "soc/timer_group_struct.h"
  30. #include "soc/cpu.h"
  31. #include "soc/rtc.h"
  32. #include "freertos/FreeRTOS.h"
  33. #include "freertos/task.h"
  34. #include "freertos/xtensa_api.h"
  35. #include "esp_heap_caps.h"
  36. static const char* TAG = "system_api";
  37. static uint8_t base_mac_addr[6] = { 0 };
  38. #define SHUTDOWN_HANDLERS_NO 2
  39. static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
  40. void system_init()
  41. {
  42. }
  43. esp_err_t esp_base_mac_addr_set(uint8_t *mac)
  44. {
  45. if (mac == NULL) {
  46. ESP_LOGE(TAG, "Base MAC address is NULL");
  47. abort();
  48. }
  49. memcpy(base_mac_addr, mac, 6);
  50. return ESP_OK;
  51. }
  52. esp_err_t esp_base_mac_addr_get(uint8_t *mac)
  53. {
  54. uint8_t null_mac[6] = {0};
  55. if (memcmp(base_mac_addr, null_mac, 6) == 0) {
  56. ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
  57. return ESP_ERR_INVALID_MAC;
  58. }
  59. memcpy(mac, base_mac_addr, 6);
  60. return ESP_OK;
  61. }
  62. esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
  63. {
  64. uint32_t mac_low;
  65. uint32_t mac_high;
  66. uint8_t efuse_crc;
  67. uint8_t calc_crc;
  68. uint8_t version = REG_READ(EFUSE_BLK3_RDATA5_REG) >> 24;
  69. if (version != 1) {
  70. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version);
  71. return ESP_ERR_INVALID_VERSION;
  72. }
  73. mac_low = REG_READ(EFUSE_BLK3_RDATA1_REG);
  74. mac_high = REG_READ(EFUSE_BLK3_RDATA0_REG);
  75. mac[0] = mac_high >> 8;
  76. mac[1] = mac_high >> 16;
  77. mac[2] = mac_high >> 24;
  78. mac[3] = mac_low;
  79. mac[4] = mac_low >> 8;
  80. mac[5] = mac_low >> 16;
  81. efuse_crc = mac_high;
  82. calc_crc = esp_crc8(mac, 6);
  83. if (efuse_crc != calc_crc) {
  84. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  85. return ESP_ERR_INVALID_CRC;
  86. }
  87. return ESP_OK;
  88. }
  89. esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
  90. {
  91. uint32_t mac_low;
  92. uint32_t mac_high;
  93. uint8_t efuse_crc;
  94. uint8_t calc_crc;
  95. mac_low = REG_READ(EFUSE_BLK0_RDATA1_REG);
  96. mac_high = REG_READ(EFUSE_BLK0_RDATA2_REG);
  97. mac[0] = mac_high >> 8;
  98. mac[1] = mac_high;
  99. mac[2] = mac_low >> 24;
  100. mac[3] = mac_low >> 16;
  101. mac[4] = mac_low >> 8;
  102. mac[5] = mac_low;
  103. efuse_crc = mac_high >> 16;
  104. calc_crc = esp_crc8(mac, 6);
  105. if (efuse_crc != calc_crc) {
  106. // Small range of MAC addresses are accepted even if CRC is invalid.
  107. // These addresses are reserved for Espressif internal use.
