flash_mmap.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdlib.h>
  7. #include <assert.h>
  8. #include <string.h>
  9. #include <stdio.h>
  10. #include <freertos/FreeRTOS.h>
  11. #include <freertos/task.h>
  12. #include <freertos/semphr.h>
  13. #include "soc/mmu.h"
  14. #include "sdkconfig.h"
  15. #include "esp_attr.h"
  16. #include "esp_memory_utils.h"
  17. #include "spi_flash_mmap.h"
  18. #include "esp_flash_encrypt.h"
  19. #include "esp_log.h"
  20. #include "esp_private/cache_utils.h"
  21. #include "hal/mmu_ll.h"
  22. #include "esp_rom_spiflash.h"
  23. #if CONFIG_IDF_TARGET_ESP32
  24. #include "soc/dport_reg.h"
  25. #include "esp32/rom/cache.h"
  26. #elif CONFIG_IDF_TARGET_ESP32S2
  27. #include "esp32s2/rom/cache.h"
  28. #include "soc/extmem_reg.h"
  29. #elif CONFIG_IDF_TARGET_ESP32S3
  30. #include "esp32s3/rom/cache.h"
  31. #include "soc/extmem_reg.h"
  32. #elif CONFIG_IDF_TARGET_ESP32C3
  33. #include "esp32c3/rom/cache.h"
  34. #elif CONFIG_IDF_TARGET_ESP32H2
  35. #include "esp32h2/rom/cache.h"
  36. #elif CONFIG_IDF_TARGET_ESP32C2
  37. #include "esp32c2/rom/cache.h"
  38. #endif
  39. #if CONFIG_SPIRAM
  40. #include "esp_private/esp_psram_extram.h"
  41. #include "esp_private/mmu.h"
  42. #endif
  43. #ifndef NDEBUG
  44. // Enable built-in checks in queue.h in debug builds
  45. #define INVARIANTS
  46. #endif
  47. #include "sys/queue.h"
  48. #define IROM0_PAGES_NUM (SOC_MMU_IROM0_PAGES_END - SOC_MMU_IROM0_PAGES_START)
  49. #define DROM0_PAGES_NUM (SOC_MMU_DROM0_PAGES_END - SOC_MMU_DROM0_PAGES_START)
  50. #define PAGES_LIMIT ((SOC_MMU_IROM0_PAGES_END > SOC_MMU_DROM0_PAGES_END) ? SOC_MMU_IROM0_PAGES_END:SOC_MMU_DROM0_PAGES_END)
  51. #define INVALID_PHY_PAGE(page_size) ((page_size) - 1)
  52. #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
  53. extern int _instruction_reserved_start;
  54. extern int _instruction_reserved_end;
  55. #endif
  56. #if CONFIG_SPIRAM_RODATA
  57. extern int _rodata_reserved_start;
  58. extern int _rodata_reserved_end;
  59. #endif
  60. #if !CONFIG_SPI_FLASH_ROM_IMPL
  61. typedef struct mmap_entry_{
  62. uint32_t handle;
  63. int page;
  64. int count;
  65. LIST_ENTRY(mmap_entry_) entries;
  66. } mmap_entry_t;
  67. static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head =
  68. LIST_HEAD_INITIALIZER(s_mmap_entries_head);
  69. static uint8_t s_mmap_page_refcnt[SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION] = {0};
  70. static uint32_t s_mmap_last_handle = 0;
  71. static void IRAM_ATTR spi_flash_mmap_init(void)
  72. {
  73. if (s_mmap_page_refcnt[SOC_MMU_DROM0_PAGES_START] != 0) {
  74. return; /* mmap data already initialised */
  75. }
  76. for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
  77. uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
  78. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  79. uint32_t entry_app = mmu_ll_read_entry(MMU_TABLE_CORE1, i);
  80. if (entry_pro != entry_app) {
  81. // clean up entries used by boot loader
  82. mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i);
  83. }
  84. #endif
  85. bool entry_pro_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, i);
  86. if (!entry_pro_invalid && (i == SOC_MMU_DROM0_PAGES_START || i == SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) {
