test_nvs.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include "catch.hpp"
  14. #include "nvs.hpp"
  15. #include "nvs_test_api.h"
  16. #include "spi_flash_emulation.h"
  17. #include <sstream>
  18. #include <iostream>
  19. #include <unistd.h>
  20. #include <sys/wait.h>
  21. #define TEST_ESP_ERR(rc, res) CHECK((rc) == (res))
  22. #define TEST_ESP_OK(rc) CHECK((rc) == ESP_OK)
  23. using namespace std;
  24. using namespace nvs;
  25. stringstream s_perf;
  26. void dumpBytes(const uint8_t* data, size_t count)
  27. {
  28. for (uint32_t i = 0; i < count; ++i) {
  29. if (i % 32 == 0) {
  30. printf("%08x ", i);
  31. }
  32. printf("%02x ", data[i]);
  33. if ((i + 1) % 32 == 0) {
  34. printf("\n");
  35. }
  36. }
  37. }
  38. TEST_CASE("crc32 behaves as expected", "[nvs]")
  39. {
  40. Item item1;
  41. item1.datatype = ItemType::I32;
  42. item1.nsIndex = 1;
  43. item1.crc32 = 0;
  44. item1.reserved = 0xff;
  45. fill_n(item1.key, sizeof(item1.key), 0xbb);
  46. fill_n(item1.data, sizeof(item1.data), 0xaa);
  47. auto crc32_1 = item1.calculateCrc32();
  48. Item item2 = item1;
  49. item2.crc32 = crc32_1;
  50. CHECK(crc32_1 == item2.calculateCrc32());
  51. item2 = item1;
  52. item2.nsIndex = 2;
  53. CHECK(crc32_1 != item2.calculateCrc32());
  54. item2 = item1;
  55. item2.datatype = ItemType::U32;
  56. CHECK(crc32_1 != item2.calculateCrc32());
  57. item2 = item1;
  58. strncpy(item2.key, "foo", Item::MAX_KEY_LENGTH);
  59. CHECK(crc32_1 != item2.calculateCrc32());
  60. }
  61. TEST_CASE("starting with empty flash, page is in uninitialized state", "[nvs]")
  62. {
  63. SpiFlashEmulator emu(1);
  64. Page page;
  65. CHECK(page.state() == Page::PageState::INVALID);
  66. CHECK(page.load(0) == ESP_OK);
  67. CHECK(page.state() == Page::PageState::UNINITIALIZED);
  68. }
  69. TEST_CASE("can distinguish namespaces", "[nvs]")
  70. {
  71. SpiFlashEmulator emu(1);
  72. Page page;
  73. CHECK(page.load(0) == ESP_OK);
  74. int32_t val1 = 0x12345678;
  75. CHECK(page.writeItem(1, ItemType::I32, "intval1", &val1, sizeof(val1)) == ESP_OK);
  76. int32_t val2 = 0x23456789;
  77. CHECK(page.writeItem(2, ItemType::I32, "intval1", &val2, sizeof(val2)) == ESP_OK);
  78. int32_t readVal;
  79. CHECK(page.readItem(2, ItemType::I32, "intval1", &readVal, sizeof(readVal)) == ESP_OK);
  80. CHECK(readVal == val2);
  81. }
  82. TEST_CASE("reading with different type causes type mismatch error", "[nvs]")
  83. {
  84. SpiFlashEmulator emu(1);
  85. Page page;
  86. CHECK(page.load(0) == ESP_OK);
  87. int32_t val = 0x12345678;
  88. CHECK(page.writeItem(1, ItemType::I32, "intval1", &val, sizeof(val)) == ESP_OK);
  89. CHECK(page.readItem(1, ItemType::U32, "intval1", &val, sizeof(val)) == ESP_ERR_NVS_TYPE_MISMATCH);
  90. }
  91. TEST_CASE("when page is erased, it's state becomes UNITIALIZED", "[nvs]")
  92. {
  93. SpiFlashEmulator emu(1);
  94. Page page;
  95. CHECK(page.load(0) == ESP_OK);
  96. int32_t val = 0x12345678;
  97. CHECK(page.writeItem(1, ItemType::I32, "intval1", &val, sizeof(val)) == ESP_OK);
  98. CHECK(page.erase() == ESP_OK);
  99. CHECK(page.state() == Page::PageState::UNINITIALIZED);
  100. }
  101. TEST_CASE("when writing and erasing, used/erased counts are updated correctly", "[nvs]")
  102. {
  103. SpiFlashEmulator emu(1);
  104. Page page;
  105. CHECK(page.load(0) == ESP_OK);
  106. CHECK(page.getUsedEntryCount() == 0);
  107. CHECK(page.getErasedEntryCount() == 0);
  108. uint32_t foo1 = 0;
  109. CHECK(page.writeItem(1, "foo1", foo1) == ESP_OK);
  110. CHECK(page.getUsedEntryCount() == 1);
  111. CHECK(page.writeItem(2, "foo1", foo1) == ESP_OK);
  112. CHECK(page.getUsedEntryCount() == 2);
  113. CHECK(page.eraseItem<uint32_t>(2, "foo1") == ESP_OK);
  114. CHECK(page.getUsedEntryCount() == 1);
  115. CHECK(page.getErasedEntryCount() == 1);
  116. for (size_t i = 0; i < Page::ENTRY_COUNT - 2; ++i) {
  117. char name[16];
  118. snprintf(name, sizeof(name), "i%ld", (long int)i);
  119. CHECK(page.writeItem(1, name, i) == ESP_OK);
  120. }
  121. CHECK(page.getUsedEntryCount() == Page::ENTRY_COUNT - 1);
  122. CHECK(page.getErasedEntryCount() == 1);
  123. for (size_t i = 0; i < Page::ENTRY_COUNT - 2; ++i) {
  124. char name[16];
  125. snprintf(name, sizeof(name), "i%ld", (long int)i);
  126. CHECK(page.eraseItem(1, itemTypeOf<size_t>(), name) == ESP_OK);
  127. }
  128. CHECK(page.getUsedEntryCount() == 1);
  129. CHECK(page.getErasedEntryCount() == Page::ENTRY_COUNT - 1);
  130. }
  131. TEST_CASE("when page is full, adding an element fails", "[nvs]")
  132. {
  133. SpiFlashEmulator emu(1);
  134. Page page;
  135. CHECK(page.load(0) == ESP_OK);
  136. for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
  137. char name[16];
  138. snprintf(name, sizeof(name), "i%ld", (long int)i);
  139. CHECK(page.writeItem(1, name, i) == ESP_OK);
  140. }
  141. CHECK(page.writeItem(1, "foo", 64UL) == ESP_ERR_NVS_PAGE_FULL);
  142. }
  143. TEST_CASE("page maintains its seq number")
  144. {
  145. SpiFlashEmulator emu(1);
  146. {
  147. Page page;
  148. CHECK(page.load(0) == ESP_OK);
  149. CHECK(page.setSeqNumber(123) == ESP_OK);
  150. int32_t val = 42;
  151. CHECK(page.writeItem(1, ItemType::I32, "dummy", &val, sizeof(val)) == ESP_OK);
  152. }
  153. {
  154. Page page;
  155. CHECK(page.load(0) == ESP_OK);
  156. uint32_t seqno;
  157. CHECK(page.getSeqNumber(seqno) == ESP_OK);
  158. CHECK(seqno == 123);
  159. }
  160. }
  161. TEST_CASE("can write and read variable length data", "[nvs]")
  162. {
  163. SpiFlashEmulator emu(1);
  164. Page page;
  165. CHECK(page.load(0) == ESP_OK);
  166. const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
  167. size_t len = strlen(str);
  168. CHECK(page.writeItem(1, "stuff1", 42) == ESP_OK);
  169. CHECK(page.writeItem(1, "stuff2", 1) == ESP_OK);
  170. CHECK(page.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
  171. CHECK(page.writeItem(1, "stuff3", 2) == ESP_OK);
  172. CHECK(page.writeItem(1, ItemType::BLOB, "baz", str, len) == ESP_OK);
  173. CHECK(page.writeItem(1, "stuff4", 0x7abbccdd) == ESP_OK);
  174. char buf[sizeof(str) + 16];
  175. int32_t value;
  176. CHECK(page.readItem(1, "stuff1", value) == ESP_OK);
  177. CHECK(value == 42);
  178. CHECK(page.readItem(1, "stuff2", value) == ESP_OK);
  179. CHECK(value == 1);
  180. CHECK(page.readItem(1, "stuff3", value) == ESP_OK);
  181. CHECK(value == 2);
  182. CHECK(page.readItem(1, "stuff4", value) == ESP_OK);
  183. CHECK(value == 0x7abbccdd);
  184. fill_n(buf, sizeof(buf), 0xff);
  185. CHECK(page.readItem(1, ItemType::SZ, "foobaar", buf, sizeof(buf)) == ESP_OK);
  186. CHECK(memcmp(buf, str, strlen(str) + 1) == 0);
  187. fill_n(buf, sizeof(buf), 0xff);
  188. CHECK(page.readItem(1, ItemType::BLOB, "baz", buf, sizeof(buf)) == ESP_OK);
  189. CHECK(memcmp(buf, str, strlen(str)) == 0);
  190. }
  191. TEST_CASE("different key names are distinguished even if the pointer is the same", "[nvs]")
  192. {
  193. SpiFlashEmulator emu(1);
  194. Page page;
  195. TEST_ESP_OK(page.load(0));
  196. TEST_ESP_OK(page.writeItem(1, "i1", 1));
  197. TEST_ESP_OK(page.writeItem(1, "i2", 2));
  198. int32_t value;
  199. char keyname[10] = {0};
  200. for (int i = 0; i < 2; ++i) {
  201. strncpy(keyname, "i1", sizeof(keyname) - 1);
  202. TEST_ESP_OK(page.readItem(1, keyname, value));
  203. CHECK(value == 1);
  204. strncpy(keyname, "i2", sizeof(keyname) - 1);
  205. TEST_ESP_OK(page.readItem(1, keyname, value));
  206. CHECK(value == 2);
  207. }
  208. }
  209. TEST_CASE("Page validates key size", "[nvs]")
  210. {
  211. SpiFlashEmulator emu(4);
  212. Page page;
  213. TEST_ESP_OK(page.load(0));
  214. // 16-character key fails
  215. TEST_ESP_ERR(page.writeItem(1, "0123456789123456", 1), ESP_ERR_NVS_KEY_TOO_LONG);
  216. // 15-character key is okay
  217. TEST_ESP_OK(page.writeItem(1, "012345678912345", 1));
  218. }
  219. TEST_CASE("Page validates blob size", "[nvs]")
  220. {
  221. SpiFlashEmulator emu(4);
  222. Page page;
  223. TEST_ESP_OK(page.load(0));
  224. char buf[2048] = { 0 };
  225. // There are two potential errors here:
  226. // - not enough space in the page (because one value has been written already)
  227. // - value is too long
  228. // Check that the second one is actually returned.
