test_ulp.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452
  1. /*
  2. * SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdio.h>
  7. #include <string.h>
  8. #include <freertos/FreeRTOS.h>
  9. #include <freertos/task.h>
  10. #include <freertos/semphr.h>
  11. #include <unity.h>
  12. #include "esp_attr.h"
  13. #include "esp_err.h"
  14. #include "esp_log.h"
  15. #include "esp_sleep.h"
  16. #include "esp32/ulp.h"
  17. #include "soc/soc.h"
  18. #include "soc/rtc.h"
  19. #include "soc/rtc_cntl_reg.h"
  20. #include "soc/sens_reg.h"
  21. #include "driver/rtc_io.h"
  22. #include "sdkconfig.h"
  23. #include "esp_rom_sys.h"
  24. static void hexdump(const uint32_t* src, size_t count) {
  25. for (size_t i = 0; i < count; ++i) {
  26. printf("%08x ", *src);
  27. ++src;
  28. if ((i + 1) % 4 == 0) {
  29. printf("\n");
  30. }
  31. }
  32. }
  33. TEST_CASE("ulp add test", "[ulp]")
  34. {
  35. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  36. const ulp_insn_t program[] = {
  37. I_MOVI(R3, 16),
  38. I_LD(R0, R3, 0),
  39. I_LD(R1, R3, 1),
  40. I_ADDR(R2, R0, R1),
  41. I_ST(R2, R3, 2),
  42. I_HALT()
  43. };
  44. RTC_SLOW_MEM[16] = 10;
  45. RTC_SLOW_MEM[17] = 11;
  46. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  47. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  48. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  49. esp_rom_delay_us(1000);
  50. hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
  51. TEST_ASSERT_EQUAL(10 + 11, RTC_SLOW_MEM[18] & 0xffff);
  52. }
  53. TEST_CASE("ulp branch test", "[ulp]")
  54. {
  55. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  56. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  57. const ulp_insn_t program[] = {
  58. I_MOVI(R0, 34), // r0 = dst
  59. M_LABEL(1),
  60. I_MOVI(R1, 32),
  61. I_LD(R1, R1, 0), // r1 = mem[33]
  62. I_MOVI(R2, 33),
  63. I_LD(R2, R2, 0), // r2 = mem[34]
  64. I_SUBR(R3, R1, R2), // r3 = r1 - r2
  65. I_ST(R3, R0, 0), // dst[0] = r3
  66. I_ADDI(R0, R0, 1),
  67. M_BL(1, 64),
  68. I_HALT(),
  69. };
  70. RTC_SLOW_MEM[32] = 42;
  71. RTC_SLOW_MEM[33] = 18;
  72. hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
  73. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  74. ulp_process_macros_and_load(0, program, &size);
  75. ulp_run(0);
  76. printf("\n\n");
  77. hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
  78. for (int i = 34; i < 64; ++i) {
  79. TEST_ASSERT_EQUAL(42 - 18, RTC_SLOW_MEM[i] & 0xffff);
  80. }
  81. TEST_ASSERT_EQUAL(0, RTC_SLOW_MEM[64]);
  82. }
  83. TEST_CASE("ulp wakeup test", "[ulp][ignore]")
  84. {
  85. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  86. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  87. const ulp_insn_t program[] = {
  88. I_MOVI(R1, 1024),
  89. M_LABEL(1),
  90. I_DELAY(32000),
  91. I_SUBI(R1, R1, 1),
  92. M_BXZ(3),
  93. I_RSHI(R3, R1, 5), // R3 = R1 / 32
  94. I_ST(R1, R3, 16),
  95. M_BX(1),
  96. M_LABEL(3),
  97. I_MOVI(R2, 42),
  98. I_MOVI(R3, 15),
  99. I_ST(R2, R3, 0),
  100. I_WAKE(),
  101. I_END(),
  102. I_HALT()
  103. };
  104. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  105. ulp_process_macros_and_load(0, program, &size);
  106. ulp_run(0);
  107. esp_sleep_enable_ulp_wakeup();
  108. esp_deep_sleep_start();
  109. }
  110. TEST_CASE("ulp can write and read peripheral registers", "[ulp]")
  111. {
  112. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  113. CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
  114. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  115. REG_WRITE(RTC_CNTL_STORE1_REG, 0x89abcdef);
  116. const ulp_insn_t program[] = {
  117. I_MOVI(R1, 64),
  118. I_RD_REG(RTC_CNTL_STORE1_REG, 0, 15),
  119. I_ST(R0, R1, 0),
  120. I_RD_REG(RTC_CNTL_STORE1_REG, 4, 11),
  121. I_ST(R0, R1, 1),
  122. I_RD_REG(RTC_CNTL_STORE1_REG, 16, 31),
  123. I_ST(R0, R1, 2),
  124. I_RD_REG(RTC_CNTL_STORE1_REG, 20, 27),
  125. I_ST(R0, R1, 3),
  126. I_WR_REG(RTC_CNTL_STORE0_REG, 0, 7, 0x89),
  127. I_WR_REG(RTC_CNTL_STORE0_REG, 8, 15, 0xab),