  87. s_mmap_page_refcnt[i] = 1;
  88. } else {
  89. mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i);
  90. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  91. mmu_ll_set_entry_invalid(MMU_TABLE_CORE1, i);
  92. #endif
  93. }
  94. }
  95. }
  96. static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr)
  97. {
  98. if (memory == SPI_FLASH_MMAP_DATA) {
  99. // Vaddr0
  100. *out_begin = SOC_MMU_DROM0_PAGES_START;
  101. *out_size = DROM0_PAGES_NUM;
  102. *region_addr = SOC_MMU_VADDR0_START_ADDR;
  103. } else {
  104. // only part of VAddr1 is usable, so adjust for that
  105. *out_begin = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
  106. *out_size = SOC_MMU_IROM0_PAGES_END - *out_begin;
  107. *region_addr = SOC_MMU_VADDR1_FIRST_USABLE_ADDR;
  108. }
  109. }
  110. esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
  111. const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
  112. {
  113. esp_err_t ret;
  114. if (src_addr & INVALID_PHY_PAGE(CONFIG_MMU_PAGE_SIZE)) {
  115. return ESP_ERR_INVALID_ARG;
  116. }
  117. if ((src_addr + size) > g_rom_flashchip.chip_size) {
  118. return ESP_ERR_INVALID_ARG;
  119. }
  120. // region which should be mapped
  121. int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE;
  122. int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE;
  123. // prepare a linear pages array to feed into spi_flash_mmap_pages
  124. int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL);
  125. if (pages == NULL) {
  126. return ESP_ERR_NO_MEM;
  127. }
  128. for (int i = 0; i < page_count; i++) {
  129. pages[i] = (phys_page+i);
  130. }
  131. ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle);
  132. free(pages);
  133. return ret;
  134. }
  135. esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory,
  136. const void** out_ptr, spi_flash_mmap_handle_t* out_handle)
  137. {
  138. esp_err_t ret;
  139. const void* temp_ptr = *out_ptr = NULL;
  140. spi_flash_mmap_handle_t temp_handle = *out_handle = (spi_flash_mmap_handle_t)NULL;
  141. bool need_flush = false;
  142. if (!page_count) {
  143. return ESP_ERR_INVALID_ARG;
  144. }
  145. if (!esp_ptr_internal(pages)) {
  146. return ESP_ERR_INVALID_ARG;
  147. }
  148. for (int i = 0; i < page_count; i++) {
  149. if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= g_rom_flashchip.chip_size) {
  150. return ESP_ERR_INVALID_ARG;
  151. }
  152. }
  153. mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  154. if (new_entry == 0) {
  155. return ESP_ERR_NO_MEM;
  156. }
  157. spi_flash_disable_interrupts_caches_and_other_cpu();
  158. spi_flash_mmap_init();
  159. // figure out the memory region where we should look for pages
  160. int region_begin; // first page to check
  161. int region_size; // number of pages to check
  162. uint32_t region_addr; // base address of memory region
  163. get_mmu_region(memory,&region_begin,&region_size,&region_addr);
  164. if (region_size < page_count) {
  165. spi_flash_enable_interrupts_caches_and_other_cpu();
  166. return ESP_ERR_NO_MEM;
  167. }
  168. // The following part searches for a range of MMU entries which can be used.
  169. // Algorithm is essentially naïve strstr algorithm, except that unused MMU
  170. // entries are treated as wildcards.