  229. TEST_ESP_ERR(page.writeItem(1, ItemType::BLOB, "2", buf, Page::ENTRY_COUNT * Page::ENTRY_SIZE), ESP_ERR_NVS_VALUE_TOO_LONG);
  230. // Should fail as well
  231. TEST_ESP_ERR(page.writeItem(1, ItemType::BLOB, "2", buf, Page::BLOB_MAX_SIZE + 1), ESP_ERR_NVS_VALUE_TOO_LONG);
  232. TEST_ESP_OK(page.writeItem(1, ItemType::BLOB, "2", buf, Page::BLOB_MAX_SIZE));
  233. }
  234. TEST_CASE("Page handles invalid CRC of variable length items", "[nvs][cur]")
  235. {
  236. SpiFlashEmulator emu(4);
  237. {
  238. Page page;
  239. TEST_ESP_OK(page.load(0));
  240. char buf[128] = {0};
  241. TEST_ESP_OK(page.writeItem(1, ItemType::BLOB, "1", buf, sizeof(buf)));
  242. }
  243. // corrupt header of the item (64 is the offset of the first item in page)
  244. uint32_t overwrite_buf = 0;
  245. emu.write(64, &overwrite_buf, 4);
  246. // load page again
  247. {
  248. Page page;
  249. TEST_ESP_OK(page.load(0));
  250. }
  251. }
  252. TEST_CASE("can init PageManager in empty flash", "[nvs]")
  253. {
  254. SpiFlashEmulator emu(4);
  255. PageManager pm;
  256. CHECK(pm.load(0, 4) == ESP_OK);
  257. }
  258. TEST_CASE("PageManager adds page in the correct order", "[nvs]")
  259. {
  260. const size_t pageCount = 8;
  261. SpiFlashEmulator emu(pageCount);
  262. uint32_t pageNo[pageCount] = { -1U, 50, 11, -1U, 23, 22, 24, 49};
  263. for (uint32_t i = 0; i < pageCount; ++i) {
  264. Page p;
  265. p.load(i);
  266. if (pageNo[i] != -1U) {
  267. p.setSeqNumber(pageNo[i]);
  268. p.writeItem(1, "foo", 10U);
  269. }
  270. }
  271. PageManager pageManager;
  272. CHECK(pageManager.load(0, pageCount) == ESP_OK);
  273. uint32_t lastSeqNo = 0;
  274. for (auto it = std::begin(pageManager); it != std::end(pageManager); ++it) {
  275. uint32_t seqNo;
  276. CHECK(it->getSeqNumber(seqNo) == ESP_OK);
  277. CHECK(seqNo > lastSeqNo);
  278. }
  279. }
  280. TEST_CASE("can init storage in empty flash", "[nvs]")
  281. {
  282. SpiFlashEmulator emu(8);
  283. Storage storage;
  284. emu.setBounds(4, 8);
  285. CHECK(storage.init(4, 4) == ESP_OK);
  286. s_perf << "Time to init empty storage (4 sectors): " << emu.getTotalTime() << " us" << std::endl;
  287. }
  288. TEST_CASE("storage doesn't add duplicates within one page", "[nvs]")
  289. {
  290. SpiFlashEmulator emu(8);
  291. Storage storage;
  292. emu.setBounds(4, 8);
  293. CHECK(storage.init(4, 4) == ESP_OK);
  294. int bar = 0;
  295. CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
  296. CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
  297. Page page;
  298. page.load(4);
  299. CHECK(page.getUsedEntryCount() == 1);
  300. CHECK(page.getErasedEntryCount() == 1);
  301. }
  302. TEST_CASE("can write one item a thousand times", "[nvs]")
  303. {
  304. SpiFlashEmulator emu(8);
  305. Storage storage;
  306. emu.setBounds(4, 8);
  307. CHECK(storage.init(4, 4) == ESP_OK);
  308. for (size_t i = 0; i < Page::ENTRY_COUNT * 4 * 2; ++i) {
  309. REQUIRE(storage.writeItem(1, "i", static_cast<int>(i)) == ESP_OK);
  310. }
  311. s_perf << "Time to write one item a thousand times: " << emu.getTotalTime() << " us (" << emu.getEraseOps() << " " << emu.getWriteOps() << " " << emu.getReadOps() << " " << emu.getWriteBytes() << " " << emu.getReadBytes() << ")" << std::endl;
  312. }
  313. TEST_CASE("storage doesn't add duplicates within multiple pages", "[nvs]")
  314. {
  315. SpiFlashEmulator emu(8);
  316. Storage storage;
  317. emu.setBounds(4, 8);
  318. CHECK(storage.init(4, 4) == ESP_OK);
  319. int bar = 0;
  320. CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
  321. for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
  322. CHECK(storage.writeItem(1, "foo", static_cast<int>(bar)) == ESP_OK);
  323. }
  324. CHECK(storage.writeItem(1, "bar", bar) == ESP_OK);
  325. Page page;
  326. page.load(4);
  327. CHECK(page.findItem(1, itemTypeOf<int>(), "bar") == ESP_ERR_NVS_NOT_FOUND);
  328. page.load(5);
  329. CHECK(page.findItem(1, itemTypeOf<int>(), "bar") == ESP_OK);
  330. }
  331. TEST_CASE("storage can find items on second page if first is not fully written and has cached search data", "[nvs]")
  332. {
  333. SpiFlashEmulator emu(3);
  334. Storage storage;
  335. CHECK(storage.init(0, 3) == ESP_OK);
  336. int bar = 0;
  337. uint8_t bigdata[Page::BLOB_MAX_SIZE] = {0};
  338. // write one big chunk of data
  339. ESP_ERROR_CHECK(storage.writeItem(0, ItemType::BLOB, "1", bigdata, sizeof(bigdata)));
  340. // write another big chunk of data
  341. ESP_ERROR_CHECK(storage.writeItem(0, ItemType::BLOB, "2", bigdata, sizeof(bigdata)));
  342. // write third one; it will not fit into the first page
  343. ESP_ERROR_CHECK(storage.writeItem(0, ItemType::BLOB, "3", bigdata, sizeof(bigdata)));
  344. size_t size;
  345. ESP_ERROR_CHECK(storage.getItemDataSize(0, ItemType::BLOB, "1", size));
  346. CHECK(size == sizeof(bigdata));
  347. ESP_ERROR_CHECK(storage.getItemDataSize(0, ItemType::BLOB, "3", size));
  348. CHECK(size == sizeof(bigdata));
  349. }
  350. TEST_CASE("can write and read variable length data lots of times", "[nvs]")
  351. {
  352. SpiFlashEmulator emu(8);
  353. Storage storage;
  354. emu.setBounds(4, 8);
  355. CHECK(storage.init(4, 4) == ESP_OK);
  356. const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
  357. char buf[sizeof(str) + 16];
  358. size_t len = strlen(str);
  359. for (size_t i = 0; i < Page::ENTRY_COUNT * 4 * 2; ++i) {
  360. CAPTURE(i);
  361. CHECK(storage.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
  362. CHECK(storage.writeItem(1, "foo", static_cast<uint32_t>(i)) == ESP_OK);
  363. uint32_t value;
  364. CHECK(storage.readItem(1, "foo", value) == ESP_OK);
  365. CHECK(value == i);
  366. fill_n(buf, sizeof(buf), 0xff);
  367. CHECK(storage.readItem(1, ItemType::SZ, "foobaar", buf, sizeof(buf)) == ESP_OK);
  368. CHECK(memcmp(buf, str, strlen(str) + 1) == 0);
  369. }
  370. s_perf << "Time to write one string and one integer a thousand times: " << emu.getTotalTime() << " us (" << emu.getEraseOps() << " " << emu.getWriteOps() << " " << emu.getReadOps() << " " << emu.getWriteBytes() << " " << emu.getReadBytes() << ")" << std::endl;
  371. }
  372. TEST_CASE("can get length of variable length data", "[nvs]")
  373. {
  374. SpiFlashEmulator emu(8);
  375. emu.randomize(200);
  376. Storage storage;
  377. emu.setBounds(4, 8);
  378. CHECK(storage.init(4, 4) == ESP_OK);
  379. const char str[] = "foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234foobar1234";
  380. size_t len = strlen(str);
  381. CHECK(storage.writeItem(1, ItemType::SZ, "foobaar", str, len + 1) == ESP_OK);
  382. size_t dataSize;
  383. CHECK(storage.getItemDataSize(1, ItemType::SZ, "foobaar", dataSize) == ESP_OK);
  384. CHECK(dataSize == len + 1);
  385. CHECK(storage.writeItem(2, ItemType::BLOB, "foobaar", str, len) == ESP_OK);
  386. CHECK(storage.getItemDataSize(2, ItemType::BLOB, "foobaar", dataSize) == ESP_OK);
  387. CHECK(dataSize == len);
