rmt.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. // Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <sys/lock.h>
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "driver/gpio.h"
  20. #include "driver/periph_ctrl.h"
  21. #include "driver/rmt.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/task.h"
  24. #include "freertos/semphr.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/soc_memory_layout.h"
  27. #include "hal/rmt_hal.h"
  28. #include "hal/rmt_ll.h"
  29. #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
  30. #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
  31. #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
  32. #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
  33. #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
  34. #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
  35. #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
  36. #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
  37. #define RMT_MODE_ERROR_STR "RMT MODE ERROR"
  38. #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
  39. #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
  40. #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
  41. #define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
  42. #define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
  43. #define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
  44. #define RMT_PARAM_ERR_STR "RMT param error"
  45. static const char *RMT_TAG = "rmt";
  46. #define RMT_CHECK(a, str, ret_val) \
  47. if (!(a)) \
  48. { \
  49. ESP_LOGE(RMT_TAG, "%s(%d): %s", __FUNCTION__, __LINE__, str); \
  50. return (ret_val); \
  51. }
  52. static uint8_t s_rmt_driver_channels; // Bitmask of installed drivers' channels
  53. // Spinlock for protecting concurrent register-level access only
  54. static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
  55. #define RMT_ENTER_CRITICAL() portENTER_CRITICAL_SAFE(&rmt_spinlock)
  56. #define RMT_EXIT_CRITICAL() portEXIT_CRITICAL_SAFE(&rmt_spinlock)
  57. // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
  58. static _lock_t rmt_driver_isr_lock;
  59. static rmt_isr_handle_t s_rmt_driver_intr_handle;
  60. typedef struct {
  61. rmt_hal_context_t hal;
  62. size_t tx_offset;
  63. size_t tx_len_rem;
  64. size_t tx_sub_len;
  65. bool translator;
  66. bool wait_done; //Mark whether wait tx done.
  67. rmt_channel_t channel;
  68. const rmt_item32_t *tx_data;
  69. xSemaphoreHandle tx_sem;
  70. #if CONFIG_SPIRAM_USE_MALLOC
  71. int intr_alloc_flags;
  72. StaticSemaphore_t tx_sem_buffer;
  73. #endif
  74. rmt_item32_t *tx_buf;
  75. RingbufHandle_t rx_buf;
  76. #if SOC_RMT_SUPPORT_RX_PINGPONG
  77. rmt_item32_t *rx_item_buf;
  78. uint32_t rx_item_buf_size;
  79. uint32_t rx_item_len;
  80. uint32_t rx_item_start_idx;
  81. #endif
  82. sample_to_rmt_t sample_to_rmt;
  83. size_t sample_size_remain;
  84. const uint8_t *sample_cur;
  85. } rmt_obj_t;
  86. static rmt_obj_t *p_rmt_obj[RMT_CHANNEL_MAX] = {0};
  87. static uint32_t s_rmt_src_clock_hz[RMT_CHANNEL_MAX] = {0};
  88. // Event called when transmission is ended
  89. static rmt_tx_end_callback_t rmt_tx_end_callback;
  90. esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
  91. {
  92. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  93. RMT_ENTER_CRITICAL();
  94. rmt_ll_set_counter_clock_div(p_rmt_obj[channel]->hal.regs, channel, div_cnt);
  95. RMT_EXIT_CRITICAL();
  96. return ESP_OK;
  97. }
  98. esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t *div_cnt)
  99. {
  100. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  101. RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  102. RMT_ENTER_CRITICAL();
  103. *div_cnt = (uint8_t)rmt_ll_get_counter_clock_div(p_rmt_obj[channel]->hal.regs, channel);
  104. RMT_EXIT_CRITICAL();
  105. return ESP_OK;
  106. }
  107. esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
  108. {
  109. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  110. RMT_ENTER_CRITICAL();
  111. rmt_ll_set_rx_idle_thres(p_rmt_obj[channel]->hal.regs, channel, thresh);
  112. RMT_EXIT_CRITICAL();
  113. return ESP_OK;
  114. }
  115. esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
  116. {
  117. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  118. RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  119. RMT_ENTER_CRITICAL();
  120. *thresh = (uint16_t)rmt_ll_get_rx_idle_thres(p_rmt_obj[channel]->hal.regs, channel);
  121. RMT_EXIT_CRITICAL();
  122. return ESP_OK;
  123. }
  124. esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
  125. {
  126. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  127. RMT_CHECK(rmt_mem_num <= RMT_CHANNEL_MAX - channel, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  128. RMT_ENTER_CRITICAL();
  129. rmt_ll_set_mem_blocks(p_rmt_obj[channel]->hal.regs, channel, rmt_mem_num);
  130. RMT_EXIT_CRITICAL();
  131. return ESP_OK;
  132. }
  133. esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t *rmt_mem_num)
  134. {
  135. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  136. RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  137. RMT_ENTER_CRITICAL();
  138. *rmt_mem_num = (uint8_t)rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel);
  139. RMT_EXIT_CRITICAL();
  140. return ESP_OK;
  141. }
  142. esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
  143. rmt_carrier_level_t carrier_level)
  144. {
  145. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  146. RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
  147. RMT_ENTER_CRITICAL();
  148. rmt_ll_set_tx_carrier_high_low_ticks(p_rmt_obj[channel]->hal.regs, channel, high_level, low_level);
