uart.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #if CONFIG_IDF_TARGET_ESP32
  32. #include "esp32/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32S2
  34. #include "esp32s2/clk.h"
  35. #endif
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (0x13)
  42. #define XON (0x11)
  43. static const char* UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TX_IDLE_NUM_DEFAULT (0)
  54. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  55. #define UART_MIN_WAKEUP_THRESH (SOC_UART_MIN_WAKEUP_THRESH)
  56. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  57. | (UART_INTR_RXFIFO_TOUT) \
  58. | (UART_INTR_RXFIFO_OVF) \
  59. | (UART_INTR_BRK_DET) \
  60. | (UART_INTR_PARITY_ERR))
  61. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  62. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  63. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  64. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  65. // Check actual UART mode set
  66. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  67. #define UART_CONTEX_INIT_DEF(uart_num) {\
  68. .hal.dev = UART_LL_GET_HW(uart_num),\
  69. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  70. .hw_enabled = false,\
  71. }
  72. typedef struct {
  73. uart_event_type_t type; /*!< UART TX data type */
  74. struct {
  75. int brk_len;
  76. size_t size;
  77. uint8_t data[0];
  78. } tx_data;
  79. } uart_tx_data_t;
  80. typedef struct {
  81. int wr;
  82. int rd;
  83. int len;
  84. int* data;
  85. } uart_pat_rb_t;
  86. typedef struct {
  87. uart_port_t uart_num; /*!< UART port number*/
  88. int queue_size; /*!< UART event queue size*/
  89. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  90. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  91. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  92. bool coll_det_flg; /*!< UART collision detection flag */
  93. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  94. //rx parameters
  95. int rx_buffered_len; /*!< UART cached data length */
  96. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  97. int rx_buf_size; /*!< RX ring buffer size */
  98. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  99. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  100. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  101. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  102. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  103. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  104. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  105. uart_pat_rb_t rx_pattern_pos;
  106. //tx parameters
  107. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  108. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  109. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  110. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  111. int tx_buf_size; /*!< TX ring buffer size */
  112. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  113. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  114. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  115. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  116. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  117. uint32_t tx_len_cur;
  118. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  119. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  120. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  121. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  122. } uart_obj_t;
  123. typedef struct {
  124. uart_hal_context_t hal; /*!< UART hal context*/
  125. portMUX_TYPE spinlock;
  126. bool hw_enabled;
  127. } uart_context_t;
  128. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  129. static uart_context_t uart_context[UART_NUM_MAX] = {
  130. UART_CONTEX_INIT_DEF(UART_NUM_0),
  131. UART_CONTEX_INIT_DEF(UART_NUM_1),
  132. #if UART_NUM_MAX > 2
  133. UART_CONTEX_INIT_DEF(UART_NUM_2),
  134. #endif
  135. };
  136. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  137. static void uart_module_enable(uart_port_t uart_num)
  138. {
  139. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  140. if (uart_context[uart_num].hw_enabled != true) {
  141. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  142. periph_module_reset(uart_periph_signal[uart_num].module);
  143. }
  144. periph_module_enable(uart_periph_signal[uart_num].module);
  145. uart_context[uart_num].hw_enabled = true;
  146. }
  147. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  148. }
  149. static void uart_module_disable(uart_port_t uart_num)
  150. {
  151. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  152. if (uart_context[uart_num].hw_enabled != false) {
  153. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  154. periph_module_disable(uart_periph_signal[uart_num].module);
  155. }
  156. uart_context[uart_num].hw_enabled = false;
  157. }
  158. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  159. }
  160. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  161. {
  162. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  163. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  164. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  165. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  166. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  167. return ESP_OK;
  168. }
  169. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  170. {
  171. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  172. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  173. return ESP_OK;
  174. }
  175. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  176. {
  177. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  178. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  179. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  180. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  181. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  182. return ESP_OK;
  183. }
  184. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  185. {
  186. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  187. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  188. return ESP_OK;
  189. }
  190. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  191. {
  192. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  193. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  194. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  195. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  196. return ESP_OK;
  197. }
  198. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  202. return ESP_OK;
  203. }
  204. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  205. {
  206. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  207. uart_sclk_t source_clk = 0;
  208. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  209. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  210. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  211. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  212. return ESP_OK;
  213. }
  214. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  215. {
  216. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  217. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  218. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  219. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  220. return ESP_OK;
  221. }
  222. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  223. {
  224. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  225. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  226. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  227. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  228. return ESP_OK;
  229. }