  388. }
  389. TEST_CASE("can create namespaces", "[nvs]")
  390. {
  391. SpiFlashEmulator emu(8);
  392. Storage storage;
  393. emu.setBounds(4, 8);
  394. CHECK(storage.init(4, 4) == ESP_OK);
  395. uint8_t nsi;
  396. CHECK(storage.createOrOpenNamespace("wifi", false, nsi) == ESP_ERR_NVS_NOT_FOUND);
  397. CHECK(storage.createOrOpenNamespace("wifi", true, nsi) == ESP_OK);
  398. Page page;
  399. page.load(4);
  400. CHECK(page.findItem(Page::NS_INDEX, ItemType::U8, "wifi") == ESP_OK);
  401. }
  402. TEST_CASE("storage may become full", "[nvs]")
  403. {
  404. SpiFlashEmulator emu(8);
  405. Storage storage;
  406. emu.setBounds(4, 8);
  407. CHECK(storage.init(4, 4) == ESP_OK);
  408. for (size_t i = 0; i < Page::ENTRY_COUNT * 3; ++i) {
  409. char name[Item::MAX_KEY_LENGTH + 1];
  410. snprintf(name, sizeof(name), "key%05d", static_cast<int>(i));
  411. REQUIRE(storage.writeItem(1, name, static_cast<int>(i)) == ESP_OK);
  412. }
  413. REQUIRE(storage.writeItem(1, "foo", 10) == ESP_ERR_NVS_NOT_ENOUGH_SPACE);
  414. }
  415. TEST_CASE("can modify an item on a page which will be erased", "[nvs]")
  416. {
  417. SpiFlashEmulator emu(2);
  418. Storage storage;
  419. CHECK(storage.init(0, 2) == ESP_OK);
  420. for (size_t i = 0; i < Page::ENTRY_COUNT * 3 + 1; ++i) {
  421. REQUIRE(storage.writeItem(1, "foo", 42U) == ESP_OK);
  422. }
  423. }
  424. TEST_CASE("can erase items", "[nvs]")
  425. {
  426. SpiFlashEmulator emu(3);
  427. Storage storage;
  428. CHECK(storage.init(0, 3) == ESP_OK);
  429. for (size_t i = 0; i < Page::ENTRY_COUNT * 2 - 3; ++i) {
  430. char name[Item::MAX_KEY_LENGTH + 1];
  431. snprintf(name, sizeof(name), "key%05d", static_cast<int>(i));
  432. REQUIRE(storage.writeItem(3, name, static_cast<int>(i)) == ESP_OK);
  433. }
  434. CHECK(storage.writeItem(1, "foo", 32) == ESP_OK);
  435. CHECK(storage.writeItem(2, "foo", 64) == ESP_OK);
  436. CHECK(storage.eraseItem(2, "foo") == ESP_OK);
  437. int val;
  438. CHECK(storage.readItem(1, "foo", val) == ESP_OK);
  439. CHECK(val == 32);
  440. CHECK(storage.eraseNamespace(3) == ESP_OK);
  441. CHECK(storage.readItem(2, "foo", val) == ESP_ERR_NVS_NOT_FOUND);
  442. CHECK(storage.readItem(3, "key00222", val) == ESP_ERR_NVS_NOT_FOUND);
  443. }
  444. TEST_CASE("nvs api tests", "[nvs]")
  445. {
  446. SpiFlashEmulator emu(10);
  447. emu.randomize(100);
  448. nvs_handle handle_1;
  449. const uint32_t NVS_FLASH_SECTOR = 6;
  450. const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
  451. emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
  452. TEST_ESP_ERR(nvs_open("namespace1", NVS_READWRITE, &handle_1), ESP_ERR_NVS_NOT_INITIALIZED);
  453. for (uint16_t i = NVS_FLASH_SECTOR; i <NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN; ++i) {
  454. spi_flash_erase_sector(i);
  455. }
  456. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
  457. TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
  458. // TEST_ESP_ERR(nvs_set_i32(handle_1, "foo", 0x12345678), ESP_ERR_NVS_READ_ONLY);
  459. // nvs_close(handle_1);
  460. TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
  461. TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
  462. TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789));
  463. nvs_handle handle_2;
  464. TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
  465. TEST_ESP_OK(nvs_set_i32(handle_2, "foo", 0x3456789a));
  466. const char* str = "value 0123456789abcdef0123456789abcdef";
  467. TEST_ESP_OK(nvs_set_str(handle_2, "key", str));
  468. int32_t v1;
  469. TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
  470. CHECK(0x23456789 == v1);
  471. int32_t v2;
  472. TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
  473. CHECK(0x3456789a == v2);
  474. char buf[strlen(str) + 1];
  475. size_t buf_len = sizeof(buf);
  476. size_t buf_len_needed;
  477. TEST_ESP_OK(nvs_get_str(handle_2, "key", NULL, &buf_len_needed));
  478. CHECK(buf_len_needed == buf_len);
  479. size_t buf_len_short = buf_len - 1;
  480. TEST_ESP_ERR(ESP_ERR_NVS_INVALID_LENGTH, nvs_get_str(handle_2, "key", buf, &buf_len_short));
  481. CHECK(buf_len_short == buf_len);
  482. size_t buf_len_long = buf_len + 1;
  483. TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len_long));
  484. CHECK(buf_len_long == buf_len);
  485. TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
  486. CHECK(0 == strcmp(buf, str));
  487. }
  488. TEST_CASE("wifi test", "[nvs]")
  489. {
  490. SpiFlashEmulator emu(10);
  491. emu.randomize(10);
  492. const uint32_t NVS_FLASH_SECTOR = 5;
  493. const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
  494. emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
  495. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
  496. nvs_handle misc_handle;
  497. TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &misc_handle));
  498. char log[33];
  499. size_t log_size = sizeof(log);
  500. TEST_ESP_ERR(nvs_get_str(misc_handle, "log", log, &log_size), ESP_ERR_NVS_NOT_FOUND);
  501. strcpy(log, "foobarbazfizzz");
  502. TEST_ESP_OK(nvs_set_str(misc_handle, "log", log));
  503. nvs_handle net80211_handle;
  504. TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &net80211_handle));
  505. uint8_t opmode = 2;
  506. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "wifi.opmode", &opmode), ESP_ERR_NVS_NOT_FOUND);
  507. TEST_ESP_OK(nvs_set_u8(net80211_handle, "wifi.opmode", opmode));
  508. uint8_t country = 0;
  509. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "wifi.country", &opmode), ESP_ERR_NVS_NOT_FOUND);
  510. TEST_ESP_OK(nvs_set_u8(net80211_handle, "wifi.country", opmode));
  511. char ssid[36];
  512. size_t size = sizeof(ssid);
  513. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.ssid", ssid, &size), ESP_ERR_NVS_NOT_FOUND);
  514. strcpy(ssid, "my android AP");
  515. TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.ssid", ssid, size));
  516. char mac[6];
  517. size = sizeof(mac);
  518. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.mac", mac, &size), ESP_ERR_NVS_NOT_FOUND);
  519. memset(mac, 0xab, 6);
  520. TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.mac", mac, size));
  521. uint8_t authmode = 1;
  522. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.authmode", &authmode), ESP_ERR_NVS_NOT_FOUND);
  523. TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.authmode", authmode));
  524. char pswd[65];
  525. size = sizeof(pswd);
  526. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.pswd", pswd, &size), ESP_ERR_NVS_NOT_FOUND);
  527. strcpy(pswd, "`123456788990-=");
  528. TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.pswd", pswd, size));
  529. char pmk[32];
  530. size = sizeof(pmk);
  531. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.pmk", pmk, &size), ESP_ERR_NVS_NOT_FOUND);
  532. memset(pmk, 1, size);
  533. TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.pmk", pmk, size));
