uart.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #include "driver/uart_select.h"
  32. #define XOFF (char)0x13
  33. #define XON (char)0x11
  34. static const char* UART_TAG = "uart";
  35. #define UART_CHECK(a, str, ret_val) \
  36. if (!(a)) { \
  37. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  38. return (ret_val); \
  39. }
  40. #define UART_EMPTY_THRESH_DEFAULT (10)
  41. #define UART_FULL_THRESH_DEFAULT (120)
  42. #define UART_TOUT_THRESH_DEFAULT (10)
  43. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  44. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  45. #define UART_TX_IDLE_NUM_DEFAULT (0)
  46. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  47. #define UART_MIN_WAKEUP_THRESH (2)
  48. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  49. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  50. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  51. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  52. // Check actual UART mode set
  53. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  54. typedef struct {
  55. uart_event_type_t type; /*!< UART TX data type */
  56. struct {
  57. int brk_len;
  58. size_t size;
  59. uint8_t data[0];
  60. } tx_data;
  61. } uart_tx_data_t;
  62. typedef struct {
  63. int wr;
  64. int rd;
  65. int len;
  66. int* data;
  67. } uart_pat_rb_t;
  68. typedef struct {
  69. uart_port_t uart_num; /*!< UART port number*/
  70. int queue_size; /*!< UART event queue size*/
  71. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  72. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  73. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  74. bool coll_det_flg; /*!< UART collision detection flag */
  75. //rx parameters
  76. int rx_buffered_len; /*!< UART cached data length */
  77. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  78. int rx_buf_size; /*!< RX ring buffer size */
  79. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  80. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  81. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  82. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  83. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  84. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  85. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  86. uart_pat_rb_t rx_pattern_pos;
  87. //tx parameters
  88. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  89. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  90. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  91. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  92. int tx_buf_size; /*!< TX ring buffer size */
  93. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  94. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  95. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  96. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  97. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  98. uint32_t tx_len_cur;
  99. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  100. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  101. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  102. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  103. } uart_obj_t;
  104. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  105. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  106. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  107. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  108. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  109. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  110. {
  111. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  112. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  113. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  114. UART[uart_num]->conf0.bit_num = data_bit;
  115. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  116. return ESP_OK;
  117. }
  118. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  119. {
  120. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  121. *(data_bit) = UART[uart_num]->conf0.bit_num;
  122. return ESP_OK;
  123. }
  124. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  125. {
  126. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  127. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  128. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  129. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  130. if (stop_bit == UART_STOP_BITS_2) {
  131. stop_bit = UART_STOP_BITS_1;
  132. UART[uart_num]->rs485_conf.dl1_en = 1;
  133. } else {
  134. UART[uart_num]->rs485_conf.dl1_en = 0;
  135. }
  136. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  137. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  138. return ESP_OK;
  139. }
  140. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  141. {
  142. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  143. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  144. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  145. (*stop_bit) = UART_STOP_BITS_2;
  146. } else {
  147. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  148. }
  149. return ESP_OK;
  150. }
  151. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  152. {
  153. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  154. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  155. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  156. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  157. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  158. return ESP_OK;
  159. }
  160. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  161. {
  162. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  163. int val = UART[uart_num]->conf0.val;
  164. if(val & UART_PARITY_EN_M) {
  165. if(val & UART_PARITY_M) {
  166. (*parity_mode) = UART_PARITY_ODD;
  167. } else {
  168. (*parity_mode) = UART_PARITY_EVEN;
  169. }
  170. } else {
  171. (*parity_mode) = UART_PARITY_DISABLE;
  172. }
  173. return ESP_OK;
  174. }
  175. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  176. {
  177. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  178. esp_err_t ret = ESP_OK;
  179. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  180. int uart_clk_freq;
  181. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  182. /* this UART has been configured to use REF_TICK */
  183. uart_clk_freq = REF_CLK_FREQ;
  184. } else {
  185. uart_clk_freq = esp_clk_apb_freq();
  186. }
  187. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  188. if (clk_div < 16) {
  189. /* baud rate is too high for this clock frequency */
  190. ret = ESP_ERR_INVALID_ARG;
  191. } else {
  192. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  193. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  194. }
  195. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  196. return ret;
  197. }
  198. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  202. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  203. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  204. uint32_t uart_clk_freq = esp_clk_apb_freq();
  205. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  206. uart_clk_freq = REF_CLK_FREQ;
  207. }
  208. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  209. return ESP_OK;
  210. }
  211. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  212. {
  213. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  214. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  215. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  216. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  217. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  218. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  219. return ESP_OK;
  220. }
  221. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  222. {