  171. int start;
  172. // the " + 1" is a fix when loop the MMU table pages, because the last MMU page
  173. // is valid as well if it have not been used
  174. int end = region_begin + region_size - page_count + 1;
  175. for (start = region_begin; start < end; ++start) {
  176. int pageno = 0;
  177. int pos;
  178. for (pos = start; pos < start + page_count; ++pos, ++pageno) {
  179. int table_val = (int) mmu_ll_read_entry(MMU_TABLE_CORE0, pos);
  180. uint8_t refcnt = s_mmap_page_refcnt[pos];
  181. if (refcnt != 0 && table_val != SOC_MMU_PAGE_IN_FLASH(pages[pageno])) {
  182. break;
  183. }
  184. }
  185. // whole mapping range matched, bail out
  186. if (pos - start == page_count) {
  187. break;
  188. }
  189. }
  190. // checked all the region(s) and haven't found anything?
  191. if (start == end) {
  192. ret = ESP_ERR_NO_MEM;
  193. } else {
  194. // set up mapping using pages
  195. uint32_t pageno = 0;
  196. for (int i = start; i != start + page_count; ++i, ++pageno) {
  197. // sanity check: we won't reconfigure entries with non-zero reference count
  198. uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
  199. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  200. uint32_t entry_app = mmu_ll_read_entry(MMU_TABLE_CORE1, i);
  201. #endif
  202. assert(s_mmap_page_refcnt[i] == 0 ||
  203. (entry_pro == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
  204. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  205. && entry_app == SOC_MMU_PAGE_IN_FLASH(pages[pageno])
  206. #endif
  207. ));
  208. if (s_mmap_page_refcnt[i] == 0) {
  209. if (entry_pro != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
  210. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  211. || entry_app != SOC_MMU_PAGE_IN_FLASH(pages[pageno])
  212. #endif
  213. ) {
  214. mmu_ll_write_entry(MMU_TABLE_CORE0, i, pages[pageno], 0);
  215. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  216. mmu_ll_write_entry(MMU_TABLE_CORE1, i, pages[pageno], 0);
  217. #endif
  218. #if !CONFIG_IDF_TARGET_ESP32
  219. Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE);
  220. #endif
  221. need_flush = true;
  222. }
  223. }
  224. ++s_mmap_page_refcnt[i];
  225. }
  226. LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries);
  227. new_entry->page = start;
  228. new_entry->count = page_count;
  229. new_entry->handle = ++s_mmap_last_handle;
  230. temp_handle = new_entry->handle;
  231. temp_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE);
  232. ret = ESP_OK;
  233. }
  234. /* This is a temporary fix for an issue where some
  235. cache reads may see stale data.
  236. Working on a long term fix that doesn't require invalidating
  237. entire cache.
  238. */
  239. if (need_flush) {
  240. #if CONFIG_IDF_TARGET_ESP32
  241. #if CONFIG_SPIRAM
  242. esp_psram_extram_writeback_cache();
  243. #endif // CONFIG_SPIRAM
  244. Cache_Flush(0);
  245. #if !CONFIG_FREERTOS_UNICORE
  246. Cache_Flush(1);
  247. #endif // !CONFIG_FREERTOS_UNICORE
  248. #endif // CONFIG_IDF_TARGET_ESP32
  249. }
  250. spi_flash_enable_interrupts_caches_and_other_cpu();
  251. if (temp_ptr == NULL) {
  252. free(new_entry);
  253. }
  254. *out_ptr = temp_ptr;
  255. *out_handle = temp_handle;
  256. return ret;
  257. }
  258. void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle)
  259. {
  260. spi_flash_disable_interrupts_caches_and_other_cpu();
  261. mmap_entry_t* it;
  262. // look for handle in linked list
  263. for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
  264. if (it->handle == handle) {
  265. // for each page, decrement reference counter
  266. // if reference count is zero, disable MMU table entry to
  267. // facilitate debugging of use-after-free conditions
  268. for (int i = it->page; i < it->page + it->count; ++i) {
  269. assert(s_mmap_page_refcnt[i] > 0);
  270. if (--s_mmap_page_refcnt[i] == 0) {
  271. mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i);