  128. I_WR_REG(RTC_CNTL_STORE0_REG, 16, 23, 0xcd),
  129. I_WR_REG(RTC_CNTL_STORE0_REG, 24, 31, 0xef),
  130. I_LD(R0, R1, 4),
  131. I_ADDI(R0, R0, 1),
  132. I_ST(R0, R1, 4),
  133. I_END(),
  134. I_HALT()
  135. };
  136. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  137. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  138. TEST_ESP_OK(ulp_run(0));
  139. vTaskDelay(100/portTICK_PERIOD_MS);
  140. TEST_ASSERT_EQUAL_HEX32(0xefcdab89, REG_READ(RTC_CNTL_STORE0_REG));
  141. TEST_ASSERT_EQUAL_HEX16(0xcdef, RTC_SLOW_MEM[64] & 0xffff);
  142. TEST_ASSERT_EQUAL_HEX16(0xde, RTC_SLOW_MEM[65] & 0xffff);
  143. TEST_ASSERT_EQUAL_HEX16(0x89ab, RTC_SLOW_MEM[66] & 0xffff);
  144. TEST_ASSERT_EQUAL_HEX16(0x9a, RTC_SLOW_MEM[67] & 0xffff);
  145. TEST_ASSERT_EQUAL_HEX32(1 | (15 << 21) | (1 << 16), RTC_SLOW_MEM[68]);
  146. }
  147. TEST_CASE("ULP I_WR_REG instruction test", "[ulp]")
  148. {
  149. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  150. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  151. typedef struct {
  152. int low;
  153. int width;
  154. } wr_reg_test_item_t;
  155. const wr_reg_test_item_t test_items[] = {
  156. {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8},
  157. {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8},
  158. {15, 1}, {15, 2}, {15, 3}, {15, 4}, {15, 5}, {15, 6}, {15, 7}, {15, 8},
  159. {16, 1}, {16, 2}, {16, 3}, {16, 4}, {16, 5}, {16, 6}, {16, 7}, {16, 8},
  160. {18, 1}, {18, 2}, {18, 3}, {18, 4}, {18, 5}, {18, 6}, {18, 7}, {18, 8},
  161. {24, 1}, {24, 2}, {24, 3}, {24, 4}, {24, 5}, {24, 6}, {24, 7}, {24, 8},
  162. };
  163. const size_t test_items_count =
  164. sizeof(test_items)/sizeof(test_items[0]);
  165. for (size_t i = 0; i < test_items_count; ++i) {
  166. const uint32_t mask = (uint32_t) (((1ULL << test_items[i].width) - 1) << test_items[i].low);
  167. const uint32_t not_mask = ~mask;
  168. printf("#%2d: low: %2d width: %2d mask: %08x expected: %08x ", i,
  169. test_items[i].low, test_items[i].width,
  170. mask, not_mask);
  171. REG_WRITE(RTC_CNTL_STORE0_REG, 0xffffffff);
  172. REG_WRITE(RTC_CNTL_STORE1_REG, 0x00000000);
  173. const ulp_insn_t program[] = {
  174. I_WR_REG(RTC_CNTL_STORE0_REG,
  175. test_items[i].low,
  176. test_items[i].low + test_items[i].width - 1,
  177. 0),
  178. I_WR_REG(RTC_CNTL_STORE1_REG,
  179. test_items[i].low,
  180. test_items[i].low + test_items[i].width - 1,
  181. 0xff & ((1 << test_items[i].width) - 1)),
  182. I_END(),
  183. I_HALT()
  184. };
  185. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  186. ulp_process_macros_and_load(0, program, &size);
  187. ulp_run(0);
  188. vTaskDelay(10/portTICK_PERIOD_MS);
  189. uint32_t clear = REG_READ(RTC_CNTL_STORE0_REG);
  190. uint32_t set = REG_READ(RTC_CNTL_STORE1_REG);
  191. printf("clear: %08x set: %08x\n", clear, set);
  192. TEST_ASSERT_EQUAL_HEX32(not_mask, clear);
  193. TEST_ASSERT_EQUAL_HEX32(mask, set);
  194. }
  195. }
  196. TEST_CASE("ulp controls RTC_IO", "[ulp][ignore]")
  197. {
  198. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  199. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  200. const ulp_insn_t program[] = {
  201. I_MOVI(R0, 0), // R0 is LED state
  202. I_MOVI(R2, 16), // loop R2 from 16 down to 0
  203. M_LABEL(4),
  204. I_SUBI(R2, R2, 1),
  205. M_BXZ(6),
  206. I_ADDI(R0, R0, 1), // R0 = (R0 + 1) % 2
  207. I_ANDI(R0, R0, 0x1),
  208. M_BL(0, 1), // if R0 < 1 goto 0
  209. M_LABEL(1),
  210. I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 1), // RTC_GPIO12 = 1
  211. M_BX(2), // goto 2
  212. M_LABEL(0), // 0:
  213. I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 0), // RTC_GPIO12 = 0
  214. M_LABEL(2), // 2:
  215. I_MOVI(R1, 100), // loop R1 from 100 down to 0
  216. M_LABEL(3),
  217. I_SUBI(R1, R1, 1),
  218. M_BXZ(5),
  219. I_DELAY(32000), // delay for a while
  220. M_BX(3),
  221. M_LABEL(5),
  222. M_BX(4),
  223. M_LABEL(6),
  224. I_WAKE(), // wake up the SoC
  225. I_END(), // stop ULP program timer
  226. I_HALT()
  227. };
  228. const gpio_num_t led_gpios[] = {