  223. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  224. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  225. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  228. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  229. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  230. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  231. UART[uart_num]->swfc_conf.xon_char = XON;
  232. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  233. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  234. return ESP_OK;
  235. }
  236. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  237. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  238. {
  239. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  240. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  241. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  242. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  243. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  244. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  245. UART[uart_num]->conf1.rx_flow_en = 1;
  246. } else {
  247. UART[uart_num]->conf1.rx_flow_en = 0;
  248. }
  249. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  250. UART[uart_num]->conf0.tx_flow_en = 1;
  251. } else {
  252. UART[uart_num]->conf0.tx_flow_en = 0;
  253. }
  254. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  255. return ESP_OK;
  256. }
  257. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  258. {
  259. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  260. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  261. if(UART[uart_num]->conf1.rx_flow_en) {
  262. val |= UART_HW_FLOWCTRL_RTS;
  263. }
  264. if(UART[uart_num]->conf0.tx_flow_en) {
  265. val |= UART_HW_FLOWCTRL_CTS;
  266. }
  267. (*flow_ctrl) = val;
  268. return ESP_OK;
  269. }
  270. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  271. {
  272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  273. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  274. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  275. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  276. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  277. READ_PERI_REG(UART_FIFO_REG(uart_num));
  278. }
  279. return ESP_OK;
  280. }
  281. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. //intr_clr register is write-only
  285. UART[uart_num]->int_clr.val = clr_mask;
  286. return ESP_OK;
  287. }
  288. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  289. {
  290. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  291. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  292. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  293. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  294. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  295. return ESP_OK;
  296. }
  297. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  298. {
  299. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  300. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  301. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  302. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  303. return ESP_OK;
  304. }
  305. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  306. {
  307. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  308. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  309. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  310. }
  311. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  312. {
  313. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  314. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  315. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  316. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  317. }
  318. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  319. {
  320. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  321. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  322. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  323. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  324. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  325. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  326. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  327. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  328. free(pdata);
  329. }
  330. return ESP_OK;
  331. }
  332. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  333. {
  334. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  335. esp_err_t ret = ESP_OK;
  336. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  337. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  338. int next = p_pos->wr + 1;
  339. if (next >= p_pos->len) {
  340. next = 0;
  341. }
  342. if (next == p_pos->rd) {
  343. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  344. ret = ESP_FAIL;
  345. } else {
  346. p_pos->data[p_pos->wr] = pos;
  347. p_pos->wr = next;
  348. ret = ESP_OK;
  349. }
  350. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  351. return ret;
  352. }
  353. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  354. {
  355. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  356. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  357. return ESP_ERR_INVALID_STATE;
  358. } else {
  359. esp_err_t ret = ESP_OK;
  360. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  361. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  362. if (p_pos->rd == p_pos->wr) {
  363. ret = ESP_FAIL;
  364. } else {
  365. p_pos->rd++;
  366. }
  367. if (p_pos->rd >= p_pos->len) {
  368. p_pos->rd = 0;
  369. }
  370. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  371. return ret;
  372. }
  373. }
  374. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  375. {
  376. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  377. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  378. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  379. int rd = p_pos->rd;
  380. while(rd != p_pos->wr) {
  381. p_pos->data[rd] -= diff_len;
  382. int rd_rec = rd;
  383. rd ++;
  384. if (rd >= p_pos->len) {
  385. rd = 0;
  386. }
  387. if (p_pos->data[rd_rec] < 0) {
  388. p_pos->rd = rd;
  389. }
  390. }
  391. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  392. return ESP_OK;
  393. }
  394. int uart_pattern_pop_pos(uart_port_t uart_num)
  395. {
  396. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  397. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  398. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  399. int pos = -1;
  400. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  401. pos = pat_pos->data[pat_pos->rd];
  402. uart_pattern_dequeue(uart_num);
  403. }
  404. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  405. return pos;
  406. }
  407. int uart_pattern_get_pos(uart_port_t uart_num)
  408. {
  409. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  410. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  411. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  412. int pos = -1;
  413. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  414. pos = pat_pos->data[pat_pos->rd];
  415. }
  416. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  417. return pos;
  418. }
  419. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  420. {
  421. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  422. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  423. int* pdata = (int*) malloc(queue_length * sizeof(int));
  424. if(pdata == NULL) {
  425. return ESP_ERR_NO_MEM;
  426. }
  427. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  428. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  429. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  430. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  431. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  432. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  433. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  434. free(ptmp);