  149. rmt_ll_set_carrier_on_level(p_rmt_obj[channel]->hal.regs, channel, carrier_level);
  150. rmt_ll_enable_carrier(p_rmt_obj[channel]->hal.regs, channel, carrier_en);
  151. RMT_EXIT_CRITICAL();
  152. return ESP_OK;
  153. }
  154. esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
  155. {
  156. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  157. RMT_ENTER_CRITICAL();
  158. rmt_ll_power_down_mem(p_rmt_obj[channel]->hal.regs, pd_en);
  159. RMT_EXIT_CRITICAL();
  160. return ESP_OK;
  161. }
  162. esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool *pd_en)
  163. {
  164. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  165. RMT_ENTER_CRITICAL();
  166. *pd_en = rmt_ll_is_mem_power_down(p_rmt_obj[channel]->hal.regs);
  167. RMT_EXIT_CRITICAL();
  168. return ESP_OK;
  169. }
  170. esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
  171. {
  172. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  173. RMT_ENTER_CRITICAL();
  174. if (tx_idx_rst) {
  175. rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  176. }
  177. rmt_ll_clear_tx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel);
  178. // enable tx end interrupt in non-loop mode
  179. if (!rmt_ll_is_tx_loop_enabled(p_rmt_obj[channel]->hal.regs, channel)) {
  180. rmt_ll_enable_tx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, true);
  181. } else {
  182. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  183. rmt_ll_reset_tx_loop(p_rmt_obj[channel]->hal.regs, channel);
  184. rmt_ll_enable_tx_loop_count(p_rmt_obj[channel]->hal.regs, channel, true);
  185. rmt_ll_clear_tx_loop_interrupt(p_rmt_obj[channel]->hal.regs, channel);
  186. rmt_ll_enable_tx_loop_interrupt(p_rmt_obj[channel]->hal.regs, channel, true);
  187. #endif
  188. }
  189. rmt_ll_start_tx(p_rmt_obj[channel]->hal.regs, channel);
  190. RMT_EXIT_CRITICAL();
  191. return ESP_OK;
  192. }
  193. esp_err_t rmt_tx_stop(rmt_channel_t channel)
  194. {
  195. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  196. RMT_ENTER_CRITICAL();
  197. rmt_ll_stop_tx(p_rmt_obj[channel]->hal.regs, channel);
  198. rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  199. RMT_EXIT_CRITICAL();
  200. return ESP_OK;
  201. }
  202. esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
  203. {
  204. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  205. RMT_ENTER_CRITICAL();
  206. rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, false);
  207. if (rx_idx_rst) {
  208. rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  209. }
  210. rmt_ll_clear_rx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel);
  211. rmt_ll_enable_rx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, true);
  212. #if SOC_RMT_SUPPORT_RX_PINGPONG
  213. const uint32_t item_block_len = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel) * RMT_MEM_ITEM_NUM;
  214. p_rmt_obj[channel]->rx_item_start_idx = 0;
  215. p_rmt_obj[channel]->rx_item_len = 0;
  216. rmt_set_rx_thr_intr_en(channel, true, item_block_len / 2);
  217. #endif
  218. rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, true);
  219. RMT_EXIT_CRITICAL();
  220. return ESP_OK;
  221. }
  222. esp_err_t rmt_rx_stop(rmt_channel_t channel)
  223. {
  224. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  225. RMT_ENTER_CRITICAL();
  226. rmt_ll_enable_rx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, false);
  227. rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, false);
  228. rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  229. #if SOC_RMT_SUPPORT_RX_PINGPONG
  230. rmt_ll_enable_rx_thres_interrupt(p_rmt_obj[channel]->hal.regs, channel, false);
  231. #endif
  232. RMT_EXIT_CRITICAL();
  233. return ESP_OK;
  234. }
  235. esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
  236. {
  237. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  238. RMT_ENTER_CRITICAL();
  239. rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  240. rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  241. RMT_EXIT_CRITICAL();
  242. return ESP_OK;
  243. }
  244. esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
  245. {
  246. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  247. RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  248. RMT_ENTER_CRITICAL();
  249. rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, owner);
  250. RMT_EXIT_CRITICAL();
  251. return ESP_OK;
  252. }
  253. esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t *owner)
  254. {
  255. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  256. RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  257. RMT_ENTER_CRITICAL();
  258. *owner = (rmt_mem_owner_t)rmt_ll_get_mem_owner(p_rmt_obj[channel]->hal.regs, channel);
  259. RMT_EXIT_CRITICAL();
  260. return ESP_OK;
  261. }
  262. esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
  263. {
  264. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  265. RMT_ENTER_CRITICAL();
  266. rmt_ll_enable_tx_loop(p_rmt_obj[channel]->hal.regs, channel, loop_en);
  267. RMT_EXIT_CRITICAL();
  268. return ESP_OK;
  269. }
  270. esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool *loop_en)
  271. {
  272. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  273. RMT_ENTER_CRITICAL();
  274. *loop_en = rmt_ll_is_tx_loop_enabled(p_rmt_obj[channel]->hal.regs, channel);
  275. RMT_EXIT_CRITICAL();
  276. return ESP_OK;
  277. }
  278. esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
  279. {
  280. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  281. RMT_ENTER_CRITICAL();
  282. rmt_ll_enable_rx_filter(p_rmt_obj[channel]->hal.regs, channel, rx_filter_en);
