sdmmc_cmd.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include "sdmmc_common.h"
  7. static const char* TAG = "sdmmc_cmd";
  8. esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
  9. {
  10. if (card->host.command_timeout_ms != 0) {
  11. cmd->timeout_ms = card->host.command_timeout_ms;
  12. } else if (cmd->timeout_ms == 0) {
  13. cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
  14. }
  15. int slot = card->host.slot;
  16. ESP_LOGV(TAG, "sending cmd slot=%d op=%d arg=%x flags=%x data=%p blklen=%d datalen=%d timeout=%d",
  17. slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, cmd->blklen, cmd->datalen, cmd->timeout_ms);
  18. esp_err_t err = (*card->host.do_transaction)(slot, cmd);
  19. if (err != 0) {
  20. ESP_LOGD(TAG, "cmd=%d, sdmmc_req_run returned 0x%x", cmd->opcode, err);
  21. return err;
  22. }
  23. int state = MMC_R1_CURRENT_STATE(cmd->response);
  24. ESP_LOGV(TAG, "cmd response %08x %08x %08x %08x err=0x%x state=%d",
  25. cmd->response[0],
  26. cmd->response[1],
  27. cmd->response[2],
  28. cmd->response[3],
  29. cmd->error,
  30. state);
  31. return cmd->error;
  32. }
  33. esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
  34. {
  35. sdmmc_command_t app_cmd = {
  36. .opcode = MMC_APP_CMD,
  37. .flags = SCF_CMD_AC | SCF_RSP_R1,
  38. .arg = MMC_ARG_RCA(card->rca),
  39. };
  40. esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
  41. if (err != ESP_OK) {
  42. return err;
  43. }
  44. // Check APP_CMD status bit (only in SD mode)
  45. if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
  46. ESP_LOGW(TAG, "card doesn't support APP_CMD");
  47. return ESP_ERR_NOT_SUPPORTED;
  48. }
  49. return sdmmc_send_cmd(card, cmd);
  50. }
  51. esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
  52. {
  53. sdmmc_command_t cmd = {
  54. .opcode = MMC_GO_IDLE_STATE,
  55. .flags = SCF_CMD_BC | SCF_RSP_R0,
  56. };
  57. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  58. if (host_is_spi(card)) {
  59. /* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
  60. * SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
  61. * so don't expect the above command to succeed.
  62. * SCF_RSP_R1 flag below tells the lower layer to expect correct R1
  63. * response (in SPI mode).
  64. */
  65. (void) err;
  66. vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
  67. cmd.flags |= SCF_RSP_R1;
  68. err = sdmmc_send_cmd(card, &cmd);
  69. }
  70. if (err == ESP_OK) {
  71. vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
  72. }
  73. return err;
  74. }
  75. esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
  76. {
  77. const uint8_t pattern = 0xaa; /* any pattern will do here */
  78. sdmmc_command_t cmd = {
  79. .opcode = SD_SEND_IF_COND,
  80. .arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
  81. .flags = SCF_CMD_BCR | SCF_RSP_R7,
  82. };
  83. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  84. if (err != ESP_OK) {
  85. return err;
  86. }
  87. uint8_t response = cmd.response[0] & 0xff;
  88. if (response != pattern) {
  89. ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
  90. return ESP_ERR_INVALID_RESPONSE;
  91. }
  92. return ESP_OK;
  93. }
  94. esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
  95. {
  96. esp_err_t err;
  97. sdmmc_command_t cmd = {
  98. .arg = ocr,
  99. .flags = SCF_CMD_BCR | SCF_RSP_R3,
  100. .opcode = SD_APP_OP_COND
  101. };
  102. int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
  103. int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
  104. for (; nretries != 0; --nretries) {
  105. bzero(&cmd, sizeof cmd);
  106. cmd.arg = ocr;
  107. cmd.flags = SCF_CMD_BCR | SCF_RSP_R3;
  108. if (!card->is_mmc) { /* SD mode */
  109. cmd.opcode = SD_APP_OP_COND;
  110. err = sdmmc_send_app_cmd(card, &cmd);
  111. } else { /* MMC mode */
  112. cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK;
  113. cmd.arg |= MMC_OCR_SECTOR_MODE;
  114. cmd.opcode = MMC_SEND_OP_COND;
  115. err = sdmmc_send_cmd(card, &cmd);
  116. }
  117. if (err != ESP_OK) {
  118. if (--err_cnt == 0) {
  119. ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
  120. return err;
  121. } else {
  122. ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
  123. continue;
  124. }
  125. }
  126. // In SD protocol, card sets MEM_READY bit in OCR when it is ready.