  230. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  231. {
  232. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  233. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  234. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  235. uart_sw_flowctrl_t sw_flow_ctl = {
  236. .xon_char = XON,
  237. .xoff_char = XOFF,
  238. .xon_thrd = rx_thresh_xon,
  239. .xoff_thrd = rx_thresh_xoff,
  240. };
  241. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  242. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  243. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  244. return ESP_OK;
  245. }
  246. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  247. {
  248. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  249. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  250. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  251. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  252. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  253. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  254. return ESP_OK;
  255. }
  256. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  257. {
  258. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  259. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  260. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  261. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  262. return ESP_OK;
  263. }
  264. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  265. {
  266. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  267. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  268. return ESP_OK;
  269. }
  270. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  271. {
  272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  273. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  274. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  275. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  276. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  277. return ESP_OK;
  278. }
  279. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  280. {
  281. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  282. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  283. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  284. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  285. return ESP_OK;
  286. }
  287. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  288. {
  289. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  290. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  291. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  292. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  293. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  294. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  295. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  296. free(pdata);
  297. }
  298. return ESP_OK;
  299. }
  300. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  301. {
  302. esp_err_t ret = ESP_OK;
  303. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  304. int next = p_pos->wr + 1;
  305. if (next >= p_pos->len) {
  306. next = 0;
  307. }
  308. if (next == p_pos->rd) {
  309. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  310. ret = ESP_FAIL;
  311. } else {
  312. p_pos->data[p_pos->wr] = pos;
  313. p_pos->wr = next;
  314. ret = ESP_OK;
  315. }
  316. return ret;
  317. }
  318. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  319. {
  320. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  321. return ESP_ERR_INVALID_STATE;
  322. } else {
  323. esp_err_t ret = ESP_OK;
  324. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  325. if (p_pos->rd == p_pos->wr) {
  326. ret = ESP_FAIL;
  327. } else {
  328. p_pos->rd++;
  329. }
  330. if (p_pos->rd >= p_pos->len) {
  331. p_pos->rd = 0;
  332. }
  333. return ret;
  334. }
  335. }
  336. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  337. {
  338. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  339. int rd = p_pos->rd;
  340. while(rd != p_pos->wr) {
  341. p_pos->data[rd] -= diff_len;
  342. int rd_rec = rd;
  343. rd ++;
  344. if (rd >= p_pos->len) {
  345. rd = 0;
  346. }
  347. if (p_pos->data[rd_rec] < 0) {
  348. p_pos->rd = rd;
  349. }
  350. }
  351. return ESP_OK;
  352. }
  353. int uart_pattern_pop_pos(uart_port_t uart_num)
  354. {
  355. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  356. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  357. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  358. int pos = -1;
  359. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  360. pos = pat_pos->data[pat_pos->rd];
  361. uart_pattern_dequeue(uart_num);
  362. }
  363. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  364. return pos;
  365. }
  366. int uart_pattern_get_pos(uart_port_t uart_num)
  367. {
  368. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  369. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  370. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  371. int pos = -1;
  372. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  373. pos = pat_pos->data[pat_pos->rd];
  374. }
  375. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  376. return pos;
  377. }
  378. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  379. {
  380. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  381. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  382. int* pdata = (int*) malloc(queue_length * sizeof(int));
  383. if(pdata == NULL) {
  384. return ESP_ERR_NO_MEM;
  385. }
  386. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  387. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  388. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  389. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  390. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  391. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  392. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  393. free(ptmp);
  394. return ESP_OK;
  395. }
  396. #if CONFIG_IDF_TARGET_ESP32
  397. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  398. {
  399. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  400. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  401. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  402. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  403. uart_at_cmd_t at_cmd = {0};
  404. at_cmd.cmd_char = pattern_chr;
  405. at_cmd.char_num = chr_num;
  406. at_cmd.gap_tout = chr_tout;
  407. at_cmd.pre_idle = pre_idle;
  408. at_cmd.post_idle = post_idle;
  409. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  410. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  411. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  412. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  413. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  414. return ESP_OK;
  415. }
  416. #endif
  417. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  418. {
  419. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  420. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  421. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  422. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  423. uart_at_cmd_t at_cmd = {0};
  424. at_cmd.cmd_char = pattern_chr;
  425. at_cmd.char_num = chr_num;
  426. #if CONFIG_IDF_TARGET_ESP32
  427. int apb_clk_freq = 0;
  428. uint32_t uart_baud = 0;
  429. uint32_t uart_div = 0;
  430. uart_get_baudrate(uart_num, &uart_baud);
  431. apb_clk_freq = esp_clk_apb_freq();
  432. uart_div = apb_clk_freq / uart_baud;
  433. at_cmd.gap_tout = chr_tout * uart_div;
  434. at_cmd.pre_idle = pre_idle * uart_div;