  283. rmt_ll_set_rx_filter_thres(p_rmt_obj[channel]->hal.regs, channel, thresh);
  284. RMT_EXIT_CRITICAL();
  285. return ESP_OK;
  286. }
  287. esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
  288. {
  289. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  290. RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
  291. RMT_ENTER_CRITICAL();
  292. rmt_ll_set_counter_clock_src(p_rmt_obj[channel]->hal.regs, channel, base_clk);
  293. RMT_EXIT_CRITICAL();
  294. return ESP_OK;
  295. }
  296. esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t *src_clk)
  297. {
  298. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  299. RMT_ENTER_CRITICAL();
  300. *src_clk = (rmt_source_clk_t)rmt_ll_get_counter_clock_src(p_rmt_obj[channel]->hal.regs, channel);
  301. RMT_EXIT_CRITICAL();
  302. return ESP_OK;
  303. }
  304. esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
  305. {
  306. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  307. RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
  308. RMT_ENTER_CRITICAL();
  309. rmt_ll_enable_tx_idle(p_rmt_obj[channel]->hal.regs, channel, idle_out_en);
  310. rmt_ll_set_tx_idle_level(p_rmt_obj[channel]->hal.regs, channel, level);
  311. RMT_EXIT_CRITICAL();
  312. return ESP_OK;
  313. }
  314. esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool *idle_out_en, rmt_idle_level_t *level)
  315. {
  316. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  317. RMT_ENTER_CRITICAL();
  318. *idle_out_en = rmt_ll_is_tx_idle_enabled(p_rmt_obj[channel]->hal.regs, channel);
  319. *level = rmt_ll_get_tx_idle_level(p_rmt_obj[channel]->hal.regs, channel);
  320. RMT_EXIT_CRITICAL();
  321. return ESP_OK;
  322. }
  323. esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t *status)
  324. {
  325. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  326. RMT_ENTER_CRITICAL();
  327. *status = rmt_ll_get_channel_status(p_rmt_obj[channel]->hal.regs, channel);
  328. RMT_EXIT_CRITICAL();
  329. return ESP_OK;
  330. }
  331. void rmt_set_intr_enable_mask(uint32_t mask)
  332. {
  333. RMT_ENTER_CRITICAL();
  334. rmt_ll_set_intr_enable_mask(mask);
  335. RMT_EXIT_CRITICAL();
  336. }
  337. void rmt_clr_intr_enable_mask(uint32_t mask)
  338. {
  339. RMT_ENTER_CRITICAL();
  340. rmt_ll_clr_intr_enable_mask(mask);
  341. RMT_EXIT_CRITICAL();
  342. }
  343. esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
  344. {
  345. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  346. RMT_ENTER_CRITICAL();
  347. rmt_ll_enable_rx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, en);
  348. RMT_EXIT_CRITICAL();
  349. return ESP_OK;
  350. }
  351. #if SOC_RMT_SUPPORT_RX_PINGPONG
  352. esp_err_t rmt_set_rx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  353. {
  354. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  355. if (en) {
  356. uint32_t item_block_len = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel) * RMT_MEM_ITEM_NUM;
  357. RMT_CHECK(evt_thresh <= item_block_len, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
  358. RMT_ENTER_CRITICAL();
  359. rmt_ll_set_rx_limit(p_rmt_obj[channel]->hal.regs, channel, evt_thresh);
  360. rmt_ll_enable_rx_thres_interrupt(p_rmt_obj[channel]->hal.regs, channel, true);
  361. RMT_EXIT_CRITICAL();
  362. } else {
  363. RMT_ENTER_CRITICAL();
  364. rmt_ll_enable_rx_thres_interrupt(p_rmt_obj[channel]->hal.regs, channel, false);
  365. RMT_EXIT_CRITICAL();
  366. }
  367. return ESP_OK;
  368. }
  369. #endif
  370. esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
  371. {
  372. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  373. RMT_ENTER_CRITICAL();
  374. rmt_ll_enable_err_interrupt(p_rmt_obj[channel]->hal.regs, channel, en);
  375. RMT_EXIT_CRITICAL();
  376. return ESP_OK;
  377. }
  378. esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
  379. {
  380. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  381. RMT_ENTER_CRITICAL();
  382. rmt_ll_enable_tx_end_interrupt(p_rmt_obj[channel]->hal.regs, channel, en);
  383. RMT_EXIT_CRITICAL();
  384. return ESP_OK;
  385. }
  386. esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  387. {
  388. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  389. if (en) {
  390. uint32_t item_block_len = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel) * RMT_MEM_ITEM_NUM;
  391. RMT_CHECK(evt_thresh <= item_block_len, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
  392. RMT_ENTER_CRITICAL();
  393. rmt_ll_set_tx_limit(p_rmt_obj[channel]->hal.regs, channel, evt_thresh);
  394. rmt_ll_enable_tx_thres_interrupt(p_rmt_obj[channel]->hal.regs, channel, true);
  395. RMT_EXIT_CRITICAL();
  396. } else {
  397. RMT_ENTER_CRITICAL();
  398. rmt_ll_enable_tx_thres_interrupt(p_rmt_obj[channel]->hal.regs, channel, false);
  399. RMT_EXIT_CRITICAL();
  400. }
  401. return ESP_OK;
  402. }
  403. esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
  404. {
  405. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  406. RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
  407. RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) ||
  408. (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
  409. RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  410. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  411. if (mode == RMT_MODE_TX) {
  412. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  413. gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
  414. } else {
  415. gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
  416. gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
  417. }
  418. return ESP_OK;
  419. }