  229. GPIO_NUM_2,
  230. GPIO_NUM_0,
  231. GPIO_NUM_4
  232. };
  233. for (size_t i = 0; i < sizeof(led_gpios)/sizeof(led_gpios[0]); ++i) {
  234. rtc_gpio_init(led_gpios[i]);
  235. rtc_gpio_set_direction(led_gpios[i], RTC_GPIO_MODE_OUTPUT_ONLY);
  236. rtc_gpio_set_level(led_gpios[i], 0);
  237. }
  238. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  239. ulp_process_macros_and_load(0, program, &size);
  240. ulp_run(0);
  241. esp_sleep_enable_ulp_wakeup();
  242. esp_deep_sleep_start();
  243. }
  244. TEST_CASE("ulp power consumption in deep sleep", "[ulp][ignore]")
  245. {
  246. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 4 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  247. ulp_insn_t insn = I_HALT();
  248. memcpy(&RTC_SLOW_MEM[0], &insn, sizeof(insn));
  249. REG_WRITE(SENS_ULP_CP_SLEEP_CYC0_REG, 0x8000);
  250. ulp_run(0);
  251. esp_sleep_enable_ulp_wakeup();
  252. esp_sleep_enable_timer_wakeup(10 * 1000000);
  253. esp_deep_sleep_start();
  254. }
  255. TEST_CASE("ulp timer setting", "[ulp]")
  256. {
  257. /*
  258. * Run a simple ULP program which increments the counter, for one second.
  259. * Program calls I_HALT each time and gets restarted by the timer.
  260. * Compare the expected number of times the program runs with the actual.
  261. */
  262. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 32 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  263. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  264. const int offset = 6;
  265. const ulp_insn_t program[] = {
  266. I_MOVI(R1, offset), // r1 <- offset
  267. I_LD(R2, R1, 0), // load counter
  268. I_ADDI(R2, R2, 1), // counter += 1
  269. I_ST(R2, R1, 0), // save counter
  270. I_HALT(),
  271. };
  272. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  273. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  274. assert(offset >= size && "data offset needs to be greater or equal to program size");
  275. TEST_ESP_OK(ulp_run(0));
  276. // disable the ULP program timer — we will enable it later
  277. CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
  278. const uint32_t cycles_to_test[] = {0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
  279. const size_t tests_count = sizeof(cycles_to_test) / sizeof(cycles_to_test[0]);
  280. for (size_t i = 0; i < tests_count; ++i) {
  281. // zero out the counter
  282. RTC_SLOW_MEM[offset] = 0;
  283. // set the number of slow clock cycles
  284. REG_WRITE(SENS_ULP_CP_SLEEP_CYC0_REG, cycles_to_test[i]);
  285. // enable the timer and wait for a second
  286. SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
  287. vTaskDelay(1000 / portTICK_PERIOD_MS);
  288. // get the counter value and stop the timer
  289. uint32_t counter = RTC_SLOW_MEM[offset] & 0xffff;
  290. CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
  291. // compare the actual and expected numbers of iterations of ULP program
  292. float expected_period = (cycles_to_test[i] + 16) / (float) rtc_clk_slow_freq_get_hz() + 5 / 8e6f;
  293. float error = 1.0f - counter * expected_period;
  294. printf("%u\t%u\t%.01f\t%.04f\n", cycles_to_test[i], counter, 1.0f / expected_period, error);
  295. // Should be within 15%
  296. TEST_ASSERT_INT_WITHIN(15, 0, (int) error * 100);
  297. }
  298. }
  299. TEST_CASE("ulp can use TSENS in deep sleep", "[ulp][ignore]")
  300. {
  301. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  302. hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
  303. printf("\n\n");
  304. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  305. // Allow TSENS to be controlled by the ULP
  306. SET_PERI_REG_BITS(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_CLK_DIV, 10, SENS_TSENS_CLK_DIV_S);
  307. SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 3, SENS_FORCE_XPD_SAR_S);
  308. CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP);
  309. CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT);
  310. CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP_FORCE);
  311. // data start offset
  312. size_t offset = 20;