  435. at_cmd.post_idle = post_idle * uart_div;
  436. #elif CONFIG_IDF_TARGET_ESP32S2
  437. at_cmd.gap_tout = chr_tout;
  438. at_cmd.pre_idle = pre_idle;
  439. at_cmd.post_idle = post_idle;
  440. #endif
  441. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  442. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  443. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  444. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  445. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  446. return ESP_OK;
  447. }
  448. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  449. {
  450. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  451. }
  452. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  453. {
  454. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  455. }
  456. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  457. {
  458. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  459. }
  460. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  461. {
  462. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  463. }
  464. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  465. {
  466. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  467. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  468. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  469. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  470. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  471. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  472. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  473. return ESP_OK;
  474. }
  475. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  476. {
  477. int ret;
  478. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  479. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  480. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  481. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  482. return ret;
  483. }
  484. esp_err_t uart_isr_free(uart_port_t uart_num)
  485. {
  486. esp_err_t ret;
  487. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  488. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  489. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  490. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  491. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  492. p_uart_obj[uart_num]->intr_handle=NULL;
  493. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  494. return ret;
  495. }
  496. //internal signal can be output to multiple GPIO pads
  497. //only one GPIO pad can connect with input signal
  498. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  499. {
  500. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  501. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  502. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  503. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  504. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  505. if(tx_io_num >= 0) {
  506. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  507. gpio_set_level(tx_io_num, 1);
  508. gpio_matrix_out(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  509. }
  510. if(rx_io_num >= 0) {
  511. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  512. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  513. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  514. gpio_matrix_in(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  515. }
  516. if(rts_io_num >= 0) {
  517. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  518. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  519. gpio_matrix_out(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  520. }
  521. if(cts_io_num >= 0) {
  522. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  523. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  524. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  525. gpio_matrix_in(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  526. }
  527. return ESP_OK;
  528. }
  529. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  530. {
  531. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  532. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  533. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  534. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  535. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  536. return ESP_OK;
  537. }
  538. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  539. {
  540. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  541. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  542. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  543. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  544. return ESP_OK;
  545. }
  546. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  547. {
  548. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  549. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  550. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  551. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  552. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  553. return ESP_OK;
  554. }
  555. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  556. {
  557. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  558. UART_CHECK((uart_config), "param null", ESP_FAIL);
  559. UART_CHECK((uart_config->rx_flow_ctrl_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  560. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  561. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  562. uart_module_enable(uart_num);
  563. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  564. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  565. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  566. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  567. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  568. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  569. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  570. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  571. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  572. // The module reset do not reset TX and RX memory.
  573. // reset FIFO to avoid garbage data remained in the FIFO.
  574. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  575. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  576. return ESP_OK;
  577. }
  578. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  579. {
  580. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  581. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  582. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  583. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  584. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  585. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  586. } else {
  587. //Disable rx_tout intr
  588. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  589. }
  590. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  591. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  592. }
  593. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  594. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  595. }
  596. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  597. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  598. return ESP_OK;
  599. }
  600. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  601. {
  602. int cnt = 0;
  603. int len = length;
  604. while (len >= 0) {
  605. if (buf[len] == pat_chr) {
  606. cnt++;
  607. } else {
  608. cnt = 0;
  609. }
  610. if (cnt >= pat_num) {
  611. break;
  612. }
  613. len --;
  614. }
  615. return len;
  616. }
  617. //internal isr handler for default driver code.