  420. static esp_err_t rmt_internal_config(rmt_dev_t *dev, const rmt_config_t *rmt_param)
  421. {
  422. uint8_t mode = rmt_param->rmt_mode;
  423. uint8_t channel = rmt_param->channel;
  424. uint8_t gpio_num = rmt_param->gpio_num;
  425. uint8_t mem_cnt = rmt_param->mem_block_num;
  426. uint8_t clk_div = rmt_param->clk_div;
  427. uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
  428. bool carrier_en = rmt_param->tx_config.carrier_en;
  429. uint32_t rmt_source_clk_hz = 0;
  430. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  431. RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  432. RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
  433. if (mode == RMT_MODE_TX) {
  434. RMT_CHECK((!carrier_en || carrier_freq_hz > 0), "RMT carrier frequency can't be zero", ESP_ERR_INVALID_ARG);
  435. }
  436. RMT_ENTER_CRITICAL();
  437. rmt_ll_set_counter_clock_div(dev, channel, clk_div);
  438. rmt_ll_enable_mem_access(dev, true);
  439. rmt_ll_reset_tx_pointer(dev, channel);
  440. rmt_ll_reset_rx_pointer(dev, channel);
  441. if (rmt_param->flags & RMT_CHANNEL_FLAGS_ALWAYS_ON) {
  442. // clock src: REF_CLK
  443. rmt_source_clk_hz = REF_CLK_FREQ;
  444. rmt_ll_set_counter_clock_src(dev, channel, RMT_BASECLK_REF);
  445. } else {
  446. // clock src: APB_CLK
  447. rmt_source_clk_hz = APB_CLK_FREQ;
  448. rmt_ll_set_counter_clock_src(dev, channel, RMT_BASECLK_APB);
  449. }
  450. rmt_ll_set_mem_blocks(dev, channel, mem_cnt);
  451. rmt_ll_set_mem_owner(dev, channel, RMT_MEM_OWNER_HW);
  452. RMT_EXIT_CRITICAL();
  453. s_rmt_src_clock_hz[channel] = rmt_source_clk_hz;
  454. if (mode == RMT_MODE_TX) {
  455. uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
  456. uint8_t carrier_level = rmt_param->tx_config.carrier_level;
  457. uint8_t idle_level = rmt_param->tx_config.idle_level;
  458. RMT_ENTER_CRITICAL();
  459. rmt_ll_enable_tx_loop(dev, channel, rmt_param->tx_config.loop_en);
  460. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  461. if (rmt_param->tx_config.loop_en) {
  462. rmt_ll_set_tx_loop_count(dev, channel, rmt_param->tx_config.loop_count);
  463. }
  464. #endif
  465. /* always enable tx ping-pong */
  466. rmt_ll_enable_tx_pingpong(dev, true);
  467. /*Set idle level */
  468. rmt_ll_enable_tx_idle(dev, channel, rmt_param->tx_config.idle_output_en);
  469. rmt_ll_set_tx_idle_level(dev, channel, idle_level);
  470. /*Set carrier*/
  471. rmt_ll_enable_carrier(dev, channel, carrier_en);
  472. if (carrier_en) {
  473. uint32_t duty_div, duty_h, duty_l;
  474. duty_div = rmt_source_clk_hz / carrier_freq_hz;
  475. duty_h = duty_div * carrier_duty_percent / 100;
  476. duty_l = duty_div - duty_h;
  477. rmt_ll_set_carrier_on_level(dev, channel, carrier_level);
  478. rmt_ll_set_tx_carrier_high_low_ticks(dev, channel, duty_h, duty_l);
  479. } else {
  480. rmt_ll_set_carrier_on_level(dev, channel, 0);
  481. rmt_ll_set_tx_carrier_high_low_ticks(dev, channel, 0, 0);
  482. }
  483. RMT_EXIT_CRITICAL();
  484. ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
  485. channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
  486. } else if (RMT_MODE_RX == mode) {
  487. uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
  488. uint16_t threshold = rmt_param->rx_config.idle_threshold;
  489. RMT_ENTER_CRITICAL();
  490. /*Set idle threshold*/
  491. rmt_ll_set_rx_idle_thres(dev, channel, threshold);
  492. /* Set RX filter */
  493. rmt_ll_set_rx_filter_thres(dev, channel, filter_cnt);
  494. rmt_ll_enable_rx_filter(dev, channel, rmt_param->rx_config.filter_en);
  495. #if SOC_RMT_SUPPORT_RX_PINGPONG
  496. /* always enable rx ping-pong */
  497. rmt_ll_enable_rx_pingpong(dev, channel, true);
  498. #endif
  499. #if SOC_RMT_SUPPORT_RX_DEMODULATION
  500. rmt_ll_enable_carrier(dev, channel, rmt_param->rx_config.rm_carrier);
  501. if (rmt_param->rx_config.rm_carrier) {
  502. uint32_t duty_total = rmt_source_clk_hz / rmt_ll_get_counter_clock_div(dev, channel) / rmt_param->rx_config.carrier_freq_hz;
  503. uint32_t duty_high = duty_total * rmt_param->rx_config.carrier_duty_percent / 100;
  504. // there could be residual in timing the carrier pulse, so double enlarge the theoretical value
  505. rmt_ll_set_rx_carrier_high_low_ticks(dev, channel, duty_high * 2, (duty_total - duty_high) * 2);
  506. rmt_ll_set_carrier_on_level(dev, channel, rmt_param->rx_config.carrier_level);
  507. }
  508. #endif
  509. RMT_EXIT_CRITICAL();
  510. ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
  511. channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
  512. }
  513. return ESP_OK;
  514. }
  515. esp_err_t rmt_config(const rmt_config_t *rmt_param)
  516. {
  517. // reset the RMT module at the first time initialize RMT driver
  518. static bool rmt_module_enabled = false;
  519. if (rmt_module_enabled == false) {
  520. periph_module_reset(PERIPH_RMT_MODULE);
  521. rmt_module_enabled = true;
  522. }
  523. periph_module_enable(PERIPH_RMT_MODULE);
  524. RMT_CHECK(rmt_set_pin(rmt_param->channel, rmt_param->rmt_mode, rmt_param->gpio_num) == ESP_OK,
  525. "set gpio for RMT driver failed", ESP_ERR_INVALID_ARG);
  526. RMT_CHECK(rmt_internal_config(&RMT, rmt_param) == ESP_OK,
  527. "initialize RMT driver failed", ESP_ERR_INVALID_ARG);
  528. return ESP_OK;
  529. }
  530. static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t *item,
  531. uint16_t item_num, uint16_t mem_offset)
  532. {
  533. RMT_ENTER_CRITICAL();
  534. rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_SW);
  535. rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, item, item_num, mem_offset);
  536. rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_HW);
  537. RMT_EXIT_CRITICAL();