  313. // number of samples to collect
  314. RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8;
  315. // sample counter
  316. RTC_SLOW_MEM[offset + 1] = 0;
  317. const ulp_insn_t program[] = {
  318. I_MOVI(R1, offset), // r1 <- offset
  319. I_LD(R2, R1, 1), // r2 <- counter
  320. I_LD(R3, R1, 0), // r3 <- length
  321. I_SUBI(R3, R3, 1), // end = length - 1
  322. I_SUBR(R3, R3, R2), // r3 = length - counter
  323. M_BXF(1), // if overflow goto 1:
  324. I_WR_REG(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR_S, SENS_FORCE_XPD_SAR_S + 1, 3),
  325. I_TSENS(R0, 16383), // r0 <- tsens
  326. I_WR_REG(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR_S, SENS_FORCE_XPD_SAR_S + 1, 0),
  327. I_ST(R0, R2, offset + 4),
  328. I_ADDI(R2, R2, 1), // counter += 1
  329. I_ST(R2, R1, 1), // save counter
  330. I_HALT(), // enter sleep
  331. M_LABEL(1), // done with measurements
  332. I_END(), // stop ULP timer
  333. I_WAKE(), // initiate wakeup
  334. I_HALT()
  335. };
  336. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  337. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  338. assert(offset >= size);
  339. TEST_ESP_OK(ulp_run(0));
  340. esp_sleep_enable_timer_wakeup(4000000);
  341. esp_sleep_enable_ulp_wakeup();
  342. esp_deep_sleep_start();
  343. }
  344. TEST_CASE("can use ADC in deep sleep", "[ulp][ignore]")
  345. {
  346. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  347. hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4);
  348. printf("\n\n");
  349. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  350. SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH, 3, SENS_SAR1_BIT_WIDTH_S);
  351. SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR2_BIT_WIDTH, 3, SENS_SAR2_BIT_WIDTH_S);
  352. SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT, 0x3, SENS_SAR1_SAMPLE_BIT_S);
  353. SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_BIT, 0x3, SENS_SAR2_SAMPLE_BIT_S);
  354. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_FORCE);
  355. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE);
  356. SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
  357. SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S);
  358. // SAR1 invert result
  359. SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV);
  360. SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR2_DATA_INV);
  361. // const int adc = 1;
  362. // const int channel = 1;
  363. // const int atten = 3;
  364. // const int gpio_num = 0;
  365. const int adc = 0;
  366. const int channel = 0;
  367. const int atten = 0;
  368. const int gpio_num = 36;
  369. rtc_gpio_init(gpio_num);
  370. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M);
  371. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD_FORCE_M);
  372. SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, 2 * channel); //set SAR1 attenuation
  373. SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, 3, atten, 2 * channel); //set SAR2 attenuation
  374. // data start offset
  375. size_t offset = 20;
  376. // number of samples to collect
  377. RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8;
  378. // sample counter
  379. RTC_SLOW_MEM[offset + 1] = 0;
  380. const ulp_insn_t program[] = {
  381. I_MOVI(R1, offset), // r1 <- offset
  382. I_LD(R2, R1, 1), // r2 <- counter
  383. I_LD(R3, R1, 0), // r3 <- length
  384. I_SUBI(R3, R3, 1), // end = length - 1
  385. I_SUBR(R3, R3, R2), // r3 = length - counter
  386. M_BXF(1), // if overflow goto 1:
  387. I_ADC(R0, adc, channel), // r0 <- ADC
  388. I_ST(R0, R2, offset + 4),
  389. I_ADDI(R2, R2, 1), // counter += 1
  390. I_ST(R2, R1, 1), // save counter
  391. I_HALT(),
  392. M_LABEL(1), // done with measurements
  393. I_END(), // stop ULP program timer
  394. I_HALT()
  395. };
  396. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  397. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  398. assert(offset >= size);
  399. TEST_ESP_OK(ulp_run(0));
  400. esp_sleep_enable_timer_wakeup(4000000);
  401. esp_deep_sleep_start();
  402. }