  618. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  619. {
  620. uart_obj_t *p_uart = (uart_obj_t*) param;
  621. uint8_t uart_num = p_uart->uart_num;
  622. int rx_fifo_len = 0;
  623. uint32_t uart_intr_status = 0;
  624. uart_event_t uart_event;
  625. portBASE_TYPE HPTaskAwoken = 0;
  626. static uint8_t pat_flg = 0;
  627. while(1) {
  628. // The `continue statement` may cause the interrupt to loop infinitely
  629. // we exit the interrupt here
  630. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  631. //Exit form while loop
  632. if(uart_intr_status == 0){
  633. break;
  634. }
  635. uart_event.type = UART_EVENT_MAX;
  636. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  637. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  638. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  639. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  640. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  641. if(p_uart->tx_waiting_brk) {
  642. continue;
  643. }
  644. //TX semaphore will only be used when tx_buf_size is zero.
  645. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  646. p_uart->tx_waiting_fifo = false;
  647. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  648. } else {
  649. //We don't use TX ring buffer, because the size is zero.
  650. if(p_uart->tx_buf_size == 0) {
  651. continue;
  652. }
  653. bool en_tx_flg = false;
  654. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  655. //We need to put a loop here, in case all the buffer items are very short.
  656. //That would cause a watch_dog reset because empty interrupt happens so often.
  657. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  658. while(tx_fifo_rem) {
  659. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  660. size_t size;
  661. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  662. if(p_uart->tx_head) {
  663. //The first item is the data description
  664. //Get the first item to get the data information
  665. if(p_uart->tx_len_tot == 0) {
  666. p_uart->tx_ptr = NULL;
  667. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  668. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  669. p_uart->tx_brk_flg = 1;
  670. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  671. }
  672. //We have saved the data description from the 1st item, return buffer.
  673. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  674. } else if(p_uart->tx_ptr == NULL) {
  675. //Update the TX item pointer, we will need this to return item to buffer.
  676. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  677. en_tx_flg = true;
  678. p_uart->tx_len_cur = size;
  679. }
  680. } else {
  681. //Can not get data from ring buffer, return;
  682. break;
  683. }
  684. }
  685. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  686. //To fill the TX FIFO.
  687. uint32_t send_len = 0;
  688. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  689. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  690. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  691. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  692. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  693. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  694. }
  695. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  696. (const uint8_t *)p_uart->tx_ptr,
  697. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  698. &send_len);
  699. p_uart->tx_ptr += send_len;
  700. p_uart->tx_len_tot -= send_len;
  701. p_uart->tx_len_cur -= send_len;
  702. tx_fifo_rem -= send_len;
  703. if (p_uart->tx_len_cur == 0) {
  704. //Return item to ring buffer.
  705. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  706. p_uart->tx_head = NULL;
  707. p_uart->tx_ptr = NULL;
  708. //Sending item done, now we need to send break if there is a record.
  709. //Set TX break signal after FIFO is empty
  710. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  711. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  712. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  713. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  714. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  715. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  716. p_uart->tx_waiting_brk = 1;
  717. //do not enable TX empty interrupt
  718. en_tx_flg = false;
  719. } else {
  720. //enable TX empty interrupt
  721. en_tx_flg = true;
  722. }
  723. } else {
  724. //enable TX empty interrupt
  725. en_tx_flg = true;
  726. }
  727. }
  728. }
  729. if (en_tx_flg) {
  730. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  731. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  732. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  733. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  734. }
  735. }
  736. }
  737. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  738. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  739. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  740. ) {
  741. if(pat_flg == 1) {
  742. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  743. pat_flg = 0;
  744. }
  745. if (p_uart->rx_buffer_full_flg == false) {
  746. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  747. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  748. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  749. }
  750. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  751. uint8_t pat_chr = 0;
  752. uint8_t pat_num = 0;
  753. int pat_idx = -1;
  754. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  755. //Get the buffer from the FIFO
  756. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  757. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  758. uart_event.type = UART_PATTERN_DET;
  759. uart_event.size = rx_fifo_len;
  760. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  761. } else {
  762. //After Copying the Data From FIFO ,Clear intr_status
  763. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  764. uart_event.type = UART_DATA;
  765. uart_event.size = rx_fifo_len;
  766. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  767. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  768. if (p_uart->uart_select_notif_callback) {
  769. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  770. }
  771. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  772. }
  773. p_uart->rx_stash_len = rx_fifo_len;
  774. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  775. //Mainly for applications that uses flow control or small ring buffer.