  538. }
  539. esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t *item, uint16_t item_num, uint16_t mem_offset)
  540. {
  541. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
  542. RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  543. RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  544. /*Each block has 64 x 32 bits of data*/
  545. uint8_t mem_cnt = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel);
  546. RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
  547. rmt_fill_memory(channel, item, item_num, mem_offset);
  548. return ESP_OK;
  549. }
  550. esp_err_t rmt_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
  551. {
  552. RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  553. RMT_CHECK(s_rmt_driver_channels == 0, "RMT driver installed, can not install generic ISR handler", ESP_FAIL);
  554. return esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  555. }
  556. esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
  557. {
  558. return esp_intr_free(handle);
  559. }
  560. static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
  561. {
  562. int block_num = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel);
  563. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  564. volatile rmt_item32_t *data = (rmt_item32_t *)RMTMEM.chan[channel].data32;
  565. int idx;
  566. for (idx = 0; idx < item_block_len; idx++) {
  567. if (data[idx].duration0 == 0) {
  568. return idx;
  569. } else if (data[idx].duration1 == 0) {
  570. return idx + 1;
  571. }
  572. }
  573. return idx;
  574. }
  575. static void IRAM_ATTR rmt_driver_isr_default(void *arg)
  576. {
  577. uint32_t status = 0;
  578. rmt_item32_t volatile *addr = NULL;
  579. uint8_t channel = 0;
  580. rmt_hal_context_t *hal = (rmt_hal_context_t *)arg;
  581. portBASE_TYPE HPTaskAwoken = pdFALSE;
  582. // Tx end interrupt
  583. status = rmt_ll_get_tx_end_interrupt_status(hal->regs);
  584. while (status) {
  585. channel = __builtin_ffs(status) - 1;
  586. status &= ~(1 << channel);
  587. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  588. if (p_rmt) {
  589. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  590. rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  591. p_rmt->tx_data = NULL;
  592. p_rmt->tx_len_rem = 0;
  593. p_rmt->tx_offset = 0;
  594. p_rmt->tx_sub_len = 0;
  595. p_rmt->sample_cur = NULL;
  596. p_rmt->translator = false;
  597. if (rmt_tx_end_callback.function != NULL) {
  598. rmt_tx_end_callback.function(channel, rmt_tx_end_callback.arg);
  599. }
  600. }
  601. rmt_ll_clear_tx_end_interrupt(hal->regs, channel);
  602. }
  603. // Tx thres interrupt
  604. status = rmt_ll_get_tx_thres_interrupt_status(hal->regs);
  605. while (status) {
  606. channel = __builtin_ffs(status) - 1;
  607. status &= ~(1 << channel);
  608. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  609. if (p_rmt) {
  610. if (p_rmt->translator) {
  611. if (p_rmt->sample_size_remain > 0) {
  612. size_t translated_size = 0;
  613. p_rmt->sample_to_rmt((void *)p_rmt->sample_cur,
  614. p_rmt->tx_buf,
  615. p_rmt->sample_size_remain,
  616. p_rmt->tx_sub_len,
  617. &translated_size,
  618. &p_rmt->tx_len_rem);
  619. p_rmt->sample_size_remain -= translated_size;
  620. p_rmt->sample_cur += translated_size;
  621. p_rmt->tx_data = p_rmt->tx_buf;
  622. } else {
  623. p_rmt->sample_cur = NULL;
  624. p_rmt->translator = false;
  625. }
  626. }
  627. const rmt_item32_t *pdata = p_rmt->tx_data;
  628. int len_rem = p_rmt->tx_len_rem;
  629. if (len_rem >= p_rmt->tx_sub_len) {
  630. rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
  631. p_rmt->tx_data += p_rmt->tx_sub_len;
  632. p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
  633. } else if (len_rem == 0) {
  634. rmt_item32_t stop_data = {0};
  635. rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, &stop_data, 1, p_rmt->tx_offset);
  636. } else {
  637. rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
  638. rmt_item32_t stop_data = {0};
  639. rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, &stop_data, 1, p_rmt->tx_offset + len_rem);
  640. p_rmt->tx_data += len_rem;
  641. p_rmt->tx_len_rem -= len_rem;
  642. }
  643. if (p_rmt->tx_offset == 0) {
  644. p_rmt->tx_offset = p_rmt->tx_sub_len;
  645. } else {
  646. p_rmt->tx_offset = 0;
  647. }
  648. }
  649. rmt_ll_clear_tx_thres_interrupt(hal->regs, channel);
  650. }
  651. // Rx end interrupt
  652. status = rmt_ll_get_rx_end_interrupt_status(hal->regs);
  653. while (status) {
  654. channel = __builtin_ffs(status) - 1;
  655. status &= ~(1 << channel);
  656. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  657. if (p_rmt) {
  658. rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, false);
  659. int item_len = rmt_get_mem_len(channel);
  660. rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_SW);
  661. if (p_rmt->rx_buf) {
  662. addr = RMTMEM.chan[channel].data32;
  663. #if SOC_RMT_SUPPORT_RX_PINGPONG
  664. if (item_len > p_rmt->rx_item_start_idx) {
  665. item_len = item_len - p_rmt->rx_item_start_idx;
  666. }
  667. memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(addr + p_rmt->rx_item_start_idx), item_len * 4);
  668. p_rmt->rx_item_len += item_len;
  669. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)(p_rmt->rx_item_buf), p_rmt->rx_item_len * 4, &HPTaskAwoken);
  670. #else
  671. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)addr, item_len * 4, &HPTaskAwoken);
  672. #endif
  673. if (res == pdFALSE) {
  674. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
  675. }
  676. } else {
  677. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR");