  534. uint8_t chan = 1;
  535. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.chan", &chan), ESP_ERR_NVS_NOT_FOUND);
  536. TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.chan", chan));
  537. uint8_t autoconn = 1;
  538. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "auto.conn", &autoconn), ESP_ERR_NVS_NOT_FOUND);
  539. TEST_ESP_OK(nvs_set_u8(net80211_handle, "auto.conn", autoconn));
  540. uint8_t bssid_set = 1;
  541. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "bssid.set", &bssid_set), ESP_ERR_NVS_NOT_FOUND);
  542. TEST_ESP_OK(nvs_set_u8(net80211_handle, "bssid.set", bssid_set));
  543. char bssid[6];
  544. size = sizeof(bssid);
  545. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.bssid", bssid, &size), ESP_ERR_NVS_NOT_FOUND);
  546. memset(mac, 0xcd, 6);
  547. TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.bssid", bssid, size));
  548. uint8_t phym = 3;
  549. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.phym", &phym), ESP_ERR_NVS_NOT_FOUND);
  550. TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.phym", phym));
  551. uint8_t phybw = 2;
  552. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "sta.phybw", &phybw), ESP_ERR_NVS_NOT_FOUND);
  553. TEST_ESP_OK(nvs_set_u8(net80211_handle, "sta.phybw", phybw));
  554. char apsw[2];
  555. size = sizeof(apsw);
  556. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.apsw", apsw, &size), ESP_ERR_NVS_NOT_FOUND);
  557. memset(apsw, 0x2, size);
  558. TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.apsw", apsw, size));
  559. char apinfo[700];
  560. size = sizeof(apinfo);
  561. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "sta.apinfo", apinfo, &size), ESP_ERR_NVS_NOT_FOUND);
  562. memset(apinfo, 0, size);
  563. TEST_ESP_OK(nvs_set_blob(net80211_handle, "sta.apinfo", apinfo, size));
  564. size = sizeof(ssid);
  565. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.ssid", ssid, &size), ESP_ERR_NVS_NOT_FOUND);
  566. strcpy(ssid, "ESP_A2F340");
  567. TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.ssid", ssid, size));
  568. size = sizeof(mac);
  569. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.mac", mac, &size), ESP_ERR_NVS_NOT_FOUND);
  570. memset(mac, 0xac, 6);
  571. TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.mac", mac, size));
  572. size = sizeof(pswd);
  573. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.passwd", pswd, &size), ESP_ERR_NVS_NOT_FOUND);
  574. strcpy(pswd, "");
  575. TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.passwd", pswd, size));
  576. size = sizeof(pmk);
  577. TEST_ESP_ERR(nvs_get_blob(net80211_handle, "ap.pmk", pmk, &size), ESP_ERR_NVS_NOT_FOUND);
  578. memset(pmk, 1, size);
  579. TEST_ESP_OK(nvs_set_blob(net80211_handle, "ap.pmk", pmk, size));
  580. chan = 6;
  581. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.chan", &chan), ESP_ERR_NVS_NOT_FOUND);
  582. TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.chan", chan));
  583. authmode = 0;
  584. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.authmode", &authmode), ESP_ERR_NVS_NOT_FOUND);
  585. TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.authmode", authmode));
  586. uint8_t hidden = 0;
  587. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.hidden", &hidden), ESP_ERR_NVS_NOT_FOUND);
  588. TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.hidden", hidden));
  589. uint8_t max_conn = 4;
  590. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "ap.max.conn", &max_conn), ESP_ERR_NVS_NOT_FOUND);
  591. TEST_ESP_OK(nvs_set_u8(net80211_handle, "ap.max.conn", max_conn));
  592. uint8_t bcn_interval = 2;
  593. TEST_ESP_ERR(nvs_get_u8(net80211_handle, "bcn_interval", &bcn_interval), ESP_ERR_NVS_NOT_FOUND);
  594. TEST_ESP_OK(nvs_set_u8(net80211_handle, "bcn_interval", bcn_interval));
  595. s_perf << "Time to simulate nvs init with wifi libs: " << emu.getTotalTime() << " us (" << emu.getEraseOps() << "E " << emu.getWriteOps() << "W " << emu.getReadOps() << "R " << emu.getWriteBytes() << "Wb " << emu.getReadBytes() << "Rb)" << std::endl;
  596. }
  597. TEST_CASE("can init storage from flash with random contents", "[nvs]")
  598. {
  599. SpiFlashEmulator emu(10);
  600. emu.randomize(42);
  601. nvs_handle handle;
  602. const uint32_t NVS_FLASH_SECTOR = 5;
  603. const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
  604. emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
  605. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
  606. TEST_ESP_OK(nvs_open("nvs.net80211", NVS_READWRITE, &handle));
  607. uint8_t opmode = 2;
  608. if (nvs_get_u8(handle, "wifi.opmode", &opmode) != ESP_OK) {
  609. TEST_ESP_OK(nvs_set_u8(handle, "wifi.opmode", opmode));
  610. }
  611. }
  612. TEST_CASE("nvs api tests, starting with random data in flash", "[nvs][long]")
  613. {
  614. const size_t testIters = 3000;
  615. int lastPercent = -1;
  616. for (size_t count = 0; count < testIters; ++count) {
  617. int percentDone = (int) (count * 100 / testIters);
  618. if (percentDone != lastPercent) {
  619. lastPercent = percentDone;
  620. printf("%d%%\n", percentDone);
  621. }
  622. SpiFlashEmulator emu(10);
  623. emu.randomize(static_cast<uint32_t>(count));
  624. const uint32_t NVS_FLASH_SECTOR = 6;
  625. const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
  626. emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
  627. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
  628. nvs_handle handle_1;
  629. TEST_ESP_ERR(nvs_open("namespace1", NVS_READONLY, &handle_1), ESP_ERR_NVS_NOT_FOUND);
  630. TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle_1));
  631. TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x12345678));
  632. for (size_t i = 0; i < 500; ++i) {
  633. nvs_handle handle_2;
  634. TEST_ESP_OK(nvs_open("namespace2", NVS_READWRITE, &handle_2));
  635. TEST_ESP_OK(nvs_set_i32(handle_1, "foo", 0x23456789 % (i + 1)));
  636. TEST_ESP_OK(nvs_set_i32(handle_2, "foo", static_cast<int32_t>(i)));
  637. const char* str = "value 0123456789abcdef0123456789abcdef %09d";
  638. char str_buf[128];
  639. snprintf(str_buf, sizeof(str_buf), str, i + count * 1024);
  640. TEST_ESP_OK(nvs_set_str(handle_2, "key", str_buf));
  641. int32_t v1;
  642. TEST_ESP_OK(nvs_get_i32(handle_1, "foo", &v1));
  643. CHECK(0x23456789 % (i + 1) == v1);
  644. int32_t v2;
  645. TEST_ESP_OK(nvs_get_i32(handle_2, "foo", &v2));
  646. CHECK(static_cast<int32_t>(i) == v2);
  647. char buf[128];
  648. size_t buf_len = sizeof(buf);
  649. TEST_ESP_OK(nvs_get_str(handle_2, "key", buf, &buf_len));
  650. CHECK(0 == strcmp(buf, str_buf));
  651. nvs_close(handle_2);
  652. }
  653. nvs_close(handle_1);
  654. }
  655. }
  656. extern "C" void nvs_dump(const char *partName);
  657. class RandomTest {
  658. static const size_t nKeys = 9;
  659. int32_t v1 = 0, v2 = 0;
  660. uint64_t v3 = 0, v4 = 0;
  661. static const size_t strBufLen = 1024;
