Xu Xiao 2f20406202 esp_wifi: itwt support light sleep 2 lat temu
..
esp32 65a4058e8c newlib: update newlib nano documentation for C6 2 lat temu
esp32c2 08b4bd2ecd Merge branch 'feature/add_interface_for_ble_QA_test' into 'master' 2 lat temu
esp32c3 8d2e2ef2aa esp_wifi: improve tx robust for c2/c3/s3 2 lat temu
esp32c6 2f20406202 esp_wifi: itwt support light sleep 2 lat temu
esp32h2 929b7717ff system: fixed ram app cannot use mmu correctly issue 2 lat temu
esp32h4 929b7717ff system: fixed ram app cannot use mmu correctly issue 2 lat temu
esp32s2 65a4058e8c newlib: update newlib nano documentation for C6 2 lat temu
esp32s3 8d2e2ef2aa esp_wifi: improve tx robust for c2/c3/s3 2 lat temu
include d2940c5ff3 mbedtls: Add port layer for ECDSA peripheral 2 lat temu
linux 44aa3c3a7f bugfix(esp_rom): Fixed writable string issue on Linux implementation 3 lat temu
patches c2f9392be5 Merge branch 'feature/h2_wdt' into 'master' 2 lat temu
test_apps f627506f6b ci: update driver tests to use run_all_single_board_cases() 2 lat temu
.build-test-rules.yml 65767769a9 esp_rom: migrate ut to pytest 3 lat temu
CMakeLists.txt 5d26a0de9a wdt: add support for H2 2 lat temu
Kconfig.projbuild c6d60615c6 build-system: include soc_caps defines into kconfig 4 lat temu
README.md 8677216576 esp32h2: renaming esp32h2 to esp32h4 3 lat temu
linker.lf a14c2c298c esp_rom: fix esp_rom_wdt linker issue 3 lat temu

README.md

esp_rom Component

Function Description

esp_rom component contains each chip's ROM functions, which are used in the ROM bootloader, 2nd bootloader, esp_tool flash stub and some driver code (e.g. GPIO matrix). ROM functions as not treated as public APIs, attentions are required when you use ROM functions:

  1. ROM functions are not thread-safe in RTOS, extra locks are needed to be around the ROM functions.
  2. Names/signatures/behaviors of ROM function may be different between chips.
  3. ROM functions are not guaranteed to exist across all chips.

When using ROM functions in esp-idf, the including convention is <target>/rom/<header_file>.h. This can prevent you from using a nonexistent ROM function for a specific <target>. Thus ROM functions are recommended for use in a target-specific source file. For example, bootloader_esp32.c can include esp32/rom/<header_file>.h without any violations. However, this is not the case when it comes to a common source file that also wants to use some of the ROM functions. The include list would be quite extensive:

#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/uart.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/rom/uart.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/rom/uart.h"
#elif CONFIG_IDF_TARGET_ESP32H4
#include "esp32h4/rom/uart.h"
...

So, we added a wrapper for those commonly used ROM functions. They're declared in esp_rom/include/esp_rom_xxx.h. Unlike the original ROM functions, these extracted ones are expected to exist across all chips. If some of them are missed in the new chips, we will implement them again in esp_rom/patches. These ROM APIs are always prefixed with the name esp_rom (e.g. esp_rom_printf), so that it's obvious to know whether a function is linked to ROM.

Most of the time, the ROM wrapper APIs are just alias to the original ROM functions by linker script esp_rom/<target>/ld/<target>.rom.api.ld. For example, esp_rom_printf is alias to ets_printf in the following way:

PROVIDE ( esp_rom_printf = ets_printf );

If some original ROM functions have changed the behavior or have bugs, we should override them in the wrapper layer. A common example is the esp_rom_install_uart_printf(), on ESP32 and ESP32S2, it's just alias to ets_install_uart_printf, but on other chips, it's re-implemented in the esp_rom/patches/esp_rom_uart.c. To some extent, the ROM wrapper layer works like an anti-corrosion layer between esp-rom project and esp-idf project.

As ROM functions are unique to each target, features are as well. For example, ESP32 has the tjpgd library built into the ROM, but ESP32S2 hasn't. We have a header file esp_rom/<target>/esp_rom_caps.h declaring the features that are supported by each target. Based on the macros defined there, we can decide whether a function should be patched or whether a feature should be re-implemented.

Directory Structure

.
├── CMakeLists.txt
├── <target/chip_name>
│   ├── esp_rom_caps.h
│   └── ld
│       ├── <target>.rom.api.ld
│       ├── <target>.rom.ld
│       ├── <target>.rom.libgcc.ld
│       ├── <target>.rom.newlib.ld
│       ├── <target>.rom.newlib-nano.ld
│       ├── <target>.rom.version.ld
│       └── ... // other ROM linker scripts, added when bring up new chip
├── include
│   ├── <target/chip_name>
│   │   └── rom
│   │       ├── cache.h
│   │       ├── efuse.h
│   │       ├── esp_flash.h
│   │       ├── ets_sys.h
│   │       ├── gpio.h
│   │       ├── uart.h
│   │       └── ... // other original ROM header files, added when bring up new chip
│   ├── esp_rom_gpio.h
│   ├── esp_rom_md5.h
│   ├── esp_rom_sys.h
│   ├── esp_rom_uart.h
│   └── ... // other ROM wrapper api files
├── Kconfig.projbuild
├── linker.lf
├── patches
│   ├── esp_rom_sys.c
│   ├── esp_rom_uart.c
│   └── ... // other patched source files
├── README.md
└── test
    ├── CMakeLists.txt
    ├── test_miniz.c
    └── ... // other ROM function unit tests