  678. }
  679. #if SOC_RMT_SUPPORT_RX_PINGPONG
  680. p_rmt->rx_item_start_idx = 0;
  681. p_rmt->rx_item_len = 0;
  682. memset((void *)p_rmt->rx_item_buf, 0, p_rmt->rx_item_buf_size);
  683. #endif
  684. rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  685. rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_HW);
  686. rmt_ll_enable_rx(p_rmt_obj[channel]->hal.regs, channel, true);
  687. }
  688. rmt_ll_clear_rx_end_interrupt(hal->regs, channel);
  689. }
  690. #if SOC_RMT_SUPPORT_RX_PINGPONG
  691. // Rx thres interrupt
  692. status = rmt_ll_get_rx_thres_interrupt_status(hal->regs);
  693. while (status) {
  694. channel = __builtin_ffs(status) - 1;
  695. status &= ~(1 << channel);
  696. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  697. int mem_item_size = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel) * RMT_MEM_ITEM_NUM;
  698. int rx_thres_lim = rmt_ll_get_rx_limit(p_rmt_obj[channel]->hal.regs, channel);
  699. int item_len = (p_rmt->rx_item_start_idx == 0) ? rx_thres_lim : (mem_item_size - rx_thres_lim);
  700. if ((p_rmt->rx_item_len + item_len) < (p_rmt->rx_item_buf_size / 4)) {
  701. rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_SW);
  702. memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(RMTMEM.chan[channel].data32 + p_rmt->rx_item_start_idx), item_len * 4);
  703. rmt_ll_set_mem_owner(p_rmt_obj[channel]->hal.regs, channel, RMT_MEM_OWNER_HW);
  704. p_rmt->rx_item_len += item_len;
  705. p_rmt->rx_item_start_idx += item_len;
  706. if (p_rmt->rx_item_start_idx >= mem_item_size) {
  707. p_rmt->rx_item_start_idx = 0;
  708. }
  709. } else {
  710. ESP_EARLY_LOGE(RMT_TAG, "---RX buffer too small: %d", sizeof(p_rmt->rx_item_buf));
  711. }
  712. rmt_ll_clear_rx_thres_interrupt(hal->regs, channel);
  713. }
  714. #endif
  715. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  716. // loop count interrupt
  717. status = rmt_ll_get_tx_loop_interrupt_status(hal->regs);
  718. while (status) {
  719. channel = __builtin_ffs(status) - 1;
  720. status &= ~(1 << channel);
  721. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  722. if (p_rmt) {
  723. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  724. if (rmt_tx_end_callback.function != NULL) {
  725. rmt_tx_end_callback.function(channel, rmt_tx_end_callback.arg);
  726. }
  727. }
  728. rmt_ll_clear_tx_loop_interrupt(hal->regs, channel);
  729. }
  730. #endif
  731. // Err interrupt
  732. status = rmt_ll_get_err_interrupt_status(hal->regs);
  733. while (status) {
  734. channel = __builtin_ffs(status) - 1;
  735. status &= ~(1 << channel);
  736. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  737. if (p_rmt) {
  738. // Reset the receiver/transmitter's write/read addresses to prevent endless err interrupts.
  739. rmt_ll_reset_tx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  740. rmt_ll_reset_rx_pointer(p_rmt_obj[channel]->hal.regs, channel);
  741. ESP_EARLY_LOGD(RMT_TAG, "RMT[%d] ERR", channel);
  742. ESP_EARLY_LOGD(RMT_TAG, "status: 0x%08x", rmt_ll_get_channel_status(p_rmt_obj[channel]->hal.regs, channel));
  743. }
  744. rmt_ll_clear_err_interrupt(hal->regs, channel);
  745. }
  746. if (HPTaskAwoken == pdTRUE) {
  747. portYIELD_FROM_ISR();
  748. }
  749. }
  750. esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
  751. {
  752. esp_err_t err = ESP_OK;
  753. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  754. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) != 0, "No RMT driver for this channel", ESP_ERR_INVALID_STATE);
  755. if (p_rmt_obj[channel] == NULL) {
  756. return ESP_OK;
  757. }
  758. //Avoid blocking here(when the interrupt is disabled and do not wait tx done).
  759. if (p_rmt_obj[channel]->wait_done) {
  760. xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
  761. }
  762. rmt_set_rx_intr_en(channel, 0);
  763. rmt_set_err_intr_en(channel, 0);
  764. rmt_set_tx_intr_en(channel, 0);
  765. rmt_set_tx_thr_intr_en(channel, false, 0xffff);
  766. #if SOC_RMT_SUPPORT_RX_PINGPONG
  767. rmt_set_rx_thr_intr_en(channel, false, 0xffff);
  768. #endif
  769. _lock_acquire_recursive(&rmt_driver_isr_lock);
  770. s_rmt_driver_channels &= ~BIT(channel);
  771. if (s_rmt_driver_channels == 0) {
  772. // all channels have driver disabled
  773. err = rmt_isr_deregister(s_rmt_driver_intr_handle);
  774. s_rmt_driver_intr_handle = NULL;
  775. }
  776. _lock_release_recursive(&rmt_driver_isr_lock);
  777. if (err != ESP_OK) {
  778. return err;
  779. }
  780. if (p_rmt_obj[channel]->tx_sem) {
  781. vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
  782. p_rmt_obj[channel]->tx_sem = NULL;
  783. }
  784. if (p_rmt_obj[channel]->rx_buf) {
  785. vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
  786. p_rmt_obj[channel]->rx_buf = NULL;
  787. }
  788. if (p_rmt_obj[channel]->tx_buf) {
  789. free(p_rmt_obj[channel]->tx_buf);
  790. p_rmt_obj[channel]->tx_buf = NULL;
  791. }
  792. if (p_rmt_obj[channel]->sample_to_rmt) {
  793. p_rmt_obj[channel]->sample_to_rmt = NULL;
  794. }
  795. #if SOC_RMT_SUPPORT_RX_PINGPONG
  796. if (p_rmt_obj[channel]->rx_item_buf) {
  797. free(p_rmt_obj[channel]->rx_item_buf);
  798. p_rmt_obj[channel]->rx_item_buf = NULL;
  799. p_rmt_obj[channel]->rx_item_buf_size = 0;
  800. }
  801. #endif
  802. free(p_rmt_obj[channel]);
  803. p_rmt_obj[channel] = NULL;
  804. return ESP_OK;
  805. }
  806. esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
  807. {
  808. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  809. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) == 0,
  810. "RMT driver already installed for channel", ESP_ERR_INVALID_STATE);