  127. // In SPI protocol, card clears IDLE_STATE bit in R1 response.
  128. if (!host_is_spi(card)) {
  129. if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
  130. ocr == 0) {
  131. break;
  132. }
  133. } else {
  134. if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
  135. break;
  136. }
  137. }
  138. vTaskDelay(10 / portTICK_PERIOD_MS);
  139. }
  140. if (nretries == 0) {
  141. return ESP_ERR_TIMEOUT;
  142. }
  143. if (ocrp) {
  144. *ocrp = MMC_R3(cmd.response);
  145. }
  146. return ESP_OK;
  147. }
  148. esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
  149. {
  150. assert(ocrp);
  151. sdmmc_command_t cmd = {
  152. .opcode = SD_READ_OCR,
  153. .flags = SCF_CMD_BCR | SCF_RSP_R2
  154. };
  155. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  156. if (err != ESP_OK) {
  157. return err;
  158. }
  159. *ocrp = SD_SPI_R3(cmd.response);
  160. return ESP_OK;
  161. }
  162. esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid)
  163. {
  164. assert(out_raw_cid);
  165. sdmmc_command_t cmd = {
  166. .opcode = MMC_ALL_SEND_CID,
  167. .flags = SCF_CMD_BCR | SCF_RSP_R2
  168. };
  169. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  170. if (err != ESP_OK) {
  171. return err;
  172. }
  173. memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t));
  174. return ESP_OK;
  175. }
  176. esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
  177. {
  178. assert(out_cid);
  179. assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
  180. assert(!card->is_mmc && "MMC cards are not supported in SPI mode");
  181. sdmmc_response_t buf;
  182. sdmmc_command_t cmd = {
  183. .opcode = MMC_SEND_CID,
  184. .flags = SCF_CMD_READ | SCF_CMD_ADTC,
  185. .arg = 0,
  186. .data = &buf[0],
  187. .datalen = sizeof(buf)
  188. };
  189. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  190. if (err != ESP_OK) {
  191. return err;
  192. }
  193. sdmmc_flip_byte_order(buf, sizeof(buf));
  194. return sdmmc_decode_cid(buf, out_cid);
  195. }
  196. esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
  197. {
  198. assert(out_rca);
  199. sdmmc_command_t cmd = {
  200. .opcode = SD_SEND_RELATIVE_ADDR,
  201. .flags = SCF_CMD_BCR | SCF_RSP_R6
  202. };
  203. /* MMC cards expect us to set the RCA.
  204. * Set RCA to 1 since we don't support multiple cards on the same bus, for now.
  205. */
  206. uint16_t mmc_rca = 1;
  207. if (card->is_mmc) {
  208. cmd.arg = MMC_ARG_RCA(mmc_rca);
  209. }
  210. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  211. if (err != ESP_OK) {
  212. return err;
  213. }
  214. *out_rca = (card->is_mmc) ? mmc_rca : SD_R6_RCA(cmd.response);
  215. return ESP_OK;
  216. }
  217. esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
  218. {
  219. sdmmc_command_t cmd = {
  220. .opcode = MMC_SET_BLOCKLEN,
  221. .arg = csd->sector_size,
  222. .flags = SCF_CMD_AC | SCF_RSP_R1
  223. };
  224. return sdmmc_send_cmd(card, &cmd);
  225. }
  226. esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
  227. {
  228. /* The trick with SEND_CSD is that in SPI mode, it acts as a data read
  229. * command, while in SD mode it is an AC command with R2 response.