  662. char v5[strBufLen], v6[strBufLen], v7[strBufLen], v8[strBufLen], v9[strBufLen];
  663. bool written[nKeys];
  664. public:
  665. RandomTest()
  666. {
  667. std::fill_n(written, nKeys, false);
  668. }
  669. template<typename TGen>
  670. esp_err_t doRandomThings(nvs_handle handle, TGen gen, size_t& count) {
  671. const char* keys[] = {"foo", "bar", "longkey_0123456", "another key", "param1", "param2", "param3", "param4", "param5"};
  672. const ItemType types[] = {ItemType::I32, ItemType::I32, ItemType::U64, ItemType::U64, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::SZ, ItemType::SZ};
  673. void* values[] = {&v1, &v2, &v3, &v4, &v5, &v6, &v7, &v8, &v9};
  674. const size_t nKeys = sizeof(keys) / sizeof(keys[0]);
  675. static_assert(nKeys == sizeof(types) / sizeof(types[0]), "");
  676. static_assert(nKeys == sizeof(values) / sizeof(values[0]), "");
  677. auto randomRead = [&](size_t index) -> esp_err_t {
  678. switch (types[index]) {
  679. case ItemType::I32:
  680. {
  681. int32_t val;
  682. auto err = nvs_get_i32(handle, keys[index], &val);
  683. if (err == ESP_ERR_FLASH_OP_FAIL) {
  684. return err;
  685. }
  686. if (!written[index]) {
  687. REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
  688. }
  689. else {
  690. REQUIRE(err == ESP_OK);
  691. REQUIRE(val == *reinterpret_cast<int32_t*>(values[index]));
  692. }
  693. break;
  694. }
  695. case ItemType::U64:
  696. {
  697. uint64_t val;
  698. auto err = nvs_get_u64(handle, keys[index], &val);
  699. if (err == ESP_ERR_FLASH_OP_FAIL) {
  700. return err;
  701. }
  702. if (!written[index]) {
  703. REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
  704. }
  705. else {
  706. REQUIRE(err == ESP_OK);
  707. REQUIRE(val == *reinterpret_cast<uint64_t*>(values[index]));
  708. }
  709. break;
  710. }
  711. case ItemType::SZ:
  712. {
  713. char buf[strBufLen];
  714. size_t len = strBufLen;
  715. auto err = nvs_get_str(handle, keys[index], buf, &len);
  716. if (err == ESP_ERR_FLASH_OP_FAIL) {
  717. return err;
  718. }
  719. if (!written[index]) {
  720. REQUIRE(err == ESP_ERR_NVS_NOT_FOUND);
  721. }
  722. else {
  723. REQUIRE(err == ESP_OK);
  724. REQUIRE(strncmp(buf, reinterpret_cast<const char*>(values[index]), strBufLen) == 0);
  725. }
  726. break;
  727. }
  728. default:
  729. assert(0);
  730. }
  731. return ESP_OK;
  732. };
  733. auto randomWrite = [&](size_t index) -> esp_err_t {
  734. switch (types[index]) {
  735. case ItemType::I32:
  736. {
  737. int32_t val = static_cast<int32_t>(gen());
  738. auto err = nvs_set_i32(handle, keys[index], val);
  739. if (err == ESP_ERR_FLASH_OP_FAIL) {
  740. return err;
  741. }
  742. if (err == ESP_ERR_NVS_REMOVE_FAILED) {
  743. written[index] = true;
  744. *reinterpret_cast<int32_t*>(values[index]) = val;
  745. return ESP_ERR_FLASH_OP_FAIL;
  746. }
  747. REQUIRE(err == ESP_OK);
  748. written[index] = true;
  749. *reinterpret_cast<int32_t*>(values[index]) = val;
  750. break;
  751. }
  752. case ItemType::U64:
  753. {
  754. uint64_t val = static_cast<uint64_t>(gen());
  755. auto err = nvs_set_u64(handle, keys[index], val);
  756. if (err == ESP_ERR_FLASH_OP_FAIL) {
  757. return err;
  758. }
  759. if (err == ESP_ERR_NVS_REMOVE_FAILED) {
  760. written[index] = true;
  761. *reinterpret_cast<uint64_t*>(values[index]) = val;
  762. return ESP_ERR_FLASH_OP_FAIL;
  763. }
  764. REQUIRE(err == ESP_OK);
  765. written[index] = true;
  766. *reinterpret_cast<uint64_t*>(values[index]) = val;
  767. break;
  768. }
  769. case ItemType::SZ:
  770. {
  771. char buf[strBufLen];
  772. size_t len = strBufLen;
  773. size_t strLen = gen() % (strBufLen - 1);
  774. std::generate_n(buf, strLen, [&]() -> char {
  775. const char c = static_cast<char>(gen() % 127);
  776. return (c < 32) ? 32 : c;
  777. });
  778. buf[strLen] = 0;
  779. auto err = nvs_set_str(handle, keys[index], buf);
  780. if (err == ESP_ERR_FLASH_OP_FAIL) {
  781. return err;
  782. }
  783. if (err == ESP_ERR_NVS_REMOVE_FAILED) {
  784. written[index] = true;
  785. strncpy(reinterpret_cast<char*>(values[index]), buf, strBufLen);
  786. return ESP_ERR_FLASH_OP_FAIL;
  787. }
  788. REQUIRE(err == ESP_OK);
  789. written[index] = true;
  790. strncpy(reinterpret_cast<char*>(values[index]), buf, strBufLen);
  791. break;
  792. }
  793. default:
  794. assert(0);
  795. }
  796. return ESP_OK;
  797. };
  798. for (; count != 0; --count) {
  799. size_t index = gen() % nKeys;
  800. switch (gen() % 3) {
  801. case 0: // read, 1/3
  802. if (randomRead(index) == ESP_ERR_FLASH_OP_FAIL) {
  803. return ESP_ERR_FLASH_OP_FAIL;
  804. }
  805. break;
  806. default: // write, 2/3
  807. if (randomWrite(index) == ESP_ERR_FLASH_OP_FAIL) {
  808. return ESP_ERR_FLASH_OP_FAIL;
  809. }
  810. break;
  811. }
  812. }
  813. return ESP_OK;
  814. }
  815. };
  816. TEST_CASE("monkey test", "[nvs][monkey]")
  817. {
  818. std::random_device rd;
  819. std::mt19937 gen(rd());
  820. uint32_t seed = 3;
  821. gen.seed(seed);
  822. SpiFlashEmulator emu(10);
  823. emu.randomize(seed);
  824. emu.clearStats();
  825. const uint32_t NVS_FLASH_SECTOR = 6;
  826. const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
  827. emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
  828. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
  829. nvs_handle handle;
  830. TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
  831. RandomTest test;
  832. size_t count = 1000;
  833. CHECK(test.doRandomThings(handle, gen, count) == ESP_OK);
  834. s_perf << "Monkey test: nErase=" << emu.getEraseOps() << " nWrite=" << emu.getWriteOps() << std::endl;
  835. }
  836. TEST_CASE("test recovery from sudden poweroff", "[long][nvs][recovery][monkey]")
  837. {
  838. std::random_device rd;
  839. std::mt19937 gen(rd());
  840. uint32_t seed = 3;
  841. gen.seed(seed);
  842. const size_t iter_count = 2000;
  843. SpiFlashEmulator emu(10);
  844. const uint32_t NVS_FLASH_SECTOR = 6;
  845. const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
  846. emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
  847. size_t totalOps = 0;
  848. int lastPercent = -1;
  849. for (uint32_t errDelay = 0; ; ++errDelay) {
  850. INFO(errDelay);
  851. emu.randomize(seed);
  852. emu.clearStats();
  853. emu.failAfter(errDelay);
  854. RandomTest test;
  855. if (totalOps != 0) {
  856. int percent = errDelay * 100 / totalOps;
  857. if (percent > lastPercent) {
  858. printf("%d/%d (%d%%)\r\n", errDelay, static_cast<int>(totalOps), percent);
  859. lastPercent = percent;
  860. }
  861. }
  862. nvs_handle handle;
  863. size_t count = iter_count;
  864. if (nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN) == ESP_OK) {
  865. if (nvs_open("namespace1", NVS_READWRITE, &handle) == ESP_OK) {
  866. if(test.doRandomThings(handle, gen, count) != ESP_ERR_FLASH_OP_FAIL) {
  867. nvs_close(handle);
  868. break;