  435. return ESP_OK;
  436. }
  437. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  438. {
  439. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  440. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  441. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  442. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  443. UART[uart_num]->at_cmd_char.data = pattern_chr;
  444. UART[uart_num]->at_cmd_char.char_num = chr_num;
  445. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  446. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  447. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  448. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  449. }
  450. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  451. {
  452. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  453. }
  454. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  455. {
  456. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  457. }
  458. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  459. {
  460. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  461. }
  462. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  463. {
  464. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  465. }
  466. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  467. {
  468. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  469. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  470. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  471. UART[uart_num]->int_clr.txfifo_empty = 1;
  472. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  473. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  474. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  475. return ESP_OK;
  476. }
  477. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  478. {
  479. int ret;
  480. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  481. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  482. switch(uart_num) {
  483. case UART_NUM_1:
  484. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  485. break;
  486. case UART_NUM_2:
  487. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  488. break;
  489. case UART_NUM_0:
  490. default:
  491. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  492. break;
  493. }
  494. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  495. return ret;
  496. }
  497. esp_err_t uart_isr_free(uart_port_t uart_num)
  498. {
  499. esp_err_t ret;
  500. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  501. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  502. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  503. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  504. p_uart_obj[uart_num]->intr_handle=NULL;
  505. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  506. return ret;
  507. }
  508. //internal signal can be output to multiple GPIO pads
  509. //only one GPIO pad can connect with input signal
  510. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  511. {
  512. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  513. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  514. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  515. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  516. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  517. int tx_sig, rx_sig, rts_sig, cts_sig;
  518. switch(uart_num) {
  519. case UART_NUM_0:
  520. tx_sig = U0TXD_OUT_IDX;
  521. rx_sig = U0RXD_IN_IDX;
  522. rts_sig = U0RTS_OUT_IDX;
  523. cts_sig = U0CTS_IN_IDX;
  524. break;
  525. case UART_NUM_1:
  526. tx_sig = U1TXD_OUT_IDX;
  527. rx_sig = U1RXD_IN_IDX;
  528. rts_sig = U1RTS_OUT_IDX;
  529. cts_sig = U1CTS_IN_IDX;
  530. break;
  531. case UART_NUM_2:
  532. tx_sig = U2TXD_OUT_IDX;
  533. rx_sig = U2RXD_IN_IDX;
  534. rts_sig = U2RTS_OUT_IDX;
  535. cts_sig = U2CTS_IN_IDX;
  536. break;
  537. case UART_NUM_MAX:
  538. default:
  539. tx_sig = U0TXD_OUT_IDX;
  540. rx_sig = U0RXD_IN_IDX;
  541. rts_sig = U0RTS_OUT_IDX;
  542. cts_sig = U0CTS_IN_IDX;
  543. break;
  544. }
  545. if(tx_io_num >= 0) {
  546. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  547. gpio_set_level(tx_io_num, 1);
  548. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  549. }
  550. if(rx_io_num >= 0) {
  551. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  552. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  553. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  554. gpio_matrix_in(rx_io_num, rx_sig, 0);
  555. }
  556. if(rts_io_num >= 0) {
  557. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  558. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  559. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  560. }
  561. if(cts_io_num >= 0) {
  562. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  563. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  564. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  565. gpio_matrix_in(cts_io_num, cts_sig, 0);
  566. }
  567. return ESP_OK;
  568. }
  569. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  570. {
  571. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  572. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  573. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  574. UART[uart_num]->conf0.sw_rts = level & 0x1;
  575. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  576. return ESP_OK;
  577. }
  578. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  579. {
  580. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  581. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  582. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  583. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  584. return ESP_OK;
  585. }
  586. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  587. {
  588. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  589. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  590. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  591. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  592. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  593. return ESP_OK;
  594. }
  595. static periph_module_t get_periph_module(uart_port_t uart_num)
  596. {
  597. periph_module_t periph_module = PERIPH_UART0_MODULE;
  598. if (uart_num == UART_NUM_0) {
  599. periph_module = PERIPH_UART0_MODULE;
  600. } else if (uart_num == UART_NUM_1) {
  601. periph_module = PERIPH_UART1_MODULE;
  602. } else if (uart_num == UART_NUM_2) {
  603. periph_module = PERIPH_UART2_MODULE;
  604. } else {
  605. assert(0 && "uart_num error");
  606. }
  607. return periph_module;
  608. }
  609. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  610. {
  611. esp_err_t r;
  612. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  613. UART_CHECK((uart_config), "param null", ESP_FAIL);
  614. periph_module_t periph_module = get_periph_module(uart_num);
  615. if (uart_num != CONFIG_CONSOLE_UART_NUM) {
  616. periph_module_reset(periph_module);
  617. }
  618. periph_module_enable(periph_module);
  619. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  620. if (r != ESP_OK) return r;
  621. UART[uart_num]->conf0.val =
  622. (uart_config->parity << UART_PARITY_S)
  623. | (uart_config->data_bits << UART_BIT_NUM_S)
  624. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  625. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  626. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  627. if (r != ESP_OK) return r;
  628. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  629. if (r != ESP_OK) return r;
  630. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  631. //A hardware reset does not reset the fifo,
  632. //so we need to reset the fifo manually.