  230. */
  231. sdmmc_response_t spi_buf;
  232. const bool is_spi = host_is_spi(card);
  233. sdmmc_command_t cmd = {
  234. .opcode = MMC_SEND_CSD,
  235. .arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
  236. .flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
  237. (SCF_CMD_AC | SCF_RSP_R2),
  238. .data = is_spi ? &spi_buf[0] : 0,
  239. .datalen = is_spi ? sizeof(spi_buf) : 0,
  240. };
  241. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  242. if (err != ESP_OK) {
  243. return err;
  244. }
  245. uint32_t* ptr = cmd.response;
  246. if (is_spi) {
  247. sdmmc_flip_byte_order(spi_buf, sizeof(spi_buf));
  248. ptr = spi_buf;
  249. }
  250. if (card->is_mmc) {
  251. err = sdmmc_mmc_decode_csd(cmd.response, out_csd);
  252. } else {
  253. err = sdmmc_decode_csd(ptr, out_csd);
  254. }
  255. return err;
  256. }
  257. esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
  258. {
  259. /* Don't expect to see a response when de-selecting a card */
  260. uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
  261. sdmmc_command_t cmd = {
  262. .opcode = MMC_SELECT_CARD,
  263. .arg = MMC_ARG_RCA(rca),
  264. .flags = SCF_CMD_AC | response
  265. };
  266. return sdmmc_send_cmd(card, &cmd);
  267. }
  268. esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
  269. {
  270. size_t datalen = 8;
  271. uint32_t* buf = (uint32_t*) heap_caps_malloc(datalen, MALLOC_CAP_DMA);
  272. if (buf == NULL) {
  273. return ESP_ERR_NO_MEM;
  274. }
  275. sdmmc_command_t cmd = {
  276. .data = buf,
  277. .datalen = datalen,
  278. .blklen = datalen,
  279. .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
  280. .opcode = SD_APP_SEND_SCR
  281. };
  282. esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
  283. if (err == ESP_OK) {
  284. err = sdmmc_decode_scr(buf, out_scr);
  285. }
  286. free(buf);
  287. return err;
  288. }
  289. esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
  290. {
  291. sdmmc_command_t cmd = {
  292. .opcode = SD_APP_SET_BUS_WIDTH,
  293. .flags = SCF_RSP_R1 | SCF_CMD_AC,
  294. .arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1,
  295. };
  296. return sdmmc_send_app_cmd(card, &cmd);
  297. }
  298. esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
  299. {
  300. assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
  301. sdmmc_command_t cmd = {
  302. .opcode = SD_CRC_ON_OFF,
  303. .arg = crc_enable ? 1 : 0,
  304. .flags = SCF_CMD_AC | SCF_RSP_R1
  305. };
  306. return sdmmc_send_cmd(card, &cmd);
  307. }
  308. esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
  309. {
  310. sdmmc_command_t cmd = {
  311. .opcode = MMC_SEND_STATUS,
  312. .arg = MMC_ARG_RCA(card->rca),
  313. .flags = SCF_CMD_AC | SCF_RSP_R1
  314. };
  315. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  316. if (err != ESP_OK) {
  317. return err;
  318. }
  319. if (out_status) {
  320. if (host_is_spi(card)) {
  321. *out_status = SD_SPI_R2(cmd.response);
  322. } else {
  323. *out_status = MMC_R1(cmd.response);
  324. }
  325. }
  326. return ESP_OK;
  327. }
  328. esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
  329. size_t start_block, size_t block_count)
  330. {
  331. esp_err_t err = ESP_OK;
  332. size_t block_size = card->csd.sector_size;
  333. if (esp_ptr_dma_capable(src) && (intptr_t)src % 4 == 0) {
  334. err = sdmmc_write_sectors_dma(card, src, start_block, block_count);
  335. } else {
  336. // SDMMC peripheral needs DMA-capable buffers. Split the write into
  337. // separate single block writes, if needed, and allocate a temporary
  338. // DMA-capable buffer.