  272. #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32
  273. mmu_ll_set_entry_invalid(MMU_TABLE_CORE1, i);
  274. #endif
  275. }
  276. }
  277. LIST_REMOVE(it, entries);
  278. break;
  279. }
  280. }
  281. spi_flash_enable_interrupts_caches_and_other_cpu();
  282. if (it == NULL) {
  283. assert(0 && "invalid handle, or handle already unmapped");
  284. }
  285. free(it);
  286. }
  287. static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void)
  288. {
  289. spi_flash_disable_interrupts_caches_and_other_cpu();
  290. spi_flash_mmap_init();
  291. spi_flash_enable_interrupts_caches_and_other_cpu();
  292. }
  293. static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index)
  294. {
  295. uint32_t value;
  296. spi_flash_disable_interrupts_caches_and_other_cpu();
  297. value = mmu_ll_read_entry(MMU_TABLE_CORE0, index);
  298. spi_flash_enable_interrupts_caches_and_other_cpu();
  299. return value;
  300. }
  301. void spi_flash_mmap_dump(void)
  302. {
  303. spi_flash_protected_mmap_init();
  304. mmap_entry_t* it;
  305. for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) {
  306. printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count);
  307. }
  308. for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) {
  309. if (s_mmap_page_refcnt[i] != 0) {
  310. uint32_t paddr = spi_flash_protected_read_mmu_entry(i);
  311. printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr);
  312. }
  313. }
  314. }
  315. uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory)
  316. {
  317. spi_flash_disable_interrupts_caches_and_other_cpu();
  318. spi_flash_mmap_init();
  319. int count = 0;
  320. int region_begin; // first page to check
  321. int region_size; // number of pages to check
  322. uint32_t region_addr; // base address of memory region
  323. get_mmu_region(memory,&region_begin,&region_size,&region_addr);
  324. for (int i = region_begin; i < region_begin + region_size; ++i) {
  325. bool entry_is_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, i);
  326. if (s_mmap_page_refcnt[i] == 0 && entry_is_invalid) {
  327. count++;
  328. }
  329. }
  330. spi_flash_enable_interrupts_caches_and_other_cpu();
  331. return count;
  332. }
  333. size_t spi_flash_cache2phys(const void *cached)
  334. {
  335. intptr_t c = (intptr_t)cached;
  336. size_t cache_page;
  337. int offset = 0;
  338. if (c >= SOC_MMU_VADDR1_START_ADDR && c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
  339. /* IRAM address, doesn't map to flash */
  340. return SPI_FLASH_CACHE2PHYS_FAIL;
  341. }
  342. if (c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) {
  343. /* expect cache is in DROM */
  344. cache_page = (c - SOC_MMU_VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_DROM0_PAGES_START;
  345. #if CONFIG_SPIRAM_RODATA
  346. if (c >= (uint32_t)&_rodata_reserved_start && c <= (uint32_t)&_rodata_reserved_end) {
  347. offset = rodata_flash2spiram_offset();
  348. }
  349. #endif
  350. } else {
  351. /* expect cache is in IROM */
  352. cache_page = (c - SOC_MMU_VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_IROM0_PAGES_START;
  353. #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
  354. if (c >= (uint32_t)&_instruction_reserved_start && c <= (uint32_t)&_instruction_reserved_end) {
  355. offset = instruction_flash2spiram_offset();
  356. }
  357. #endif
  358. }
  359. if (cache_page >= PAGES_LIMIT) {
  360. /* cached address was not in IROM or DROM */
  361. return SPI_FLASH_CACHE2PHYS_FAIL;
  362. }
  363. uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page);
  364. bool entry_is_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, cache_page);
  365. if (entry_is_invalid) {
  366. /* page is not mapped */
  367. return SPI_FLASH_CACHE2PHYS_FAIL;
  368. }
  369. uint32_t phys_offs = ((phys_page & SOC_MMU_ADDR_MASK) + offset) * SPI_FLASH_MMU_PAGE_SIZE;
  370. return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1));
  371. }