  869. }
  870. nvs_close(handle);
  871. }
  872. }
  873. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
  874. TEST_ESP_OK(nvs_open("namespace1", NVS_READWRITE, &handle));
  875. auto res = test.doRandomThings(handle, gen, count);
  876. if (res != ESP_OK) {
  877. nvs_dump(NVS_DEFAULT_PART_NAME);
  878. CHECK(0);
  879. }
  880. nvs_close(handle);
  881. totalOps = emu.getEraseOps() + emu.getWriteBytes() / 4;
  882. }
  883. }
  884. TEST_CASE("test for memory leaks in open/set", "[leaks]")
  885. {
  886. SpiFlashEmulator emu(10);
  887. const uint32_t NVS_FLASH_SECTOR = 6;
  888. const uint32_t NVS_FLASH_SECTOR_COUNT_MIN = 3;
  889. emu.setBounds(NVS_FLASH_SECTOR, NVS_FLASH_SECTOR + NVS_FLASH_SECTOR_COUNT_MIN);
  890. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, NVS_FLASH_SECTOR, NVS_FLASH_SECTOR_COUNT_MIN));
  891. for (int i = 0; i < 100000; ++i) {
  892. nvs_handle light_handle = 0;
  893. char lightbulb[1024] = {12, 13, 14, 15, 16};
  894. TEST_ESP_OK(nvs_open("light", NVS_READWRITE, &light_handle));
  895. TEST_ESP_OK(nvs_set_blob(light_handle, "key", lightbulb, sizeof(lightbulb)));
  896. TEST_ESP_OK(nvs_commit(light_handle));
  897. nvs_close(light_handle);
  898. }
  899. }
  900. TEST_CASE("duplicate items are removed", "[nvs][dupes]")
  901. {
  902. SpiFlashEmulator emu(3);
  903. {
  904. // create one item
  905. nvs::Page p;
  906. p.load(0);
  907. p.writeItem<uint8_t>(1, "opmode", 3);
  908. }
  909. {
  910. // add another two without deleting the first one
  911. nvs::Item item(1, ItemType::U8, 1, "opmode");
  912. item.data[0] = 2;
  913. item.crc32 = item.calculateCrc32();
  914. emu.write(3 * 32, reinterpret_cast<const uint32_t*>(&item), sizeof(item));
  915. emu.write(4 * 32, reinterpret_cast<const uint32_t*>(&item), sizeof(item));
  916. uint32_t mask = 0xFFFFFFEA;
  917. emu.write(32, &mask, 4);
  918. }
  919. {
  920. // load page and check that second item persists
  921. nvs::Storage s;
  922. s.init(0, 3);
  923. uint8_t val;
  924. ESP_ERROR_CHECK(s.readItem(1, "opmode", val));
  925. CHECK(val == 2);
  926. }
  927. {
  928. Page p;
  929. p.load(0);
  930. CHECK(p.getErasedEntryCount() == 2);
  931. CHECK(p.getUsedEntryCount() == 1);
  932. }
  933. }
  934. TEST_CASE("recovery after failure to write data", "[nvs]")
  935. {
  936. SpiFlashEmulator emu(3);
  937. const char str[] = "value 0123456789abcdef012345678value 0123456789abcdef012345678";
  938. // make flash write fail exactly in Page::writeEntryData
  939. emu.failAfter(17);
  940. {
  941. Storage storage;
  942. TEST_ESP_OK(storage.init(0, 3));
  943. TEST_ESP_ERR(storage.writeItem(1, ItemType::SZ, "key", str, strlen(str)), ESP_ERR_FLASH_OP_FAIL);
  944. // check that repeated operations cause an error
  945. TEST_ESP_ERR(storage.writeItem(1, ItemType::SZ, "key", str, strlen(str)), ESP_ERR_NVS_INVALID_STATE);
  946. uint8_t val;
  947. TEST_ESP_ERR(storage.readItem(1, ItemType::U8, "key", &val, sizeof(val)), ESP_ERR_NVS_NOT_FOUND);
  948. }
  949. {
  950. // load page and check that data was erased
  951. Page p;
  952. p.load(0);
  953. CHECK(p.getErasedEntryCount() == 3);
  954. CHECK(p.getUsedEntryCount() == 0);
  955. // try to write again
  956. TEST_ESP_OK(p.writeItem(1, ItemType::SZ, "key", str, strlen(str)));
  957. }
  958. }
  959. TEST_CASE("crc errors in item header are handled", "[nvs]")
  960. {
  961. SpiFlashEmulator emu(3);
  962. Storage storage;
  963. // prepare some data
  964. TEST_ESP_OK(storage.init(0, 3));
  965. TEST_ESP_OK(storage.writeItem(0, "ns1", static_cast<uint8_t>(1)));
  966. TEST_ESP_OK(storage.writeItem(1, "value1", static_cast<uint32_t>(1)));
  967. TEST_ESP_OK(storage.writeItem(1, "value2", static_cast<uint32_t>(2)));
  968. // corrupt item header
  969. uint32_t val = 0;
  970. emu.write(32 * 3, &val, 4);
  971. // check that storage can recover
  972. TEST_ESP_OK(storage.init(0, 3));
  973. TEST_ESP_OK(storage.readItem(1, "value2", val));
  974. CHECK(val == 2);
  975. // check that the corrupted item is no longer present
  976. TEST_ESP_ERR(ESP_ERR_NVS_NOT_FOUND, storage.readItem(1, "value1", val));
  977. // add more items to make the page full
  978. for (size_t i = 0; i < Page::ENTRY_COUNT; ++i) {
  979. char item_name[Item::MAX_KEY_LENGTH + 1];
  980. snprintf(item_name, sizeof(item_name), "item_%ld", (long int)i);
  981. TEST_ESP_OK(storage.writeItem(1, item_name, static_cast<uint32_t>(i)));
  982. }
  983. // corrupt another item on the full page
  984. val = 0;
  985. emu.write(32 * 4, &val, 4);
  986. // check that storage can recover
  987. TEST_ESP_OK(storage.init(0, 3));
  988. // check that the corrupted item is no longer present
  989. TEST_ESP_ERR(ESP_ERR_NVS_NOT_FOUND, storage.readItem(1, "value2", val));
  990. }
  991. TEST_CASE("crc error in variable length item is handled", "[nvs]")
  992. {
  993. SpiFlashEmulator emu(3);
  994. const uint64_t before_val = 0xbef04e;
  995. const uint64_t after_val = 0xaf7e4;
  996. // write some data
  997. {
  998. Page p;
  999. p.load(0);
  1000. TEST_ESP_OK(p.writeItem<uint64_t>(0, "before", before_val));
  1001. const char* str = "foobar";
  1002. TEST_ESP_OK(p.writeItem(0, ItemType::SZ, "key", str, strlen(str)));
  1003. TEST_ESP_OK(p.writeItem<uint64_t>(0, "after", after_val));
  1004. }
  1005. // corrupt some data
  1006. uint32_t w;
  1007. CHECK(emu.read(&w, 32 * 3 + 8, sizeof(w)));
  1008. w &= 0xf000000f;
  1009. CHECK(emu.write(32 * 3 + 8, &w, sizeof(w)));
  1010. // load and check
  1011. {
  1012. Page p;
  1013. p.load(0);
  1014. CHECK(p.getUsedEntryCount() == 2);
  1015. CHECK(p.getErasedEntryCount() == 2);
  1016. uint64_t val;
  1017. TEST_ESP_OK(p.readItem<uint64_t>(0, "before", val));
  1018. CHECK(val == before_val);
  1019. TEST_ESP_ERR(p.findItem(0, ItemType::SZ, "key"), ESP_ERR_NVS_NOT_FOUND);
  1020. TEST_ESP_OK(p.readItem<uint64_t>(0, "after", val));
  1021. CHECK(val == after_val);
  1022. }
  1023. }
  1024. TEST_CASE("read/write failure (TW8406)", "[nvs]")
  1025. {
  1026. SpiFlashEmulator emu(3);
  1027. nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 3);
  1028. for (int attempts = 0; attempts < 3; ++attempts) {
  1029. int i = 0;
  1030. nvs_handle light_handle = 0;
  1031. char key[15] = {0};
  1032. char data[76] = {12, 13, 14, 15, 16};
  1033. uint8_t number = 20;
  1034. size_t data_len = sizeof(data);
  1035. ESP_ERROR_CHECK(nvs_open("LIGHT", NVS_READWRITE, &light_handle));
  1036. ESP_ERROR_CHECK(nvs_set_u8(light_handle, "RecordNum", number));
  1037. for (i = 0; i < number; ++i) {
  1038. sprintf(key, "light%d", i);
  1039. ESP_ERROR_CHECK(nvs_set_blob(light_handle, key, data, sizeof(data)));
  1040. }
  1041. nvs_commit(light_handle);
  1042. uint8_t get_number = 0;
  1043. ESP_ERROR_CHECK(nvs_get_u8(light_handle, "RecordNum", &get_number));
  1044. REQUIRE(number == get_number);
  1045. for (i = 0; i < number; ++i) {
  1046. char data[76] = {0};
  1047. sprintf(key, "light%d", i);