  339. void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
  340. if (tmp_buf == NULL) {
  341. return ESP_ERR_NO_MEM;
  342. }
  343. const uint8_t* cur_src = (const uint8_t*) src;
  344. for (size_t i = 0; i < block_count; ++i) {
  345. memcpy(tmp_buf, cur_src, block_size);
  346. cur_src += block_size;
  347. err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1);
  348. if (err != ESP_OK) {
  349. ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
  350. __func__, err, start_block, i);
  351. break;
  352. }
  353. }
  354. free(tmp_buf);
  355. }
  356. return err;
  357. }
  358. esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
  359. size_t start_block, size_t block_count)
  360. {
  361. if (start_block + block_count > card->csd.capacity) {
  362. return ESP_ERR_INVALID_SIZE;
  363. }
  364. size_t block_size = card->csd.sector_size;
  365. sdmmc_command_t cmd = {
  366. .flags = SCF_CMD_ADTC | SCF_RSP_R1,
  367. .blklen = block_size,
  368. .data = (void*) src,
  369. .datalen = block_count * block_size,
  370. .timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
  371. };
  372. if (block_count == 1) {
  373. cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
  374. } else {
  375. cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
  376. }
  377. if (card->ocr & SD_OCR_SDHC_CAP) {
  378. cmd.arg = start_block;
  379. } else {
  380. cmd.arg = start_block * block_size;
  381. }
  382. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  383. if (err != ESP_OK) {
  384. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  385. return err;
  386. }
  387. uint32_t status = 0;
  388. size_t count = 0;
  389. /* SD mode: wait for the card to become idle based on R1 status */
  390. while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
  391. // TODO: add some timeout here
  392. err = sdmmc_send_cmd_send_status(card, &status);
  393. if (err != ESP_OK) {
  394. return err;
  395. }
  396. if (++count % 10 == 0) {
  397. ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
  398. }
  399. }
  400. /* SPI mode: although card busy indication is based on the busy token,
  401. * SD spec recommends that the host checks the results of programming by sending
  402. * SEND_STATUS command. Some of the conditions reported in SEND_STATUS are not
  403. * reported via a data error token.
  404. */
  405. if (host_is_spi(card)) {
  406. err = sdmmc_send_cmd_send_status(card, &status);
  407. if (err != ESP_OK) {
  408. return err;
  409. }
  410. if (status & SD_SPI_R2_CARD_LOCKED) {
  411. ESP_LOGE(TAG, "%s: write failed, card is locked: r2=0x%04x",
  412. __func__, status);
  413. return ESP_ERR_INVALID_STATE;
  414. }
  415. if (status != 0) {
  416. ESP_LOGE(TAG, "%s: card status indicates an error after write operation: r2=0x%04x",
  417. __func__, status);
  418. return ESP_ERR_INVALID_RESPONSE;
  419. }
  420. }
  421. return ESP_OK;
  422. }
  423. esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
  424. size_t start_block, size_t block_count)
  425. {
  426. esp_err_t err = ESP_OK;
  427. size_t block_size = card->csd.sector_size;
  428. if (esp_ptr_dma_capable(dst) && (intptr_t)dst % 4 == 0) {
  429. err = sdmmc_read_sectors_dma(card, dst, start_block, block_count);
  430. } else {
  431. // SDMMC peripheral needs DMA-capable buffers. Split the read into
  432. // separate single block reads, if needed, and allocate a temporary
  433. // DMA-capable buffer.