  811. esp_err_t err = ESP_OK;
  812. if (p_rmt_obj[channel] != NULL) {
  813. ESP_LOGD(RMT_TAG, "RMT driver already installed");
  814. return ESP_ERR_INVALID_STATE;
  815. }
  816. #if !CONFIG_SPIRAM_USE_MALLOC
  817. p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t));
  818. #else
  819. if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  820. p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t));
  821. } else {
  822. p_rmt_obj[channel] = heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  823. }
  824. #endif
  825. if (p_rmt_obj[channel] == NULL) {
  826. ESP_LOGE(RMT_TAG, "RMT driver malloc error");
  827. return ESP_ERR_NO_MEM;
  828. }
  829. rmt_hal_init(&p_rmt_obj[channel]->hal);
  830. rmt_hal_channel_reset(&p_rmt_obj[channel]->hal, channel);
  831. p_rmt_obj[channel]->tx_len_rem = 0;
  832. p_rmt_obj[channel]->tx_data = NULL;
  833. p_rmt_obj[channel]->channel = channel;
  834. p_rmt_obj[channel]->tx_offset = 0;
  835. p_rmt_obj[channel]->tx_sub_len = 0;
  836. p_rmt_obj[channel]->wait_done = false;
  837. p_rmt_obj[channel]->translator = false;
  838. p_rmt_obj[channel]->sample_to_rmt = NULL;
  839. if (p_rmt_obj[channel]->tx_sem == NULL) {
  840. #if !CONFIG_SPIRAM_USE_MALLOC
  841. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  842. #else
  843. p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
  844. if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  845. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  846. } else {
  847. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
  848. }
  849. #endif
  850. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  851. }
  852. if (p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
  853. p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
  854. }
  855. #if SOC_RMT_SUPPORT_RX_PINGPONG
  856. if (p_rmt_obj[channel]->rx_item_buf == NULL && rx_buf_size > 0) {
  857. #if !CONFIG_SPIRAM_USE_MALLOC
  858. p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size);
  859. #else
  860. if (!(p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM)) {
  861. p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size);
  862. } else {
  863. p_rmt_obj[channel]->rx_item_buf = heap_caps_calloc(1, rx_buf_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  864. }
  865. #endif
  866. if (p_rmt_obj[channel]->rx_item_buf == NULL) {
  867. ESP_LOGE(RMT_TAG, "RMT malloc fail");
  868. return ESP_FAIL;
  869. }
  870. p_rmt_obj[channel]->rx_item_buf_size = rx_buf_size;
  871. }
  872. #endif
  873. rmt_set_err_intr_en(channel, 1);
  874. _lock_acquire_recursive(&rmt_driver_isr_lock);
  875. if (s_rmt_driver_channels == 0) {
  876. // first RMT channel using driver
  877. err = rmt_isr_register(rmt_driver_isr_default, &p_rmt_obj[channel]->hal, intr_alloc_flags, &s_rmt_driver_intr_handle);
  878. }
  879. if (err == ESP_OK) {
  880. s_rmt_driver_channels |= BIT(channel);
  881. }
  882. _lock_release_recursive(&rmt_driver_isr_lock);
  883. return err;
  884. }
  885. esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t *rmt_item, int item_num, bool wait_tx_done)
  886. {
  887. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  888. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  889. RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
  890. RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  891. #if CONFIG_SPIRAM_USE_MALLOC
  892. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  893. if (!esp_ptr_internal(rmt_item)) {
  894. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  895. return ESP_ERR_INVALID_ARG;
  896. }
  897. }
  898. #endif
  899. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  900. int block_num = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel);
  901. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  902. int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
  903. int len_rem = item_num;
  904. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  905. // fill the memory block first
  906. if (item_num >= item_block_len) {
  907. rmt_fill_memory(channel, rmt_item, item_block_len, 0);
  908. len_rem -= item_block_len;
  909. rmt_set_tx_loop_mode(channel, false);
  910. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  911. p_rmt->tx_data = rmt_item + item_block_len;
  912. p_rmt->tx_len_rem = len_rem;
  913. p_rmt->tx_offset = 0;
  914. p_rmt->tx_sub_len = item_sub_len;
  915. } else {
  916. rmt_fill_memory(channel, rmt_item, len_rem, 0);
  917. rmt_item32_t stop_data = {0};
  918. rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, &stop_data, 1, len_rem);
  919. p_rmt->tx_len_rem = 0;
  920. }
  921. rmt_tx_start(channel, true);
  922. p_rmt->wait_done = wait_tx_done;
  923. if (wait_tx_done) {
  924. // wait loop done
  925. if (rmt_ll_is_tx_loop_enabled(p_rmt_obj[channel]->hal.regs, channel)) {
  926. #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
  927. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  928. xSemaphoreGive(p_rmt->tx_sem);
  929. #endif
  930. } else {
  931. // wait tx end
  932. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  933. xSemaphoreGive(p_rmt->tx_sem);
  934. }
  935. }
  936. return ESP_OK;
  937. }
  938. esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
  939. {
  940. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  941. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  942. if (xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
  943. p_rmt_obj[channel]->wait_done = false;
  944. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  945. return ESP_OK;
  946. } else {
  947. if (wait_time != 0) {
  948. // Don't emit error message if just polling.