  633. uart_reset_rx_fifo(uart_num);
  634. return r;
  635. }
  636. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  637. {
  638. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  639. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  640. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  641. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  642. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  643. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  644. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  645. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  646. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  647. } else {
  648. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  649. }
  650. UART[uart_num]->conf1.rx_tout_en = 1;
  651. } else {
  652. UART[uart_num]->conf1.rx_tout_en = 0;
  653. }
  654. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  655. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  656. }
  657. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  658. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  659. }
  660. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  661. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  662. return ESP_OK;
  663. }
  664. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  665. {
  666. int cnt = 0;
  667. int len = length;
  668. while (len >= 0) {
  669. if (buf[len] == pat_chr) {
  670. cnt++;
  671. } else {
  672. cnt = 0;
  673. }
  674. if (cnt >= pat_num) {
  675. break;
  676. }
  677. len --;
  678. }
  679. return len;
  680. }
  681. //internal isr handler for default driver code.
  682. static void uart_rx_intr_handler_default(void *param)
  683. {
  684. uart_obj_t *p_uart = (uart_obj_t*) param;
  685. uint8_t uart_num = p_uart->uart_num;
  686. uart_dev_t* uart_reg = UART[uart_num];
  687. int rx_fifo_len = 0;
  688. uint8_t buf_idx = 0;
  689. uint32_t uart_intr_status = 0;
  690. uart_event_t uart_event;
  691. portBASE_TYPE HPTaskAwoken = 0;
  692. static uint8_t pat_flg = 0;
  693. while(1) {
  694. uart_intr_status = uart_reg->int_st.val;
  695. // The `continue statement` may cause the interrupt to loop infinitely
  696. // we exit the interrupt here
  697. if(uart_intr_status == 0) {
  698. break;
  699. }
  700. uart_event.type = UART_EVENT_MAX;
  701. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  702. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  703. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  704. if(p_uart->tx_waiting_brk) {
  705. continue;
  706. }
  707. //TX semaphore will only be used when tx_buf_size is zero.
  708. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  709. p_uart->tx_waiting_fifo = false;
  710. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  711. } else {
  712. //We don't use TX ring buffer, because the size is zero.
  713. if(p_uart->tx_buf_size == 0) {
  714. continue;
  715. }
  716. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  717. bool en_tx_flg = false;
  718. //We need to put a loop here, in case all the buffer items are very short.
  719. //That would cause a watch_dog reset because empty interrupt happens so often.
  720. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  721. while(tx_fifo_rem) {
  722. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  723. size_t size;
  724. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  725. if(p_uart->tx_head) {
  726. //The first item is the data description
  727. //Get the first item to get the data information
  728. if(p_uart->tx_len_tot == 0) {
  729. p_uart->tx_ptr = NULL;
  730. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  731. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  732. p_uart->tx_brk_flg = 1;
  733. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  734. }
  735. //We have saved the data description from the 1st item, return buffer.
  736. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  737. }else if(p_uart->tx_ptr == NULL) {
  738. //Update the TX item pointer, we will need this to return item to buffer.
  739. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  740. en_tx_flg = true;
  741. p_uart->tx_len_cur = size;
  742. }
  743. }
  744. else {
  745. //Can not get data from ring buffer, return;
  746. break;
  747. }
  748. }
  749. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  750. //To fill the TX FIFO.
  751. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  752. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  753. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  754. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  755. uart_reg->conf0.sw_rts = 0;
  756. uart_reg->int_ena.tx_done = 1;
  757. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  758. }
  759. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  760. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  761. *(p_uart->tx_ptr++) & 0xff);
  762. }
  763. p_uart->tx_len_tot -= send_len;
  764. p_uart->tx_len_cur -= send_len;
  765. tx_fifo_rem -= send_len;
  766. if (p_uart->tx_len_cur == 0) {
  767. //Return item to ring buffer.
  768. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  769. p_uart->tx_head = NULL;
  770. p_uart->tx_ptr = NULL;
  771. //Sending item done, now we need to send break if there is a record.
  772. //Set TX break signal after FIFO is empty
  773. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  774. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  775. uart_reg->int_ena.tx_brk_done = 0;
  776. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  777. uart_reg->conf0.txd_brk = 1;
  778. uart_reg->int_clr.tx_brk_done = 1;
  779. uart_reg->int_ena.tx_brk_done = 1;
  780. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  781. p_uart->tx_waiting_brk = 1;
  782. //do not enable TX empty interrupt
  783. en_tx_flg = false;
  784. } else {
  785. //enable TX empty interrupt
  786. en_tx_flg = true;
  787. }
  788. } else {
  789. //enable TX empty interrupt
  790. en_tx_flg = true;
  791. }
  792. }
  793. }
  794. if (en_tx_flg) {
  795. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  796. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  797. }
  798. }
  799. }
  800. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  801. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  802. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  803. ) {
  804. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  805. typeof(uart_reg->mem_rx_status) rx_status = uart_reg->mem_rx_status;
  806. // When using DPort to read fifo, fifo_cnt is not credible, we need to calculate the real cnt based on the fifo read and write pointer.