  434. void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
  435. if (tmp_buf == NULL) {
  436. return ESP_ERR_NO_MEM;
  437. }
  438. uint8_t* cur_dst = (uint8_t*) dst;
  439. for (size_t i = 0; i < block_count; ++i) {
  440. err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1);
  441. if (err != ESP_OK) {
  442. ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
  443. __func__, err, start_block, i);
  444. break;
  445. }
  446. memcpy(cur_dst, tmp_buf, block_size);
  447. cur_dst += block_size;
  448. }
  449. free(tmp_buf);
  450. }
  451. return err;
  452. }
  453. esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
  454. size_t start_block, size_t block_count)
  455. {
  456. if (start_block + block_count > card->csd.capacity) {
  457. return ESP_ERR_INVALID_SIZE;
  458. }
  459. size_t block_size = card->csd.sector_size;
  460. sdmmc_command_t cmd = {
  461. .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
  462. .blklen = block_size,
  463. .data = (void*) dst,
  464. .datalen = block_count * block_size
  465. };
  466. if (block_count == 1) {
  467. cmd.opcode = MMC_READ_BLOCK_SINGLE;
  468. } else {
  469. cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
  470. }
  471. if (card->ocr & SD_OCR_SDHC_CAP) {
  472. cmd.arg = start_block;
  473. } else {
  474. cmd.arg = start_block * block_size;
  475. }
  476. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  477. if (err != ESP_OK) {
  478. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  479. return err;
  480. }
  481. uint32_t status = 0;
  482. size_t count = 0;
  483. while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
  484. // TODO: add some timeout here
  485. err = sdmmc_send_cmd_send_status(card, &status);
  486. if (err != ESP_OK) {
  487. return err;
  488. }
  489. if (++count % 10 == 0) {
  490. ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
  491. }
  492. }
  493. return ESP_OK;
  494. }
  495. esp_err_t sdmmc_erase_sectors(sdmmc_card_t* card, size_t start_sector,
  496. size_t sector_count, sdmmc_erase_arg_t arg)
  497. {
  498. if (start_sector + sector_count > card->csd.capacity) {
  499. return ESP_ERR_INVALID_SIZE;
  500. }
  501. uint32_t cmd38_arg;
  502. if (arg == SDMMC_ERASE_ARG) {
  503. cmd38_arg = card->is_mmc ? SDMMC_MMC_TRIM_ARG : SDMMC_SD_ERASE_ARG;
  504. } else {
  505. cmd38_arg = card->is_mmc ? SDMMC_MMC_DISCARD_ARG : SDMMC_SD_DISCARD_ARG;
  506. }
  507. /* validate the CMD38 argument against card supported features */
  508. if (card->is_mmc) {
  509. if ((cmd38_arg == SDMMC_MMC_TRIM_ARG) && (sdmmc_can_trim(card) != ESP_OK)) {
  510. return ESP_ERR_NOT_SUPPORTED;
  511. }
  512. if ((cmd38_arg == SDMMC_MMC_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
  513. return ESP_ERR_NOT_SUPPORTED;
  514. }
  515. } else { // SD card
  516. if ((cmd38_arg == SDMMC_SD_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
  517. return ESP_ERR_NOT_SUPPORTED;
  518. }
  519. }
  520. /* default as block unit address */
  521. size_t addr_unit_mult = 1;
  522. if (!(card->ocr & SD_OCR_SDHC_CAP)) {
  523. addr_unit_mult = card->csd.sector_size;
  524. }
  525. /* prepare command to set the start address */
  526. sdmmc_command_t cmd = {
  527. .flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_WAIT_BUSY,
  528. .opcode = card->is_mmc ? MMC_ERASE_GROUP_START :
  529. SD_ERASE_GROUP_START,
  530. .arg = (start_sector * addr_unit_mult),
  531. };
  532. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  533. if (err != ESP_OK) {
  534. ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_START) returned 0x%x", __func__, err);
  535. return err;
  536. }
  537. /* prepare command to set the end address */
  538. cmd.opcode = card->is_mmc ? MMC_ERASE_GROUP_END : SD_ERASE_GROUP_END;