  776. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  777. p_uart->rx_buffer_full_flg = true;
  778. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  779. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  780. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  781. if (uart_event.type == UART_PATTERN_DET) {
  782. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  783. if (rx_fifo_len < pat_num) {
  784. //some of the characters are read out in last interrupt
  785. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  786. } else {
  787. uart_pattern_enqueue(uart_num,
  788. pat_idx <= -1 ?
  789. //can not find the pattern in buffer,
  790. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  791. // find the pattern in buffer
  792. p_uart->rx_buffered_len + pat_idx);
  793. }
  794. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  795. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  796. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  797. }
  798. }
  799. uart_event.type = UART_BUFFER_FULL;
  800. } else {
  801. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  802. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  803. if (rx_fifo_len < pat_num) {
  804. //some of the characters are read out in last interrupt
  805. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  806. } else if(pat_idx >= 0) {
  807. // find the pattern in stash buffer.
  808. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  809. }
  810. }
  811. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  812. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  813. }
  814. } else {
  815. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  816. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  817. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  818. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  819. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  820. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  821. uart_event.type = UART_PATTERN_DET;
  822. uart_event.size = rx_fifo_len;
  823. pat_flg = 1;
  824. }
  825. }
  826. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  827. // When fifo overflows, we reset the fifo.
  828. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  829. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  830. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  831. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  832. if (p_uart->uart_select_notif_callback) {
  833. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  834. }
  835. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  836. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  837. uart_event.type = UART_FIFO_OVF;
  838. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  839. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  840. uart_event.type = UART_BREAK;
  841. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  842. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  843. if (p_uart->uart_select_notif_callback) {
  844. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  845. }
  846. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  847. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  848. uart_event.type = UART_FRAME_ERR;
  849. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  850. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  851. if (p_uart->uart_select_notif_callback) {
  852. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  853. }
  854. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  855. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  856. uart_event.type = UART_PARITY_ERR;
  857. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  858. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  859. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  860. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  861. if(p_uart->tx_brk_flg == 1) {
  862. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  863. }
  864. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  865. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  866. if(p_uart->tx_brk_flg == 1) {
  867. p_uart->tx_brk_flg = 0;
  868. p_uart->tx_waiting_brk = 0;
  869. } else {
  870. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  871. }
  872. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  873. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  874. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  875. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  876. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  877. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  878. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  879. uart_event.type = UART_PATTERN_DET;
  880. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  881. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  882. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  883. // RS485 collision or frame error interrupt triggered
  884. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  885. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  886. // Set collision detection flag
  887. p_uart_obj[uart_num]->coll_det_flg = true;
  888. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  889. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  890. uart_event.type = UART_EVENT_MAX;
  891. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  892. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  893. // The TX_DONE interrupt is triggered but transmit is active
  894. // then postpone interrupt processing for next interrupt
  895. uart_event.type = UART_EVENT_MAX;
  896. } else {
  897. // Workaround for RS485: If the RS485 half duplex mode is active
  898. // and transmitter is in idle state then reset received buffer and reset RTS pin
  899. // skip this behavior for other UART modes
  900. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  901. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  902. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  903. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  904. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  905. }
  906. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  907. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  908. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  909. }
  910. } else {
  911. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  912. uart_event.type = UART_EVENT_MAX;
  913. }
  914. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  915. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  916. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  917. }
  918. }
  919. }
  920. if(HPTaskAwoken == pdTRUE) {
  921. portYIELD_FROM_ISR();
  922. }
  923. }
  924. /**************************************************************/