  108. if ((mac_high & 0xFFFF) == 0x18fe) {
  109. if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
  110. return ESP_OK;
  111. }
  112. } else {
  113. ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  114. abort();
  115. }
  116. }
  117. return ESP_OK;
  118. }
  119. esp_err_t system_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  120. esp_err_t esp_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  121. esp_err_t esp_derive_mac(uint8_t* local_mac, const uint8_t* universal_mac)
  122. {
  123. uint8_t idx;
  124. if (local_mac == NULL || universal_mac == NULL) {
  125. ESP_LOGE(TAG, "mac address param is NULL");
  126. return ESP_ERR_INVALID_ARG;
  127. }
  128. memcpy(local_mac, universal_mac, 6);
  129. for (idx = 0; idx < 64; idx++) {
  130. local_mac[0] = universal_mac[0] | 0x02;
  131. local_mac[0] ^= idx << 2;
  132. if (memcmp(local_mac, universal_mac, 6)) {
  133. break;
  134. }
  135. }
  136. return ESP_OK;
  137. }
  138. esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
  139. {
  140. uint8_t efuse_mac[6];
  141. if (mac == NULL) {
  142. ESP_LOGE(TAG, "mac address param is NULL");
  143. return ESP_ERR_INVALID_ARG;
  144. }
  145. if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
  146. ESP_LOGE(TAG, "mac type is incorrect");
  147. return ESP_ERR_INVALID_ARG;
  148. }
  149. _Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
  150. || UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
  151. "incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
  152. if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
  153. esp_efuse_mac_get_default(efuse_mac);
  154. }
  155. switch (type) {
  156. case ESP_MAC_WIFI_STA:
  157. memcpy(mac, efuse_mac, 6);
  158. break;
  159. case ESP_MAC_WIFI_SOFTAP:
  160. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  161. memcpy(mac, efuse_mac, 6);
  162. mac[5] += 1;
  163. }
  164. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  165. esp_derive_mac(mac, efuse_mac);
  166. }
  167. break;
  168. case ESP_MAC_BT:
  169. memcpy(mac, efuse_mac, 6);
  170. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  171. mac[5] += 2;
  172. }
  173. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  174. mac[5] += 1;
  175. }
  176. break;
  177. case ESP_MAC_ETH:
  178. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  179. memcpy(mac, efuse_mac, 6);
  180. mac[5] += 3;
  181. }
  182. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  183. efuse_mac[5] += 1;
  184. esp_derive_mac(mac, efuse_mac);
  185. }
  186. break;
  187. default:
  188. ESP_LOGW(TAG, "incorrect mac type");
  189. break;
  190. }
  191. return ESP_OK;
  192. }
  193. esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
  194. {
  195. int i;
  196. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  197. if (shutdown_handlers[i] == NULL) {
  198. shutdown_handlers[i] = handler;
  199. return ESP_OK;
  200. }
  201. }
  202. return ESP_FAIL;
  203. }
  204. void esp_restart_noos() __attribute__ ((noreturn));
  205. void IRAM_ATTR esp_restart(void)
  206. {
  207. int i;
  208. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  209. if (shutdown_handlers[i]) {
  210. shutdown_handlers[i]();
  211. }
  212. }
  213. // Disable scheduler on this core.
  214. vTaskSuspendAll();
  215. esp_restart_noos();
  216. }
  217. /* "inner" restart function for after RTOS, interrupts & anything else on this
  218. * core are already stopped. Stalls other core, resets hardware,
  219. * triggers restart.
  220. */
  221. void IRAM_ATTR esp_restart_noos()
  222. {
  223. const uint32_t core_id = xPortGetCoreID();
  224. const uint32_t other_core_id = core_id == 0 ? 1 : 0;
  225. esp_cpu_stall(other_core_id);
  226. // other core is now stalled, can access DPORT registers directly
  227. esp_dport_access_int_pause();
  228. // We need to disable TG0/TG1 watchdogs
  229. // First enable RTC watchdog for 1 second
  230. REG_WRITE(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
  231. REG_WRITE(RTC_CNTL_WDTCONFIG0_REG,
  232. RTC_CNTL_WDT_FLASHBOOT_MOD_EN_M |
  233. (RTC_WDT_STG_SEL_RESET_SYSTEM << RTC_CNTL_WDT_STG0_S) |
  234. (RTC_WDT_STG_SEL_RESET_RTC << RTC_CNTL_WDT_STG1_S) |
  235. (1 << RTC_CNTL_WDT_SYS_RESET_LENGTH_S) |
  236. (1 << RTC_CNTL_WDT_CPU_RESET_LENGTH_S) );
  237. REG_WRITE(RTC_CNTL_WDTCONFIG1_REG, rtc_clk_slow_freq_get_hz() * 1);
  238. // Disable TG0/TG1 watchdogs
  239. TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  240. TIMERG0.wdt_config0.en = 0;
  241. TIMERG0.wdt_wprotect=0;
  242. TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  243. TIMERG1.wdt_config0.en = 0;
  244. TIMERG1.wdt_wprotect=0;
  245. // Disable all interrupts
  246. xt_ints_off(0xFFFFFFFF);
  247. // Disable cache
  248. Cache_Read_Disable(0);
  249. Cache_Read_Disable(1);
  250. #ifdef CONFIG_SPIRAM_SUPPORT
  251. //External SPI RAM reconfigures some GPIO functions in a way that is not entirely undone in the boot rom.