  372. const void *IRAM_ATTR spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory)
  373. {
  374. uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE;
  375. int start, end, page_delta;
  376. intptr_t base;
  377. if (memory == SPI_FLASH_MMAP_DATA) {
  378. start = SOC_MMU_DROM0_PAGES_START;
  379. end = SOC_MMU_DROM0_PAGES_END;
  380. base = SOC_MMU_VADDR0_START_ADDR;
  381. page_delta = SOC_MMU_DROM0_PAGES_START;
  382. } else {
  383. start = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
  384. end = SOC_MMU_IROM0_PAGES_END;
  385. base = SOC_MMU_VADDR1_START_ADDR;
  386. page_delta = SOC_MMU_IROM0_PAGES_START;
  387. }
  388. spi_flash_disable_interrupts_caches_and_other_cpu();
  389. for (int i = start; i < end; i++) {
  390. uint32_t mmu_value = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
  391. #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
  392. if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) {
  393. if (mmu_value & MMU_ACCESS_SPIRAM) {
  394. mmu_value += instruction_flash2spiram_offset();
  395. mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
  396. }
  397. }
  398. #endif
  399. #if CONFIG_SPIRAM_RODATA
  400. if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) {
  401. if (mmu_value & MMU_ACCESS_SPIRAM) {
  402. mmu_value += rodata_flash2spiram_offset();
  403. mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH;
  404. }
  405. }
  406. #endif
  407. if (mmu_value == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
  408. i -= page_delta;
  409. intptr_t cache_page = base + (SPI_FLASH_MMU_PAGE_SIZE * i);
  410. spi_flash_enable_interrupts_caches_and_other_cpu();
  411. return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1)));
  412. }
  413. }
  414. spi_flash_enable_interrupts_caches_and_other_cpu();
  415. return NULL;
  416. }
  417. static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
  418. {
  419. int start[2], end[2];
  420. *out_ptr = NULL;
  421. /* SPI_FLASH_MMAP_DATA */
  422. start[0] = SOC_MMU_DROM0_PAGES_START;
  423. end[0] = SOC_MMU_DROM0_PAGES_END;
  424. /* SPI_FLASH_MMAP_INST */
  425. start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
  426. end[1] = SOC_MMU_IROM0_PAGES_END;
  427. for (int j = 0; j < 2; j++) {
  428. for (int i = start[j]; i < end[j]; i++) {
  429. uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i);
  430. if (entry_pro == SOC_MMU_PAGE_IN_FLASH(phys_page)) {
  431. #if !CONFIG_IDF_TARGET_ESP32
  432. if (j == 0) { /* SPI_FLASH_MMAP_DATA */
  433. *out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
  434. } else { /* SPI_FLASH_MMAP_INST */
  435. *out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
  436. }
  437. #endif
  438. return true;
  439. }
  440. }
  441. }
  442. return false;
  443. }
  444. /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */
  445. IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
  446. {
  447. bool ret = false;
  448. /* align start_addr & length to full MMU pages */
  449. uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
  450. length += (start_addr - page_start_addr);
  451. length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
  452. for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) {
  453. uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
  454. // TODO: IDF-4969
  455. if (page >= 256) {
  456. return false; /* invalid address */
  457. }
  458. const void *vaddr = NULL;
  459. if (is_page_mapped_in_cache(page, &vaddr)) {
  460. #if CONFIG_IDF_TARGET_ESP32
  461. #if CONFIG_SPIRAM
  462. esp_psram_extram_writeback_cache();
  463. #endif
  464. Cache_Flush(0);
  465. #ifndef CONFIG_FREERTOS_UNICORE
  466. Cache_Flush(1);
  467. #endif
  468. return true;
  469. #else // CONFIG_IDF_TARGET_ESP32
  470. if (vaddr != NULL) {
  471. Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
  472. ret = true;
  473. }
  474. #endif // CONFIG_IDF_TARGET_ESP32
  475. }
  476. }
  477. return ret;
  478. }
  479. #endif //!CONFIG_SPI_FLASH_ROM_IMPL