  807. // When using AHB to read FIFO, we can use fifo_cnt to indicate the data length in fifo.
  808. if (rx_status.wr_addr > rx_status.rd_addr) {
  809. rx_fifo_len = rx_status.wr_addr - rx_status.rd_addr;
  810. } else if (rx_status.wr_addr < rx_status.rd_addr) {
  811. rx_fifo_len = (rx_status.wr_addr + 128) - rx_status.rd_addr;
  812. } else {
  813. rx_fifo_len = rx_fifo_len > 0 ? 128 : 0;
  814. }
  815. if(pat_flg == 1) {
  816. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  817. pat_flg = 0;
  818. }
  819. if (p_uart->rx_buffer_full_flg == false) {
  820. //We have to read out all data in RX FIFO to clear the interrupt signal
  821. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  822. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  823. }
  824. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  825. int pat_num = uart_reg->at_cmd_char.char_num;
  826. int pat_idx = -1;
  827. //Get the buffer from the FIFO
  828. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  829. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  830. uart_event.type = UART_PATTERN_DET;
  831. uart_event.size = rx_fifo_len;
  832. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  833. } else {
  834. //After Copying the Data From FIFO ,Clear intr_status
  835. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  836. uart_event.type = UART_DATA;
  837. uart_event.size = rx_fifo_len;
  838. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  839. if (p_uart->uart_select_notif_callback) {
  840. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  841. }
  842. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  843. }
  844. p_uart->rx_stash_len = rx_fifo_len;
  845. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  846. //Mainly for applications that uses flow control or small ring buffer.
  847. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  848. p_uart->rx_buffer_full_flg = true;
  849. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  850. if (uart_event.type == UART_PATTERN_DET) {
  851. if (rx_fifo_len < pat_num) {
  852. //some of the characters are read out in last interrupt
  853. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  854. } else {
  855. uart_pattern_enqueue(uart_num,
  856. pat_idx <= -1 ?
  857. //can not find the pattern in buffer,
  858. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  859. // find the pattern in buffer
  860. p_uart->rx_buffered_len + pat_idx);
  861. }
  862. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  863. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  864. }
  865. }
  866. uart_event.type = UART_BUFFER_FULL;
  867. } else {
  868. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  869. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  870. if (rx_fifo_len < pat_num) {
  871. //some of the characters are read out in last interrupt
  872. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  873. } else if(pat_idx >= 0) {
  874. // find pattern in statsh buffer.
  875. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  876. }
  877. }
  878. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  879. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  880. }
  881. } else {
  882. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  883. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  884. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  885. uart_reg->int_clr.at_cmd_char_det = 1;
  886. uart_event.type = UART_PATTERN_DET;
  887. uart_event.size = rx_fifo_len;
  888. pat_flg = 1;
  889. }
  890. }
  891. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  892. // When fifo overflows, we reset the fifo.
  893. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  894. uart_reset_rx_fifo(uart_num);
  895. uart_reg->int_clr.rxfifo_ovf = 1;
  896. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  897. uart_event.type = UART_FIFO_OVF;
  898. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  899. if (p_uart->uart_select_notif_callback) {
  900. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  901. }
  902. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  903. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  904. uart_reg->int_clr.brk_det = 1;
  905. uart_event.type = UART_BREAK;
  906. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  907. uart_reg->int_clr.frm_err = 1;
  908. uart_event.type = UART_FRAME_ERR;
  909. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  910. if (p_uart->uart_select_notif_callback) {
  911. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  912. }
  913. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  914. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  915. uart_reg->int_clr.parity_err = 1;
  916. uart_event.type = UART_PARITY_ERR;
  917. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  918. if (p_uart->uart_select_notif_callback) {
  919. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  920. }
  921. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  922. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  923. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  924. uart_reg->conf0.txd_brk = 0;
  925. uart_reg->int_ena.tx_brk_done = 0;
  926. uart_reg->int_clr.tx_brk_done = 1;
  927. if(p_uart->tx_brk_flg == 1) {
  928. uart_reg->int_ena.txfifo_empty = 1;
  929. }
  930. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  931. if(p_uart->tx_brk_flg == 1) {
  932. p_uart->tx_brk_flg = 0;
  933. p_uart->tx_waiting_brk = 0;
  934. } else {
  935. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  936. }
  937. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  938. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  939. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  940. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  941. uart_reg->int_clr.at_cmd_char_det = 1;
  942. uart_event.type = UART_PATTERN_DET;
  943. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  944. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  945. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  946. // RS485 collision or frame error interrupt triggered
  947. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  948. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  949. uart_reset_rx_fifo(uart_num);
  950. // Set collision detection flag
  951. p_uart_obj[uart_num]->coll_det_flg = true;
  952. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  953. uart_event.type = UART_EVENT_MAX;
  954. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  955. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  956. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  957. // If RS485 half duplex mode is enable then reset FIFO and
  958. // reset RTS pin to start receiver driver
  959. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  960. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  961. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  962. uart_reg->conf0.sw_rts = 1;
  963. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  964. }
  965. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  966. } else {
  967. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  968. uart_event.type = UART_EVENT_MAX;
  969. }