  949. ESP_LOGE(RMT_TAG, "Timeout on wait_tx_done");
  950. }
  951. return ESP_ERR_TIMEOUT;
  952. }
  953. }
  954. esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t *buf_handle)
  955. {
  956. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  957. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  958. RMT_CHECK(buf_handle != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  959. *buf_handle = p_rmt_obj[channel]->rx_buf;
  960. return ESP_OK;
  961. }
  962. rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
  963. {
  964. rmt_tx_end_callback_t previous = rmt_tx_end_callback;
  965. rmt_tx_end_callback.function = function;
  966. rmt_tx_end_callback.arg = arg;
  967. return previous;
  968. }
  969. esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
  970. {
  971. RMT_CHECK(fn != NULL, RMT_TRANSLATOR_NULL_STR, ESP_ERR_INVALID_ARG);
  972. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  973. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  974. const uint32_t block_size = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel) *
  975. RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
  976. if (p_rmt_obj[channel]->tx_buf == NULL) {
  977. #if !CONFIG_SPIRAM_USE_MALLOC
  978. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  979. #else
  980. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  981. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  982. } else {
  983. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  984. }
  985. #endif
  986. if (p_rmt_obj[channel]->tx_buf == NULL) {
  987. ESP_LOGE(RMT_TAG, "RMT translator buffer create fail");
  988. return ESP_FAIL;
  989. }
  990. }
  991. p_rmt_obj[channel]->sample_to_rmt = fn;
  992. p_rmt_obj[channel]->sample_size_remain = 0;
  993. p_rmt_obj[channel]->sample_cur = NULL;
  994. ESP_LOGD(RMT_TAG, "RMT translator init done");
  995. return ESP_OK;
  996. }
  997. esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
  998. {
  999. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1000. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  1001. RMT_CHECK(p_rmt_obj[channel]->sample_to_rmt != NULL, RMT_TRANSLATOR_UNINIT_STR, ESP_FAIL);
  1002. #if CONFIG_SPIRAM_USE_MALLOC
  1003. if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) {
  1004. if (!esp_ptr_internal(src)) {
  1005. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  1006. return ESP_ERR_INVALID_ARG;
  1007. }
  1008. }
  1009. #endif
  1010. size_t item_num = 0;
  1011. size_t translated_size = 0;
  1012. rmt_obj_t *p_rmt = p_rmt_obj[channel];
  1013. const uint32_t item_block_len = rmt_ll_get_mem_blocks(p_rmt_obj[channel]->hal.regs, channel) * RMT_MEM_ITEM_NUM;
  1014. const uint32_t item_sub_len = item_block_len / 2;
  1015. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1016. p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &item_num);
  1017. p_rmt->sample_size_remain = src_size - translated_size;
  1018. p_rmt->sample_cur = src + translated_size;
  1019. rmt_fill_memory(channel, p_rmt->tx_buf, item_num, 0);
  1020. if (item_num == item_block_len) {
  1021. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  1022. p_rmt->tx_data = p_rmt->tx_buf;
  1023. p_rmt->tx_offset = 0;
  1024. p_rmt->tx_sub_len = item_sub_len;
  1025. p_rmt->translator = true;
  1026. } else {
  1027. rmt_item32_t stop_data = {0};
  1028. rmt_ll_write_memory(p_rmt_obj[channel]->hal.mem, channel, &stop_data, 1, item_num);
  1029. p_rmt->tx_len_rem = 0;
  1030. p_rmt->sample_cur = NULL;
  1031. p_rmt->translator = false;
  1032. }
  1033. rmt_tx_start(channel, true);
  1034. p_rmt->wait_done = wait_tx_done;
  1035. if (wait_tx_done) {
  1036. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  1037. xSemaphoreGive(p_rmt->tx_sem);
  1038. }
  1039. return ESP_OK;
  1040. }
  1041. esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status)
  1042. {
  1043. RMT_CHECK(channel_status != NULL, RMT_PARAM_ERR_STR, ESP_ERR_INVALID_ARG);
  1044. for (int i = 0; i < RMT_CHANNEL_MAX; i++) {
  1045. channel_status->status[i] = RMT_CHANNEL_UNINIT;
  1046. if (p_rmt_obj[i] != NULL) {
  1047. if (p_rmt_obj[i]->tx_sem != NULL) {
  1048. if (xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE) {
  1049. channel_status->status[i] = RMT_CHANNEL_IDLE;
  1050. xSemaphoreGive(p_rmt_obj[i]->tx_sem);
  1051. } else {
  1052. channel_status->status[i] = RMT_CHANNEL_BUSY;
  1053. }
  1054. }
  1055. }
  1056. }
  1057. return ESP_OK;
  1058. }
  1059. esp_err_t rmt_get_counter_clock(rmt_channel_t channel, uint32_t *clock_hz)
  1060. {
  1061. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1062. RMT_CHECK(clock_hz, "parameter clock_hz can't be null", ESP_ERR_INVALID_ARG);
  1063. RMT_ENTER_CRITICAL();
  1064. *clock_hz = rmt_hal_get_counter_clock(&p_rmt_obj[channel]->hal, channel, s_rmt_src_clock_hz[channel]);
  1065. RMT_EXIT_CRITICAL();
  1066. return ESP_OK;
  1067. }
  1068. #if SOC_RMT_SUPPORT_TX_GROUP
  1069. esp_err_t rmt_add_channel_to_group(rmt_channel_t channel)
  1070. {
  1071. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1072. RMT_ENTER_CRITICAL();
  1073. rmt_ll_enable_tx_sync(p_rmt_obj[channel]->hal.regs, true);
  1074. rmt_ll_add_channel_to_group(p_rmt_obj[channel]->hal.regs, channel);
  1075. rmt_ll_reset_counter_clock_div(p_rmt_obj[channel]->hal.regs, channel);
  1076. RMT_EXIT_CRITICAL();
  1077. return ESP_OK;
  1078. }
  1079. esp_err_t rmt_remove_channel_from_group(rmt_channel_t channel)
  1080. {
  1081. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  1082. RMT_ENTER_CRITICAL();
  1083. if (rmt_ll_remove_channel_from_group(p_rmt_obj[channel]->hal.regs, channel) == 0) {
  1084. rmt_ll_enable_tx_sync(p_rmt_obj[channel]->hal.regs, false);
  1085. }
  1086. RMT_EXIT_CRITICAL();
  1087. return ESP_OK;
  1088. }
  1089. #endif