  925. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  926. {
  927. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  928. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  929. BaseType_t res;
  930. portTickType ticks_start = xTaskGetTickCount();
  931. //Take tx_mux
  932. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  933. if(res == pdFALSE) {
  934. return ESP_ERR_TIMEOUT;
  935. }
  936. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  937. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  938. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  939. return ESP_OK;
  940. }
  941. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  942. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  943. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  944. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  945. TickType_t ticks_end = xTaskGetTickCount();
  946. if (ticks_end - ticks_start > ticks_to_wait) {
  947. ticks_to_wait = 0;
  948. } else {
  949. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  950. }
  951. //take 2nd tx_done_sem, wait given from ISR
  952. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  953. if(res == pdFALSE) {
  954. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  955. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  956. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  957. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  958. }
  959. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  960. return ESP_OK;
  961. }
  962. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  963. {
  964. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  965. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  966. UART_CHECK(buffer, "buffer null", (-1));
  967. if(len == 0) {
  968. return 0;
  969. }
  970. int tx_len = 0;
  971. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  972. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  973. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  974. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  975. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  976. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  977. }
  978. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  979. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  980. return tx_len;
  981. }
  982. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  983. {
  984. if(size == 0) {
  985. return 0;
  986. }
  987. size_t original_size = size;
  988. //lock for uart_tx
  989. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  990. p_uart_obj[uart_num]->coll_det_flg = false;
  991. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  992. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  993. int offset = 0;
  994. uart_tx_data_t evt;
  995. evt.tx_data.size = size;
  996. evt.tx_data.brk_len = brk_len;
  997. if(brk_en) {
  998. evt.type = UART_DATA_BREAK;
  999. } else {
  1000. evt.type = UART_DATA;
  1001. }
  1002. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1003. while(size > 0) {
  1004. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1005. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1006. size -= send_size;
  1007. offset += send_size;
  1008. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1009. }
  1010. } else {
  1011. while(size) {
  1012. //semaphore for tx_fifo available
  1013. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1014. uint32_t sent = 0;
  1015. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1016. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1017. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1018. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1019. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1020. }
  1021. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1022. if(sent < size) {
  1023. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1024. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1025. }
  1026. size -= sent;
  1027. src += sent;
  1028. }
  1029. }
  1030. if(brk_en) {
  1031. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1032. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1033. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1034. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1035. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1036. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1037. }
  1038. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1039. }
  1040. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1041. return original_size;
  1042. }
  1043. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1044. {
  1045. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1046. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1047. UART_CHECK(src, "buffer null", (-1));
  1048. return uart_tx_all(uart_num, src, size, 0, 0);
  1049. }
  1050. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1051. {
  1052. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1053. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1054. UART_CHECK((size > 0), "uart size error", (-1));
  1055. UART_CHECK((src), "uart data null", (-1));
  1056. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1057. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1058. }
  1059. static bool uart_check_buf_full(uart_port_t uart_num)
  1060. {
  1061. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1062. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1063. if(res == pdTRUE) {
  1064. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1065. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1066. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1067. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1068. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1069. return true;
  1070. }
  1071. }
  1072. return false;
  1073. }
  1074. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1075. {
  1076. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1077. UART_CHECK((buf), "uart data null", (-1));
  1078. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1079. uint8_t* data = NULL;
  1080. size_t size;
  1081. size_t copy_len = 0;
  1082. int len_tmp;
  1083. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1084. return -1;
  1085. }
  1086. while(length) {
  1087. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1088. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1089. if(data) {
  1090. p_uart_obj[uart_num]->rx_head_ptr = data;
  1091. p_uart_obj[uart_num]->rx_ptr = data;
  1092. p_uart_obj[uart_num]->rx_cur_remain = size;
  1093. } else {
  1094. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1095. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1096. //to solve the possible asynchronous issues.