  252. //Undo them manually so we reboot correctly.
  253. WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
  254. WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
  255. WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
  256. WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
  257. WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
  258. WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
  259. #endif
  260. // Flush any data left in UART FIFOs
  261. uart_tx_wait_idle(0);
  262. uart_tx_wait_idle(1);
  263. uart_tx_wait_idle(2);
  264. // Reset wifi/bluetooth/ethernet/sdio (bb/mac)
  265. DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
  266. DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
  267. DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
  268. DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
  269. DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
  270. DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
  271. // Reset timer/spi/uart
  272. DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
  273. DPORT_TIMERS_RST | DPORT_SPI_RST_1 | DPORT_UART_RST);
  274. DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
  275. // Set CPU back to XTAL source, no PLL, same as hard reset
  276. rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
  277. // Clear entry point for APP CPU
  278. DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
  279. // Reset CPUs
  280. if (core_id == 0) {
  281. // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
  282. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
  283. RTC_CNTL_SW_PROCPU_RST_M | RTC_CNTL_SW_APPCPU_RST_M);
  284. } else {
  285. // Running on APP CPU: need to reset PRO CPU and unstall it,
  286. // then reset APP CPU
  287. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_PROCPU_RST_M);
  288. esp_cpu_unstall(0);
  289. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_APPCPU_RST_M);
  290. }
  291. while(true) {
  292. ;
  293. }
  294. }
  295. void system_restart(void) __attribute__((alias("esp_restart")));
  296. void system_restore(void)
  297. {
  298. esp_wifi_restore();
  299. }
  300. uint32_t esp_get_free_heap_size( void )
  301. {
  302. return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
  303. }
  304. uint32_t esp_get_minimum_free_heap_size( void )
  305. {
  306. return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT );
  307. }
  308. uint32_t system_get_free_heap_size(void) __attribute__((alias("esp_get_free_heap_size")));
  309. const char* system_get_sdk_version(void)
  310. {
  311. return "master";
  312. }
  313. const char* esp_get_idf_version(void)
  314. {
  315. return IDF_VER;
  316. }
  317. static void get_chip_info_esp32(esp_chip_info_t* out_info)
  318. {
  319. out_info->model = CHIP_ESP32;
  320. uint32_t reg = REG_READ(EFUSE_BLK0_RDATA3_REG);
  321. memset(out_info, 0, sizeof(*out_info));
  322. if ((reg & EFUSE_RD_CHIP_VER_REV1_M) != 0) {
  323. out_info->revision = 1;
  324. }
  325. if ((reg & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
  326. out_info->cores = 2;
  327. } else {
  328. out_info->cores = 1;
  329. }
  330. out_info->features = CHIP_FEATURE_WIFI_BGN;
  331. if ((reg & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
  332. out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
  333. }
  334. if (((reg & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S) ==
  335. EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
  336. out_info->features |= CHIP_FEATURE_EMB_FLASH;
  337. }
  338. }
  339. void esp_chip_info(esp_chip_info_t* out_info)
  340. {
  341. // Only ESP32 is supported now, in the future call one of the
  342. // chip-specific functions based on sdkconfig choice
  343. return get_chip_info_esp32(out_info);
  344. }