  539. cmd.arg = ((start_sector + (sector_count - 1)) * addr_unit_mult);
  540. err = sdmmc_send_cmd(card, &cmd);
  541. if (err != ESP_OK) {
  542. ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_END) returned 0x%x", __func__, err);
  543. return err;
  544. }
  545. /* issue erase command */
  546. memset((void *)&cmd, 0 , sizeof(sdmmc_command_t));
  547. cmd.flags = SCF_CMD_AC | SCF_RSP_R1B | SCF_WAIT_BUSY;
  548. cmd.opcode = MMC_ERASE;
  549. cmd.arg = cmd38_arg;
  550. cmd.timeout_ms = sdmmc_get_erase_timeout_ms(card, cmd38_arg, sector_count * card->csd.sector_size / 1024);
  551. err = sdmmc_send_cmd(card, &cmd);
  552. if (err != ESP_OK) {
  553. ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE) returned 0x%x", __func__, err);
  554. return err;
  555. }
  556. if (host_is_spi(card)) {
  557. uint32_t status;
  558. err = sdmmc_send_cmd_send_status(card, &status);
  559. if (err != ESP_OK) {
  560. return err;
  561. }
  562. if (status != 0) {
  563. ESP_LOGE(TAG, "%s: card status indicates an error after erase operation: r2=0x%04x",
  564. __func__, status);
  565. return ESP_ERR_INVALID_RESPONSE;
  566. }
  567. }
  568. return ESP_OK;
  569. }
  570. esp_err_t sdmmc_can_discard(sdmmc_card_t* card)
  571. {
  572. if ((card->is_mmc) && (card->ext_csd.rev >= EXT_CSD_REV_1_6)) {
  573. return ESP_OK;
  574. }
  575. // SD card
  576. if ((!card->is_mmc) && !host_is_spi(card) && (card->ssr.discard_support == 1)) {
  577. return ESP_OK;
  578. }
  579. return ESP_FAIL;
  580. }
  581. esp_err_t sdmmc_can_trim(sdmmc_card_t* card)
  582. {
  583. if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_GB_CL_EN)) {
  584. return ESP_OK;
  585. }
  586. return ESP_FAIL;
  587. }
  588. esp_err_t sdmmc_mmc_can_sanitize(sdmmc_card_t* card)
  589. {
  590. if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_SANITIZE)) {
  591. return ESP_OK;
  592. }
  593. return ESP_FAIL;
  594. }
  595. esp_err_t sdmmc_mmc_sanitize(sdmmc_card_t* card, uint32_t timeout_ms)
  596. {
  597. esp_err_t err;
  598. uint8_t index = EXT_CSD_SANITIZE_START;
  599. uint8_t set = EXT_CSD_CMD_SET_NORMAL;
  600. uint8_t value = 0x01;
  601. if (sdmmc_mmc_can_sanitize(card) != ESP_OK) {
  602. return ESP_ERR_NOT_SUPPORTED;
  603. }
  604. /*
  605. * A Sanitize operation is initiated by writing a value to the extended
  606. * CSD[165] SANITIZE_START. While the device is performing the sanitize
  607. * operation, the busy line is asserted.
  608. * SWITCH command is used to write the EXT_CSD register.
  609. */
  610. sdmmc_command_t cmd = {
  611. .opcode = MMC_SWITCH,
  612. .arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set,
  613. .flags = SCF_RSP_R1B | SCF_CMD_AC | SCF_WAIT_BUSY,
  614. .timeout_ms = timeout_ms,
  615. };
  616. err = sdmmc_send_cmd(card, &cmd);
  617. if (err == ESP_OK) {
  618. //check response bit to see that switch was accepted
  619. if (MMC_R1(cmd.response) & MMC_R1_SWITCH_ERROR) {
  620. err = ESP_ERR_INVALID_RESPONSE;
  621. }
  622. }
  623. return err;
  624. }
  625. esp_err_t sdmmc_full_erase(sdmmc_card_t* card)
  626. {
  627. sdmmc_erase_arg_t arg = SDMMC_SD_ERASE_ARG; // erase by default for SD card
  628. esp_err_t err;
  629. if (card->is_mmc) {
  630. arg = sdmmc_mmc_can_sanitize(card) == ESP_OK ? SDMMC_MMC_DISCARD_ARG: SDMMC_MMC_TRIM_ARG;
  631. }
  632. err = sdmmc_erase_sectors(card, 0, card->csd.capacity, arg);
  633. if ((err == ESP_OK) && (arg == SDMMC_MMC_DISCARD_ARG)) {
  634. uint32_t timeout_ms = sdmmc_get_erase_timeout_ms(card, SDMMC_MMC_DISCARD_ARG, card->csd.capacity * ((uint64_t) card->csd.sector_size) / 1024);
  635. return sdmmc_mmc_sanitize(card, timeout_ms);
  636. }
  637. return err;
  638. }
  639. esp_err_t sdmmc_get_status(sdmmc_card_t* card)
  640. {
  641. uint32_t stat;
  642. return sdmmc_send_cmd_send_status(card, &stat);
  643. }