  1097. if(uart_check_buf_full(uart_num)) {
  1098. //This condition will never be true if `uart_read_bytes`
  1099. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1100. continue;
  1101. } else {
  1102. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1103. return copy_len;
  1104. }
  1105. }
  1106. }
  1107. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1108. len_tmp = length;
  1109. } else {
  1110. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1111. }
  1112. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1113. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1114. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1115. uart_pattern_queue_update(uart_num, len_tmp);
  1116. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1117. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1118. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1119. copy_len += len_tmp;
  1120. length -= len_tmp;
  1121. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1122. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1123. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1124. p_uart_obj[uart_num]->rx_ptr = NULL;
  1125. uart_check_buf_full(uart_num);
  1126. }
  1127. }
  1128. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1129. return copy_len;
  1130. }
  1131. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1132. {
  1133. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1134. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1135. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1136. return ESP_OK;
  1137. }
  1138. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1139. esp_err_t uart_flush_input(uart_port_t uart_num)
  1140. {
  1141. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1142. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1143. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1144. uint8_t* data;
  1145. size_t size;
  1146. //rx sem protect the ring buffer read related functions
  1147. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1148. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1149. while(true) {
  1150. if(p_uart->rx_head_ptr) {
  1151. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1152. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1153. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1154. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1155. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1156. p_uart->rx_ptr = NULL;
  1157. p_uart->rx_cur_remain = 0;
  1158. p_uart->rx_head_ptr = NULL;
  1159. }
  1160. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1161. if(data == NULL) {
  1162. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1163. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1164. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1165. }
  1166. //We also need to clear the `rx_buffer_full_flg` here.
  1167. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1168. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1169. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1170. break;
  1171. }
  1172. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1173. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1174. uart_pattern_queue_update(uart_num, size);
  1175. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1176. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1177. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1178. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1179. if(res == pdTRUE) {
  1180. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1181. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1182. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1183. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1184. }
  1185. }
  1186. }
  1187. p_uart->rx_ptr = NULL;
  1188. p_uart->rx_cur_remain = 0;
  1189. p_uart->rx_head_ptr = NULL;
  1190. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1191. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1192. xSemaphoreGive(p_uart->rx_mux);
  1193. return ESP_OK;
  1194. }
  1195. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1196. {
  1197. esp_err_t r;
  1198. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1199. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1200. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1201. #if CONFIG_UART_ISR_IN_IRAM
  1202. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1203. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1204. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1205. }
  1206. #else
  1207. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1208. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1209. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1210. }
  1211. #endif
  1212. if(p_uart_obj[uart_num] == NULL) {
  1213. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1214. if(p_uart_obj[uart_num] == NULL) {
  1215. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1216. return ESP_FAIL;
  1217. }
  1218. p_uart_obj[uart_num]->uart_num = uart_num;
  1219. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1220. p_uart_obj[uart_num]->coll_det_flg = false;
  1221. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1222. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1223. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1224. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1225. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1226. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1227. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1228. p_uart_obj[uart_num]->queue_size = queue_size;
  1229. p_uart_obj[uart_num]->tx_ptr = NULL;
  1230. p_uart_obj[uart_num]->tx_head = NULL;
  1231. p_uart_obj[uart_num]->tx_len_tot = 0;
  1232. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1233. p_uart_obj[uart_num]->tx_brk_len = 0;
  1234. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1235. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1236. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1237. if(uart_queue) {
  1238. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1239. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1240. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1241. } else {
  1242. p_uart_obj[uart_num]->xQueueUart = NULL;
  1243. }
  1244. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1245. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1246. p_uart_obj[uart_num]->rx_ptr = NULL;
  1247. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1248. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1249. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1250. if(tx_buffer_size > 0) {
  1251. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1252. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1253. } else {
  1254. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1255. p_uart_obj[uart_num]->tx_buf_size = 0;
  1256. }
  1257. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1258. } else {
  1259. ESP_LOGE(UART_TAG, "UART driver already installed");
  1260. return ESP_FAIL;
  1261. }
  1262. uart_intr_config_t uart_intr = {
  1263. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1264. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1265. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1266. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1267. };
  1268. uart_module_enable(uart_num);
  1269. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1270. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1271. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1272. if (r!=ESP_OK) goto err;
  1273. r=uart_intr_config(uart_num, &uart_intr);
  1274. if (r!=ESP_OK) goto err;