  970. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  971. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  972. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  973. }
  974. }
  975. }
  976. if(HPTaskAwoken == pdTRUE) {
  977. portYIELD_FROM_ISR();
  978. }
  979. }
  980. /**************************************************************/
  981. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  982. {
  983. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  984. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  985. BaseType_t res;
  986. portTickType ticks_start = xTaskGetTickCount();
  987. //Take tx_mux
  988. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  989. if(res == pdFALSE) {
  990. return ESP_ERR_TIMEOUT;
  991. }
  992. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  993. typeof(UART0.status) status = UART[uart_num]->status;
  994. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  995. if(status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  996. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  997. return ESP_OK;
  998. }
  999. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1000. TickType_t ticks_end = xTaskGetTickCount();
  1001. if (ticks_end - ticks_start > ticks_to_wait) {
  1002. ticks_to_wait = 0;
  1003. } else {
  1004. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1005. }
  1006. //take 2nd tx_done_sem, wait given from ISR
  1007. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1008. if(res == pdFALSE) {
  1009. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1010. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1011. return ESP_ERR_TIMEOUT;
  1012. }
  1013. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1014. return ESP_OK;
  1015. }
  1016. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1017. {
  1018. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1019. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1020. UART[uart_num]->conf0.txd_brk = 1;
  1021. UART[uart_num]->int_clr.tx_brk_done = 1;
  1022. UART[uart_num]->int_ena.tx_brk_done = 1;
  1023. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1024. return ESP_OK;
  1025. }
  1026. //Fill UART tx_fifo and return a number,
  1027. //This function by itself is not thread-safe, always call from within a muxed section.
  1028. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1029. {
  1030. uint8_t i = 0;
  1031. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1032. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1033. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1034. // Set the RTS pin if RS485 mode is enabled
  1035. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1036. UART[uart_num]->conf0.sw_rts = 0;
  1037. UART[uart_num]->int_ena.tx_done = 1;
  1038. }
  1039. for (i = 0; i < copy_cnt; i++) {
  1040. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1041. }
  1042. return copy_cnt;
  1043. }
  1044. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1045. {
  1046. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1047. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1048. UART_CHECK(buffer, "buffer null", (-1));
  1049. if(len == 0) {
  1050. return 0;
  1051. }
  1052. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1053. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1054. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1055. return tx_len;
  1056. }
  1057. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1058. {
  1059. if(size == 0) {
  1060. return 0;
  1061. }
  1062. size_t original_size = size;
  1063. //lock for uart_tx
  1064. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1065. p_uart_obj[uart_num]->coll_det_flg = false;
  1066. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1067. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1068. int offset = 0;
  1069. uart_tx_data_t evt;
  1070. evt.tx_data.size = size;
  1071. evt.tx_data.brk_len = brk_len;
  1072. if(brk_en) {
  1073. evt.type = UART_DATA_BREAK;
  1074. } else {
  1075. evt.type = UART_DATA;
  1076. }
  1077. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1078. while(size > 0) {
  1079. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1080. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1081. size -= send_size;
  1082. offset += send_size;
  1083. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1084. }
  1085. } else {
  1086. while(size) {
  1087. //semaphore for tx_fifo available
  1088. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1089. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1090. if(sent < size) {
  1091. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1092. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1093. }
  1094. size -= sent;
  1095. src += sent;
  1096. }
  1097. }
  1098. if(brk_en) {
  1099. uart_set_break(uart_num, brk_len);
  1100. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1101. }
  1102. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1103. }
  1104. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1105. return original_size;
  1106. }
  1107. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1108. {
  1109. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1110. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1111. UART_CHECK(src, "buffer null", (-1));
  1112. return uart_tx_all(uart_num, src, size, 0, 0);
  1113. }
  1114. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1115. {
  1116. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1117. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1118. UART_CHECK((size > 0), "uart size error", (-1));
  1119. UART_CHECK((src), "uart data null", (-1));
  1120. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1121. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1122. }
  1123. static bool uart_check_buf_full(uart_port_t uart_num)
  1124. {
  1125. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1126. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1127. if(res == pdTRUE) {
  1128. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1129. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1130. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1131. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1132. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1133. return true;
  1134. }
  1135. }
  1136. return false;
  1137. }
  1138. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1139. {
  1140. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1141. UART_CHECK((buf), "uart data null", (-1));
  1142. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1143. uint8_t* data = NULL;
  1144. size_t size;
  1145. size_t copy_len = 0;
  1146. int len_tmp;
  1147. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1148. return -1;
  1149. }
  1150. while(length) {
  1151. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1152. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1153. if(data) {
  1154. p_uart_obj[uart_num]->rx_head_ptr = data;
  1155. p_uart_obj[uart_num]->rx_ptr = data;
  1156. p_uart_obj[uart_num]->rx_cur_remain = size;
  1157. } else {
  1158. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1159. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1160. //to solve the possible asynchronous issues.