  1048. ESP_ERROR_CHECK(nvs_get_blob(light_handle, key, data, &data_len));
  1049. }
  1050. nvs_close(light_handle);
  1051. }
  1052. }
  1053. TEST_CASE("nvs_flash_init checks for an empty page", "[nvs]")
  1054. {
  1055. const size_t blob_size = Page::BLOB_MAX_SIZE;
  1056. uint8_t blob[blob_size] = {0};
  1057. SpiFlashEmulator emu(5);
  1058. TEST_ESP_OK( nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 5) );
  1059. nvs_handle handle;
  1060. TEST_ESP_OK( nvs_open("test", NVS_READWRITE, &handle) );
  1061. // Fill first page
  1062. TEST_ESP_OK( nvs_set_blob(handle, "1a", blob, blob_size) );
  1063. TEST_ESP_OK( nvs_set_blob(handle, "1b", blob, blob_size) );
  1064. // Fill second page
  1065. TEST_ESP_OK( nvs_set_blob(handle, "2a", blob, blob_size) );
  1066. TEST_ESP_OK( nvs_set_blob(handle, "2b", blob, blob_size) );
  1067. // Fill third page
  1068. TEST_ESP_OK( nvs_set_blob(handle, "3a", blob, blob_size) );
  1069. TEST_ESP_OK( nvs_set_blob(handle, "3b", blob, blob_size) );
  1070. TEST_ESP_OK( nvs_commit(handle) );
  1071. nvs_close(handle);
  1072. // first two pages are now full, third one is writable, last two are empty
  1073. // init should fail
  1074. TEST_ESP_ERR( nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 3), ESP_ERR_NVS_NO_FREE_PAGES );
  1075. }
  1076. TEST_CASE("multiple partitions access check", "[nvs]")
  1077. {
  1078. SpiFlashEmulator emu(10);
  1079. TEST_ESP_OK( nvs_flash_init_custom("nvs1", 0, 5) );
  1080. TEST_ESP_OK( nvs_flash_init_custom("nvs2", 5, 5) );
  1081. nvs_handle handle1, handle2;
  1082. TEST_ESP_OK( nvs_open_from_partition("nvs1", "test", NVS_READWRITE, &handle1) );
  1083. TEST_ESP_OK( nvs_open_from_partition("nvs2", "test", NVS_READWRITE, &handle2) );
  1084. TEST_ESP_OK( nvs_set_i32(handle1, "foo", 0xdeadbeef));
  1085. TEST_ESP_OK( nvs_set_i32(handle2, "foo", 0xcafebabe));
  1086. int32_t v1, v2;
  1087. TEST_ESP_OK( nvs_get_i32(handle1, "foo", &v1));
  1088. TEST_ESP_OK( nvs_get_i32(handle2, "foo", &v2));
  1089. CHECK(v1 == 0xdeadbeef);
  1090. CHECK(v2 == 0xcafebabe);
  1091. }
  1092. TEST_CASE("nvs page selection takes into account free entries also not just erased entries", "[nvs]")
  1093. {
  1094. const size_t blob_size = Page::BLOB_MAX_SIZE;
  1095. uint8_t blob[blob_size] = {0};
  1096. SpiFlashEmulator emu(3);
  1097. TEST_ESP_OK( nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 3) );
  1098. nvs_handle handle;
  1099. TEST_ESP_OK( nvs_open("test", NVS_READWRITE, &handle) );
  1100. // Fill first page
  1101. TEST_ESP_OK( nvs_set_blob(handle, "1a", blob, blob_size/3) );
  1102. TEST_ESP_OK( nvs_set_blob(handle, "1b", blob, blob_size) );
  1103. // Fill second page
  1104. TEST_ESP_OK( nvs_set_blob(handle, "2a", blob, blob_size) );
  1105. TEST_ESP_OK( nvs_set_blob(handle, "2b", blob, blob_size) );
  1106. // The item below should be able to fit the first page.
  1107. TEST_ESP_OK( nvs_set_blob(handle, "3a", blob, 4) );
  1108. TEST_ESP_OK( nvs_commit(handle) );
  1109. nvs_close(handle);
  1110. }
  1111. TEST_CASE("calculate used and free space", "[nvs]")
  1112. {
  1113. SpiFlashEmulator emu(6);
  1114. nvs_flash_deinit();
  1115. TEST_ESP_ERR(nvs_get_stats(NULL, NULL), ESP_ERR_INVALID_ARG);
  1116. nvs_stats_t stat1;
  1117. nvs_stats_t stat2;
  1118. TEST_ESP_ERR(nvs_get_stats(NULL, &stat1), ESP_ERR_NVS_NOT_INITIALIZED);
  1119. CHECK(stat1.free_entries == 0);
  1120. CHECK(stat1.namespace_count == 0);
  1121. CHECK(stat1.total_entries == 0);
  1122. CHECK(stat1.used_entries == 0);
  1123. nvs_handle handle = 0;
  1124. size_t h_count_entries;
  1125. TEST_ESP_ERR(nvs_get_used_entry_count(handle, &h_count_entries), ESP_ERR_NVS_INVALID_HANDLE);
  1126. CHECK(h_count_entries == 0);
  1127. // init nvs
  1128. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 6));
  1129. TEST_ESP_ERR(nvs_get_used_entry_count(handle, &h_count_entries), ESP_ERR_NVS_INVALID_HANDLE);
  1130. CHECK(h_count_entries == 0);
  1131. Page p;
  1132. // after erase. empty partition
  1133. TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
  1134. CHECK(stat1.free_entries != 0);
  1135. CHECK(stat1.namespace_count == 0);
  1136. CHECK(stat1.total_entries == 6 * p.ENTRY_COUNT);
  1137. CHECK(stat1.used_entries == 0);
  1138. // create namespace test_k1
  1139. nvs_handle handle_1;
  1140. TEST_ESP_OK(nvs_open("test_k1", NVS_READWRITE, &handle_1));
  1141. TEST_ESP_OK(nvs_get_stats(NULL, &stat2));
  1142. CHECK(stat2.free_entries + 1 == stat1.free_entries);
  1143. CHECK(stat2.namespace_count == 1);
  1144. CHECK(stat2.total_entries == stat1.total_entries);
  1145. CHECK(stat2.used_entries == 1);
  1146. // create pair key-value com
  1147. TEST_ESP_OK(nvs_set_i32(handle_1, "com", 0x12345678));
  1148. TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
  1149. CHECK(stat1.free_entries + 1 == stat2.free_entries);
  1150. CHECK(stat1.namespace_count == 1);
  1151. CHECK(stat1.total_entries == stat2.total_entries);
  1152. CHECK(stat1.used_entries == 2);
  1153. // change value in com
  1154. TEST_ESP_OK(nvs_set_i32(handle_1, "com", 0x01234567));
  1155. TEST_ESP_OK(nvs_get_stats(NULL, &stat2));
  1156. CHECK(stat2.free_entries == stat1.free_entries);
  1157. CHECK(stat2.namespace_count == 1);
  1158. CHECK(stat2.total_entries != 0);
  1159. CHECK(stat2.used_entries == 2);
  1160. // create pair key-value ru
  1161. TEST_ESP_OK(nvs_set_i32(handle_1, "ru", 0x00FF00FF));
  1162. TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
  1163. CHECK(stat1.free_entries + 1 == stat2.free_entries);
  1164. CHECK(stat1.namespace_count == 1);
  1165. CHECK(stat1.total_entries != 0);
  1166. CHECK(stat1.used_entries == 3);
  1167. // amount valid pair in namespace 1
  1168. size_t h1_count_entries;
  1169. TEST_ESP_OK(nvs_get_used_entry_count(handle_1, &h1_count_entries));
  1170. CHECK(h1_count_entries == 2);
  1171. nvs_handle handle_2;
  1172. // create namespace test_k2
  1173. TEST_ESP_OK(nvs_open("test_k2", NVS_READWRITE, &handle_2));
  1174. TEST_ESP_OK(nvs_get_stats(NULL, &stat2));
  1175. CHECK(stat2.free_entries + 1 == stat1.free_entries);
  1176. CHECK(stat2.namespace_count == 2);
  1177. CHECK(stat2.total_entries == stat1.total_entries);
  1178. CHECK(stat2.used_entries == 4);
  1179. // create pair key-value
  1180. TEST_ESP_OK(nvs_set_i32(handle_2, "su1", 0x00000001));
  1181. TEST_ESP_OK(nvs_set_i32(handle_2, "su2", 0x00000002));
  1182. TEST_ESP_OK(nvs_set_i32(handle_2, "sus", 0x00000003));
  1183. TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
  1184. CHECK(stat1.free_entries + 3 == stat2.free_entries);
  1185. CHECK(stat1.namespace_count == 2);
  1186. CHECK(stat1.total_entries == stat2.total_entries);
  1187. CHECK(stat1.used_entries == 7);
  1188. CHECK(stat1.total_entries == (stat1.used_entries + stat1.free_entries));
  1189. // amount valid pair in namespace 2
  1190. size_t h2_count_entries;