  1275. return r;
  1276. err:
  1277. uart_driver_delete(uart_num);
  1278. return r;
  1279. }
  1280. //Make sure no other tasks are still using UART before you call this function
  1281. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1282. {
  1283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1284. if(p_uart_obj[uart_num] == NULL) {
  1285. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1286. return ESP_OK;
  1287. }
  1288. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1289. uart_disable_rx_intr(uart_num);
  1290. uart_disable_tx_intr(uart_num);
  1291. uart_pattern_link_free(uart_num);
  1292. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1293. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1294. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1295. }
  1296. if(p_uart_obj[uart_num]->tx_done_sem) {
  1297. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1298. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1299. }
  1300. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1301. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1302. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1303. }
  1304. if(p_uart_obj[uart_num]->tx_mux) {
  1305. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1306. p_uart_obj[uart_num]->tx_mux = NULL;
  1307. }
  1308. if(p_uart_obj[uart_num]->rx_mux) {
  1309. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1310. p_uart_obj[uart_num]->rx_mux = NULL;
  1311. }
  1312. if(p_uart_obj[uart_num]->xQueueUart) {
  1313. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1314. p_uart_obj[uart_num]->xQueueUart = NULL;
  1315. }
  1316. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1317. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1318. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1319. }
  1320. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1321. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1322. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1323. }
  1324. heap_caps_free(p_uart_obj[uart_num]);
  1325. p_uart_obj[uart_num] = NULL;
  1326. uart_module_disable(uart_num);
  1327. return ESP_OK;
  1328. }
  1329. bool uart_is_driver_installed(uart_port_t uart_num)
  1330. {
  1331. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1332. }
  1333. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1334. {
  1335. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1336. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1337. }
  1338. }
  1339. portMUX_TYPE *uart_get_selectlock(void)
  1340. {
  1341. return &uart_selectlock;
  1342. }
  1343. // Set UART mode
  1344. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1345. {
  1346. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1347. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1348. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1349. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1350. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1351. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1352. }
  1353. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1354. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1355. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1356. // This mode allows read while transmitting that allows collision detection
  1357. p_uart_obj[uart_num]->coll_det_flg = false;
  1358. // Enable collision detection interrupts
  1359. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1360. | UART_INTR_RXFIFO_FULL
  1361. | UART_INTR_RS485_CLASH
  1362. | UART_INTR_RS485_FRM_ERR
  1363. | UART_INTR_RS485_PARITY_ERR);
  1364. }
  1365. p_uart_obj[uart_num]->uart_mode = mode;
  1366. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1367. return ESP_OK;
  1368. }
  1369. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1370. {
  1371. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1372. UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
  1373. "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
  1374. if (p_uart_obj[uart_num] == NULL) {
  1375. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1376. return ESP_ERR_INVALID_STATE;
  1377. }
  1378. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1379. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1380. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1381. }
  1382. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1383. return ESP_OK;
  1384. }
  1385. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1386. {
  1387. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1388. UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
  1389. "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
  1390. if (p_uart_obj[uart_num] == NULL) {
  1391. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1392. return ESP_ERR_INVALID_STATE;
  1393. }
  1394. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1395. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1396. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1397. }
  1398. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1399. return ESP_OK;
  1400. }
  1401. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1402. {
  1403. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1404. // get maximum timeout threshold
  1405. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1406. if (tout_thresh > tout_max_thresh) {
  1407. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1408. return ESP_ERR_INVALID_ARG;
  1409. }
  1410. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1411. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1412. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1413. return ESP_OK;
  1414. }
  1415. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1416. {
  1417. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1418. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1419. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1420. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1421. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1422. "wrong mode", ESP_ERR_INVALID_ARG);
  1423. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1424. return ESP_OK;
  1425. }
  1426. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1427. {
  1428. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1429. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1430. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1431. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1432. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1433. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1434. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1435. return ESP_OK;
  1436. }
  1437. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1438. {
  1439. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1440. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1441. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1442. return ESP_OK;
  1443. }
  1444. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1445. {
  1446. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1447. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1448. return ESP_OK;
  1449. }
  1450. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1451. {
  1452. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1453. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1454. return ESP_OK;
  1455. }
  1456. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1457. {
  1458. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1459. if (rx_tout) {
  1460. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1461. } else {
  1462. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1463. }
  1464. }