  1161. if(uart_check_buf_full(uart_num)) {
  1162. //This condition will never be true if `uart_read_bytes`
  1163. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1164. continue;
  1165. } else {
  1166. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1167. return copy_len;
  1168. }
  1169. }
  1170. }
  1171. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1172. len_tmp = length;
  1173. } else {
  1174. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1175. }
  1176. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1177. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1178. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1179. uart_pattern_queue_update(uart_num, len_tmp);
  1180. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1181. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1182. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1183. copy_len += len_tmp;
  1184. length -= len_tmp;
  1185. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1186. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1187. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1188. p_uart_obj[uart_num]->rx_ptr = NULL;
  1189. uart_check_buf_full(uart_num);
  1190. }
  1191. }
  1192. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1193. return copy_len;
  1194. }
  1195. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1196. {
  1197. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1198. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1199. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1200. return ESP_OK;
  1201. }
  1202. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1203. esp_err_t uart_flush_input(uart_port_t uart_num)
  1204. {
  1205. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1206. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1207. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1208. uint8_t* data;
  1209. size_t size;
  1210. //rx sem protect the ring buffer read related functions
  1211. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1212. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1213. while(true) {
  1214. if(p_uart->rx_head_ptr) {
  1215. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1216. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1217. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1218. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1219. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1220. p_uart->rx_ptr = NULL;
  1221. p_uart->rx_cur_remain = 0;
  1222. p_uart->rx_head_ptr = NULL;
  1223. }
  1224. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1225. if(data == NULL) {
  1226. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1227. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1228. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1229. }
  1230. //We also need to clear the `rx_buffer_full_flg` here.
  1231. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1232. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1233. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1234. break;
  1235. }
  1236. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1237. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1238. uart_pattern_queue_update(uart_num, size);
  1239. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1240. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1241. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1242. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1243. if(res == pdTRUE) {
  1244. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1245. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1246. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1247. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1248. }
  1249. }
  1250. }
  1251. p_uart->rx_ptr = NULL;
  1252. p_uart->rx_cur_remain = 0;
  1253. p_uart->rx_head_ptr = NULL;
  1254. uart_reset_rx_fifo(uart_num);
  1255. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1256. xSemaphoreGive(p_uart->rx_mux);
  1257. return ESP_OK;
  1258. }
  1259. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1260. {
  1261. esp_err_t r;
  1262. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1263. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1264. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1265. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1266. if(p_uart_obj[uart_num] == NULL) {
  1267. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1268. if(p_uart_obj[uart_num] == NULL) {
  1269. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1270. return ESP_FAIL;
  1271. }
  1272. p_uart_obj[uart_num]->uart_num = uart_num;
  1273. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1274. p_uart_obj[uart_num]->coll_det_flg = false;
  1275. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1276. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1277. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1278. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1279. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1280. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1281. p_uart_obj[uart_num]->queue_size = queue_size;
  1282. p_uart_obj[uart_num]->tx_ptr = NULL;
  1283. p_uart_obj[uart_num]->tx_head = NULL;
  1284. p_uart_obj[uart_num]->tx_len_tot = 0;
  1285. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1286. p_uart_obj[uart_num]->tx_brk_len = 0;
  1287. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1288. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1289. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1290. if(uart_queue) {
  1291. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1292. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1293. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1294. } else {
  1295. p_uart_obj[uart_num]->xQueueUart = NULL;
  1296. }
  1297. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1298. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1299. p_uart_obj[uart_num]->rx_ptr = NULL;
  1300. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1301. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1302. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1303. if(tx_buffer_size > 0) {
  1304. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1305. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1306. } else {
  1307. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1308. p_uart_obj[uart_num]->tx_buf_size = 0;
  1309. }
  1310. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1311. } else {
  1312. ESP_LOGE(UART_TAG, "UART driver already installed");
  1313. return ESP_FAIL;
  1314. }
  1315. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1316. if (r!=ESP_OK) goto err;
  1317. uart_intr_config_t uart_intr = {
  1318. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1319. | UART_RXFIFO_TOUT_INT_ENA_M
  1320. | UART_FRM_ERR_INT_ENA_M
  1321. | UART_RXFIFO_OVF_INT_ENA_M
  1322. | UART_BRK_DET_INT_ENA_M
  1323. | UART_PARITY_ERR_INT_ENA_M,
  1324. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1325. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1326. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1327. };
