system_api.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. // Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "esp_system.h"
  16. #include "esp_attr.h"
  17. #include "esp_wifi.h"
  18. #include "esp_wifi_internal.h"
  19. #include "esp_log.h"
  20. #include "sdkconfig.h"
  21. #include "rom/efuse.h"
  22. #include "rom/cache.h"
  23. #include "rom/uart.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/gpio_reg.h"
  26. #include "soc/efuse_reg.h"
  27. #include "soc/rtc_cntl_reg.h"
  28. #include "soc/timer_group_reg.h"
  29. #include "soc/timer_group_struct.h"
  30. #include "soc/cpu.h"
  31. #include "soc/rtc.h"
  32. #include "soc/rtc_wdt.h"
  33. #include "freertos/FreeRTOS.h"
  34. #include "freertos/task.h"
  35. #include "freertos/xtensa_api.h"
  36. #include "esp_heap_caps.h"
  37. #include "esp_system_internal.h"
  38. #include "esp_efuse.h"
  39. #include "esp_efuse_table.h"
  40. static const char* TAG = "system_api";
  41. static uint8_t base_mac_addr[6] = { 0 };
  42. #define SHUTDOWN_HANDLERS_NO 2
  43. static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
  44. void system_init()
  45. {
  46. }
  47. esp_err_t esp_base_mac_addr_set(uint8_t *mac)
  48. {
  49. if (mac == NULL) {
  50. ESP_LOGE(TAG, "Base MAC address is NULL");
  51. abort();
  52. }
  53. memcpy(base_mac_addr, mac, 6);
  54. return ESP_OK;
  55. }
  56. esp_err_t esp_base_mac_addr_get(uint8_t *mac)
  57. {
  58. uint8_t null_mac[6] = {0};
  59. if (memcmp(base_mac_addr, null_mac, 6) == 0) {
  60. ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
  61. return ESP_ERR_INVALID_MAC;
  62. }
  63. memcpy(mac, base_mac_addr, 6);
  64. return ESP_OK;
  65. }
  66. esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
  67. {
  68. uint8_t version;
  69. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_VER, &version, 8);
  70. if (version != 1) {
  71. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version);
  72. return ESP_ERR_INVALID_VERSION;
  73. }
  74. uint8_t efuse_crc;
  75. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48);
  76. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_CRC, &efuse_crc, 8);
  77. uint8_t calc_crc = esp_crc8(mac, 6);
  78. if (efuse_crc != calc_crc) {
  79. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  80. return ESP_ERR_INVALID_CRC;
  81. }
  82. return ESP_OK;
  83. }
  84. esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
  85. {
  86. uint8_t efuse_crc;
  87. esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
  88. esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &efuse_crc, 8);
  89. uint8_t calc_crc = esp_crc8(mac, 6);
  90. if (efuse_crc != calc_crc) {
  91. // Small range of MAC addresses are accepted even if CRC is invalid.
  92. // These addresses are reserved for Espressif internal use.
  93. uint32_t mac_high = ((uint32_t)mac[0] << 8) | mac[1];
  94. if ((mac_high & 0xFFFF) == 0x18fe) {
  95. uint32_t mac_low = ((uint32_t)mac[2] << 24) | ((uint32_t)mac[3] << 16) | ((uint32_t)mac[4] << 8) | mac[5];
  96. if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
  97. return ESP_OK;
  98. }
  99. } else {
  100. ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  101. abort();
  102. }
  103. }
  104. return ESP_OK;
  105. }
  106. esp_err_t system_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  107. esp_err_t esp_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  108. esp_err_t esp_derive_local_mac(uint8_t* local_mac, const uint8_t* universal_mac)
  109. {
  110. uint8_t idx;
  111. if (local_mac == NULL || universal_mac == NULL) {
  112. ESP_LOGE(TAG, "mac address param is NULL");
  113. return ESP_ERR_INVALID_ARG;
  114. }
  115. memcpy(local_mac, universal_mac, 6);
  116. for (idx = 0; idx < 64; idx++) {
  117. local_mac[0] = universal_mac[0] | 0x02;
  118. local_mac[0] ^= idx << 2;
  119. if (memcmp(local_mac, universal_mac, 6)) {
  120. break;
  121. }
  122. }
  123. return ESP_OK;
  124. }
  125. esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
  126. {
  127. uint8_t efuse_mac[6];
  128. if (mac == NULL) {
  129. ESP_LOGE(TAG, "mac address param is NULL");
  130. return ESP_ERR_INVALID_ARG;
  131. }
  132. if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
  133. ESP_LOGE(TAG, "mac type is incorrect");
  134. return ESP_ERR_INVALID_ARG;
  135. }
  136. _Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
  137. || UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
  138. "incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
  139. if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
  140. esp_efuse_mac_get_default(efuse_mac);
  141. }
  142. switch (type) {
  143. case ESP_MAC_WIFI_STA:
  144. memcpy(mac, efuse_mac, 6);
  145. break;
  146. case ESP_MAC_WIFI_SOFTAP:
  147. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  148. memcpy(mac, efuse_mac, 6);
  149. mac[5] += 1;
  150. }
  151. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  152. esp_derive_local_mac(mac, efuse_mac);
  153. }
  154. break;
  155. case ESP_MAC_BT:
  156. memcpy(mac, efuse_mac, 6);
  157. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  158. mac[5] += 2;
  159. }
  160. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  161. mac[5] += 1;
  162. }
  163. break;
  164. case ESP_MAC_ETH:
  165. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  166. memcpy(mac, efuse_mac, 6);
  167. mac[5] += 3;
  168. }
  169. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  170. efuse_mac[5] += 1;
  171. esp_derive_local_mac(mac, efuse_mac);
  172. }
  173. break;
  174. default:
  175. ESP_LOGW(TAG, "incorrect mac type");
  176. break;
  177. }
  178. return ESP_OK;
  179. }
  180. esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
  181. {
  182. int i;
  183. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  184. if (shutdown_handlers[i] == NULL) {
  185. shutdown_handlers[i] = handler;
  186. return ESP_OK;
  187. }
  188. }
  189. return ESP_FAIL;
  190. }
  191. void esp_restart_noos() __attribute__ ((noreturn));
  192. void IRAM_ATTR esp_restart(void)
  193. {
  194. int i;
  195. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  196. if (shutdown_handlers[i]) {
  197. shutdown_handlers[i]();
  198. }
  199. }
  200. // Disable scheduler on this core.