  1191. TEST_ESP_OK(nvs_get_used_entry_count(handle_2, &h2_count_entries));
  1192. CHECK(h2_count_entries == 3);
  1193. CHECK(stat1.used_entries == (h1_count_entries + h2_count_entries + stat1.namespace_count));
  1194. nvs_close(handle_1);
  1195. nvs_close(handle_2);
  1196. size_t temp = h2_count_entries;
  1197. TEST_ESP_ERR(nvs_get_used_entry_count(handle_1, &h2_count_entries), ESP_ERR_NVS_INVALID_HANDLE);
  1198. CHECK(h2_count_entries == 0);
  1199. h2_count_entries = temp;
  1200. TEST_ESP_ERR(nvs_get_used_entry_count(handle_1, NULL), ESP_ERR_INVALID_ARG);
  1201. nvs_handle handle_3;
  1202. // create namespace test_k3
  1203. TEST_ESP_OK(nvs_open("test_k3", NVS_READWRITE, &handle_3));
  1204. TEST_ESP_OK(nvs_get_stats(NULL, &stat2));
  1205. CHECK(stat2.free_entries + 1 == stat1.free_entries);
  1206. CHECK(stat2.namespace_count == 3);
  1207. CHECK(stat2.total_entries == stat1.total_entries);
  1208. CHECK(stat2.used_entries == 8);
  1209. // create pair blobs
  1210. uint32_t blob[12];
  1211. TEST_ESP_OK(nvs_set_blob(handle_3, "bl1", &blob, sizeof(blob)));
  1212. TEST_ESP_OK(nvs_get_stats(NULL, &stat1));
  1213. CHECK(stat1.free_entries + 3 == stat2.free_entries);
  1214. CHECK(stat1.namespace_count == 3);
  1215. CHECK(stat1.total_entries == stat2.total_entries);
  1216. CHECK(stat1.used_entries == 11);
  1217. // amount valid pair in namespace 2
  1218. size_t h3_count_entries;
  1219. TEST_ESP_OK(nvs_get_used_entry_count(handle_3, &h3_count_entries));
  1220. CHECK(h3_count_entries == 3);
  1221. CHECK(stat1.used_entries == (h1_count_entries + h2_count_entries + h3_count_entries + stat1.namespace_count));
  1222. nvs_close(handle_3);
  1223. }
  1224. TEST_CASE("Recovery from power-off when the entry being erased is not on active page", "[nvs]")
  1225. {
  1226. const size_t blob_size = Page::BLOB_MAX_SIZE;
  1227. size_t read_size = blob_size;
  1228. uint8_t blob[blob_size] = {0x11};
  1229. SpiFlashEmulator emu(3);
  1230. TEST_ESP_OK( nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 3) );
  1231. nvs_handle handle;
  1232. TEST_ESP_OK( nvs_open("test", NVS_READWRITE, &handle) );
  1233. emu.clearStats();
  1234. emu.failAfter(2 * Page::BLOB_MAX_SIZE/4 + 36);
  1235. TEST_ESP_OK( nvs_set_blob(handle, "1a", blob, blob_size) );
  1236. TEST_ESP_OK( nvs_set_blob(handle, "1b", blob, blob_size) );
  1237. TEST_ESP_ERR( nvs_erase_key(handle, "1a"), ESP_ERR_FLASH_OP_FAIL );
  1238. TEST_ESP_OK( nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 3) );
  1239. /* Check 1a is erased fully*/
  1240. TEST_ESP_ERR( nvs_get_blob(handle, "1a", blob, &read_size), ESP_ERR_NVS_NOT_FOUND);
  1241. /* Check 2b is still accessible*/
  1242. TEST_ESP_OK( nvs_get_blob(handle, "1b", blob, &read_size));
  1243. nvs_close(handle);
  1244. }
  1245. TEST_CASE("Recovery from power-off when page is being freed.", "[nvs]")
  1246. {
  1247. const size_t blob_size = (Page::ENTRY_COUNT-3) * Page::ENTRY_SIZE;
  1248. size_t read_size = blob_size/2;
  1249. uint8_t blob[blob_size] = {0};
  1250. SpiFlashEmulator emu(3);
  1251. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 3));
  1252. nvs_handle handle;
  1253. TEST_ESP_OK(nvs_open("test", NVS_READWRITE, &handle));
  1254. // Fill first page
  1255. TEST_ESP_OK(nvs_set_blob(handle, "1a", blob, blob_size/3));
  1256. TEST_ESP_OK(nvs_set_blob(handle, "1b", blob, blob_size/3));
  1257. TEST_ESP_OK(nvs_set_blob(handle, "1c", blob, blob_size/4));
  1258. // Fill second page
  1259. TEST_ESP_OK(nvs_set_blob(handle, "2a", blob, blob_size/2));
  1260. TEST_ESP_OK(nvs_set_blob(handle, "2b", blob, blob_size/2));
  1261. TEST_ESP_OK(nvs_erase_key(handle, "1c"));
  1262. emu.clearStats();
  1263. emu.failAfter(6 * Page::ENTRY_COUNT);
  1264. TEST_ESP_ERR(nvs_set_blob(handle, "1d", blob, blob_size/4), ESP_ERR_FLASH_OP_FAIL);
  1265. TEST_ESP_OK(nvs_flash_init_custom(NVS_DEFAULT_PART_NAME, 0, 3));
  1266. read_size = blob_size/3;
  1267. TEST_ESP_OK( nvs_get_blob(handle, "1a", blob, &read_size));
  1268. TEST_ESP_OK( nvs_get_blob(handle, "1b", blob, &read_size));
  1269. read_size = blob_size /4;
  1270. TEST_ESP_ERR( nvs_get_blob(handle, "1c", blob, &read_size), ESP_ERR_NVS_NOT_FOUND);
  1271. TEST_ESP_ERR( nvs_get_blob(handle, "1d", blob, &read_size), ESP_ERR_NVS_NOT_FOUND);
  1272. read_size = blob_size /2;
  1273. TEST_ESP_OK( nvs_get_blob(handle, "2a", blob, &read_size));
  1274. TEST_ESP_OK( nvs_get_blob(handle, "2b", blob, &read_size));
  1275. TEST_ESP_OK(nvs_commit(handle));
  1276. nvs_close(handle);
  1277. }
  1278. /* Add new tests above */
  1279. /* This test has to be the final one */
  1280. TEST_CASE("check partition generation utility", "[nvs_part_gen]")
  1281. {
  1282. int childpid = fork();
  1283. if (childpid == 0) {
  1284. exit(execlp("python", "python",
  1285. "../nvs_partition_generator/nvs_partition_gen.py",
  1286. "../nvs_partition_generator/sample.csv",
  1287. "../nvs_partition_generator/partition.bin", NULL));
  1288. } else {
  1289. CHECK(childpid > 0);
  1290. int status;
  1291. waitpid(childpid, &status, 0);
  1292. CHECK(WEXITSTATUS(status) != -1);
  1293. }
  1294. }
  1295. TEST_CASE("read data from partition generated via partition generation utility", "[nvs_part_gen]")
  1296. {
  1297. SpiFlashEmulator emu("../nvs_partition_generator/partition.bin");
  1298. nvs_handle handle;
  1299. TEST_ESP_OK( nvs_flash_init_custom("test", 0, 2) );
  1300. TEST_ESP_OK( nvs_open_from_partition("test", "dummyNamespace", NVS_READONLY, &handle));
  1301. uint8_t u8v;
  1302. TEST_ESP_OK( nvs_get_u8(handle, "dummyU8Key", &u8v));
  1303. CHECK(u8v == 127);
  1304. int8_t i8v;
  1305. TEST_ESP_OK( nvs_get_i8(handle, "dummyI8Key", &i8v));
  1306. CHECK(i8v == -128);
  1307. uint16_t u16v;
  1308. TEST_ESP_OK( nvs_get_u16(handle, "dummyU16Key", &u16v));
  1309. CHECK(u16v == 32768);
  1310. uint32_t u32v;
  1311. TEST_ESP_OK( nvs_get_u32(handle, "dummyU32Key", &u32v));
  1312. CHECK(u32v == 4294967295);
  1313. int32_t i32v;
  1314. TEST_ESP_OK( nvs_get_i32(handle, "dummyI32Key", &i32v));
  1315. CHECK(i32v == -2147483648);
  1316. char buf[64] = {0};
  1317. size_t buflen = 64;
  1318. TEST_ESP_OK( nvs_get_str(handle, "dummyStringKey", buf, &buflen));
  1319. CHECK(strncmp(buf, "0A:0B:0C:0D:0E:0F", buflen) == 0);
  1320. buflen = 64;
  1321. uint8_t hexdata[] = {0x01, 0x02, 0x03, 0xab, 0xcd, 0xef};
  1322. TEST_ESP_OK( nvs_get_blob(handle, "dummyHex2BinKey", buf, &buflen));
  1323. CHECK(memcmp(buf, hexdata, buflen) == 0);
  1324. uint8_t base64data[] = {'1', '2', '3', 'a', 'b', 'c'};
  1325. TEST_ESP_OK( nvs_get_blob(handle, "dummyBase64Key", buf, &buflen));
  1326. CHECK(memcmp(buf, base64data, buflen) == 0);
  1327. }
  1328. TEST_CASE("dump all performance data", "[nvs]")
  1329. {
  1330. std::cout << "====================" << std::endl << "Dumping benchmarks" << std::endl;
  1331. std::cout << s_perf.str() << std::endl;
  1332. std::cout << "====================" << std::endl;
  1333. }