  1328. r=uart_intr_config(uart_num, &uart_intr);
  1329. if (r!=ESP_OK) goto err;
  1330. return r;
  1331. err:
  1332. uart_driver_delete(uart_num);
  1333. return r;
  1334. }
  1335. //Make sure no other tasks are still using UART before you call this function
  1336. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1337. {
  1338. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1339. if(p_uart_obj[uart_num] == NULL) {
  1340. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1341. return ESP_OK;
  1342. }
  1343. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1344. uart_disable_rx_intr(uart_num);
  1345. uart_disable_tx_intr(uart_num);
  1346. uart_pattern_link_free(uart_num);
  1347. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1348. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1349. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1350. }
  1351. if(p_uart_obj[uart_num]->tx_done_sem) {
  1352. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1353. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1354. }
  1355. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1356. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1357. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1358. }
  1359. if(p_uart_obj[uart_num]->tx_mux) {
  1360. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1361. p_uart_obj[uart_num]->tx_mux = NULL;
  1362. }
  1363. if(p_uart_obj[uart_num]->rx_mux) {
  1364. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1365. p_uart_obj[uart_num]->rx_mux = NULL;
  1366. }
  1367. if(p_uart_obj[uart_num]->xQueueUart) {
  1368. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1369. p_uart_obj[uart_num]->xQueueUart = NULL;
  1370. }
  1371. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1372. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1373. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1374. }
  1375. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1376. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1377. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1378. }
  1379. free(p_uart_obj[uart_num]);
  1380. p_uart_obj[uart_num] = NULL;
  1381. if (uart_num != CONFIG_CONSOLE_UART_NUM) {
  1382. periph_module_t periph_module = get_periph_module(uart_num);
  1383. periph_module_disable(periph_module);
  1384. }
  1385. return ESP_OK;
  1386. }
  1387. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1388. {
  1389. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1390. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1391. }
  1392. }
  1393. portMUX_TYPE *uart_get_selectlock()
  1394. {
  1395. return &uart_selectlock;
  1396. }
  1397. // Set UART mode
  1398. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1399. {
  1400. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1401. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1402. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1403. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1404. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1405. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1406. }
  1407. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1408. UART[uart_num]->rs485_conf.en = 0;
  1409. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1410. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1411. UART[uart_num]->conf0.irda_en = 0;
  1412. UART[uart_num]->conf0.sw_rts = 0;
  1413. switch (mode) {
  1414. case UART_MODE_UART:
  1415. break;
  1416. case UART_MODE_RS485_COLLISION_DETECT:
  1417. // This mode allows read while transmitting that allows collision detection
  1418. p_uart_obj[uart_num]->coll_det_flg = false;
  1419. // Transmitter’s output signal loop back to the receiver’s input signal
  1420. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1421. // Transmitter should send data when its receiver is busy
  1422. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1423. UART[uart_num]->rs485_conf.en = 1;
  1424. // Enable collision detection interrupts
  1425. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1426. | UART_RXFIFO_FULL_INT_ENA
  1427. | UART_RS485_CLASH_INT_ENA
  1428. | UART_RS485_FRM_ERR_INT_ENA
  1429. | UART_RS485_PARITY_ERR_INT_ENA);
  1430. break;
  1431. case UART_MODE_RS485_APP_CTRL:
  1432. // Application software control, remove echo
  1433. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1434. UART[uart_num]->rs485_conf.en = 1;
  1435. break;
  1436. case UART_MODE_RS485_HALF_DUPLEX:
  1437. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1438. UART[uart_num]->conf0.sw_rts = 1;
  1439. UART[uart_num]->rs485_conf.en = 1;
  1440. // Must be set to 0 to automatically remove echo
  1441. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1442. // This is to void collision
  1443. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1444. break;
  1445. case UART_MODE_IRDA:
  1446. UART[uart_num]->conf0.irda_en = 1;
  1447. break;
  1448. default:
  1449. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1450. break;
  1451. }
  1452. p_uart_obj[uart_num]->uart_mode = mode;
  1453. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1454. return ESP_OK;
  1455. }
  1456. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1457. {
  1458. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1459. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1460. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1461. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1462. // transmission time of one symbol (~11 bit) on current baudrate
  1463. if (tout_thresh > 0) {
  1464. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1465. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1466. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1467. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT;
  1468. } else {
  1469. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh;
  1470. }
  1471. UART[uart_num]->conf1.rx_tout_en = 1;
  1472. } else {
  1473. UART[uart_num]->conf1.rx_tout_en = 0;
  1474. }
  1475. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1476. return ESP_OK;
  1477. }
  1478. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1479. {
  1480. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1481. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1482. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1483. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1484. "wrong mode", ESP_ERR_INVALID_ARG);
  1485. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1486. return ESP_OK;
  1487. }
  1488. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1489. {
  1490. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1491. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1492. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1493. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1494. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1495. return ESP_OK;
  1496. }
  1497. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1498. {
  1499. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1500. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1501. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1502. return ESP_OK;
  1503. }