  201. vTaskSuspendAll();
  202. esp_restart_noos();
  203. }
  204. /* "inner" restart function for after RTOS, interrupts & anything else on this
  205. * core are already stopped. Stalls other core, resets hardware,
  206. * triggers restart.
  207. */
  208. void IRAM_ATTR esp_restart_noos()
  209. {
  210. // Disable interrupts
  211. xt_ints_off(0xFFFFFFFF);
  212. // Enable RTC watchdog for 1 second
  213. rtc_wdt_protect_off();
  214. rtc_wdt_disable();
  215. rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC);
  216. rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_RESET_SYSTEM);
  217. rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_200ns);
  218. rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_200ns);
  219. rtc_wdt_set_time(RTC_WDT_STAGE0, 1000);
  220. rtc_wdt_flashboot_mode_enable();
  221. // Reset and stall the other CPU.
  222. // CPU must be reset before stalling, in case it was running a s32c1i
  223. // instruction. This would cause memory pool to be locked by arbiter
  224. // to the stalled CPU, preventing current CPU from accessing this pool.
  225. const uint32_t core_id = xPortGetCoreID();
  226. const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
  227. esp_cpu_reset(other_core_id);
  228. esp_cpu_stall(other_core_id);
  229. // Other core is now stalled, can access DPORT registers directly
  230. esp_dport_access_int_abort();
  231. // Disable TG0/TG1 watchdogs
  232. TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  233. TIMERG0.wdt_config0.en = 0;
  234. TIMERG0.wdt_wprotect=0;
  235. TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  236. TIMERG1.wdt_config0.en = 0;
  237. TIMERG1.wdt_wprotect=0;
  238. // Flush any data left in UART FIFOs
  239. uart_tx_wait_idle(0);
  240. uart_tx_wait_idle(1);
  241. uart_tx_wait_idle(2);
  242. // Disable cache
  243. Cache_Read_Disable(0);
  244. Cache_Read_Disable(1);
  245. // 2nd stage bootloader reconfigures SPI flash signals.
  246. // Reset them to the defaults expected by ROM.
  247. WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
  248. WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
  249. WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
  250. WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
  251. WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
  252. WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
  253. // Reset wifi/bluetooth/ethernet/sdio (bb/mac)
  254. DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
  255. DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
  256. DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
  257. DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
  258. DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
  259. DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
  260. // Reset timer/spi/uart
  261. DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
  262. DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_SPI2_RST | DPORT_SPI3_RST | DPORT_SPI_DMA_RST | DPORT_UART_RST | DPORT_UART1_RST | DPORT_UART2_RST);
  263. DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
  264. // Set CPU back to XTAL source, no PLL, same as hard reset
  265. rtc_clk_cpu_freq_set_xtal();
  266. // Clear entry point for APP CPU
  267. DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
  268. // Reset CPUs
  269. if (core_id == 0) {
  270. // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
  271. esp_cpu_reset(1);
  272. esp_cpu_reset(0);
  273. } else {
  274. // Running on APP CPU: need to reset PRO CPU and unstall it,
  275. // then reset APP CPU
  276. esp_cpu_reset(0);
  277. esp_cpu_unstall(0);
  278. esp_cpu_reset(1);
  279. }
  280. while(true) {
  281. ;
  282. }
  283. }
  284. void system_restart(void) __attribute__((alias("esp_restart")));
  285. uint32_t esp_get_free_heap_size( void )
  286. {
  287. return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
  288. }
  289. uint32_t esp_get_free_internal_heap_size( void )
  290. {
  291. return heap_caps_get_free_size( MALLOC_CAP_8BIT | MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL );
  292. }
  293. uint32_t esp_get_minimum_free_heap_size( void )
  294. {
  295. return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT );
  296. }
  297. uint32_t system_get_free_heap_size(void) __attribute__((alias("esp_get_free_heap_size")));
  298. const char* system_get_sdk_version(void)
  299. {
  300. return "master";
  301. }
  302. const char* esp_get_idf_version(void)
  303. {
  304. return IDF_VER;
  305. }
  306. void esp_chip_info(esp_chip_info_t* out_info)
  307. {
  308. uint32_t efuse_rd3 = REG_READ(EFUSE_BLK0_RDATA3_REG);
  309. memset(out_info, 0, sizeof(*out_info));
  310. out_info->model = CHIP_ESP32;
  311. out_info->revision = esp_efuse_get_chip_ver();
  312. if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
  313. out_info->cores = 2;
  314. } else {
  315. out_info->cores = 1;
  316. }
  317. out_info->features = CHIP_FEATURE_WIFI_BGN;
  318. if ((efuse_rd3 & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
  319. out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
  320. }
  321. int package = (efuse_rd3 & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S;
  322. if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 ||
  323. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 ||
  324. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
  325. out_info->features |= CHIP_FEATURE_EMB_FLASH;
  326. }
  327. }
  328. inline bool soc_has_cache_lock_bug(void)
  329. {
  330. return (esp_efuse_get_chip_ver() == 3);
  331. }