uart.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/ringbuf.h"
  24. #include "hal/uart_hal.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "driver/periph_ctrl.h"
  30. #include "sdkconfig.h"
  31. #if CONFIG_IDF_TARGET_ESP32
  32. #include "esp32/clk.h"
  33. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  34. #include "esp32s2beta/clk.h"
  35. #endif
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (0x13)
  42. #define XON (0x11)
  43. static const char* UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TX_IDLE_NUM_DEFAULT (0)
  54. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  55. #define UART_MIN_WAKEUP_THRESH (SOC_UART_MIN_WAKEUP_THRESH)
  56. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  57. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  58. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  59. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  60. // Check actual UART mode set
  61. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  62. #define UART_CONTEX_INIT_DEF(uart_num) {\
  63. .hal.dev = UART_LL_GET_HW(uart_num),\
  64. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  65. .hw_enabled = false,\
  66. }
  67. typedef struct {
  68. uart_event_type_t type; /*!< UART TX data type */
  69. struct {
  70. int brk_len;
  71. size_t size;
  72. uint8_t data[0];
  73. } tx_data;
  74. } uart_tx_data_t;
  75. typedef struct {
  76. int wr;
  77. int rd;
  78. int len;
  79. int* data;
  80. } uart_pat_rb_t;
  81. typedef struct {
  82. uart_port_t uart_num; /*!< UART port number*/
  83. int queue_size; /*!< UART event queue size*/
  84. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  85. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  86. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  87. bool coll_det_flg; /*!< UART collision detection flag */
  88. //rx parameters
  89. int rx_buffered_len; /*!< UART cached data length */
  90. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  91. int rx_buf_size; /*!< RX ring buffer size */
  92. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  93. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  94. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  95. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  96. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  97. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  98. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  99. uart_pat_rb_t rx_pattern_pos;
  100. //tx parameters
  101. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  102. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  103. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  104. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  105. int tx_buf_size; /*!< TX ring buffer size */
  106. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  107. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  108. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  109. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  110. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  111. uint32_t tx_len_cur;
  112. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  113. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  114. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  115. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  116. } uart_obj_t;
  117. typedef struct {
  118. uart_hal_context_t hal; /*!< UART hal context*/
  119. portMUX_TYPE spinlock;
  120. bool hw_enabled;
  121. } uart_context_t;
  122. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  123. static uart_context_t uart_context[UART_NUM_MAX] = {
  124. UART_CONTEX_INIT_DEF(UART_NUM_0),
  125. UART_CONTEX_INIT_DEF(UART_NUM_1),
  126. #if UART_NUM_MAX > 2
  127. UART_CONTEX_INIT_DEF(UART_NUM_2),
  128. #endif
  129. };
  130. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  131. static void uart_module_enable(uart_port_t uart_num)
  132. {
  133. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  134. if (uart_context[uart_num].hw_enabled != true) {
  135. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  136. periph_module_reset(uart_periph_signal[uart_num].module);
  137. }
  138. periph_module_enable(uart_periph_signal[uart_num].module);
  139. uart_context[uart_num].hw_enabled = true;
  140. }
  141. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  142. }
  143. static void uart_module_disable(uart_port_t uart_num)
  144. {
  145. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  146. if (uart_context[uart_num].hw_enabled != false) {
  147. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  148. periph_module_disable(uart_periph_signal[uart_num].module);
  149. }
  150. uart_context[uart_num].hw_enabled = false;
  151. }
  152. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  153. }
  154. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  155. {
  156. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  157. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  158. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  159. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  160. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  161. return ESP_OK;
  162. }
  163. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  164. {
  165. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  166. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  167. return ESP_OK;
  168. }
  169. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  170. {
  171. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  172. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  173. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  174. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  175. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  176. return ESP_OK;
  177. }
  178. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  179. {
  180. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  181. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  182. return ESP_OK;
  183. }
  184. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  185. {
  186. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  187. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  188. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  189. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  190. return ESP_OK;
  191. }
  192. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  193. {
  194. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  195. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  196. return ESP_OK;
  197. }
  198. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  199. {
  200. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  201. uart_sclk_t source_clk = 0;
  202. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  203. uart_hal_get_sclk(&(uart_context[uart_num].hal), &source_clk);
  204. uart_hal_set_baudrate(&(uart_context[uart_num].hal), source_clk, baud_rate);
  205. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  206. return ESP_OK;
  207. }
  208. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  209. {
  210. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  211. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  212. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  213. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  214. return ESP_OK;
  215. }
  216. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  217. {
  218. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  219. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  220. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  221. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  222. return ESP_OK;
  223. }
  224. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  225. {
  226. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  227. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  228. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  229. uart_sw_flowctrl_t sw_flow_ctl = {
  230. .xon_char = XON,
  231. .xoff_char = XOFF,
  232. .xon_thrd = rx_thresh_xon,
  233. .xoff_thrd = rx_thresh_xoff,
  234. };
  235. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  236. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  237. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  238. return ESP_OK;
  239. }
  240. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  241. {
  242. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  243. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  244. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  245. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  246. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  247. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  248. return ESP_OK;
  249. }
  250. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  251. {
  252. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  253. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  254. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  255. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  256. return ESP_OK;
  257. }
  258. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  259. {
  260. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  261. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  262. return ESP_OK;
  263. }
  264. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  265. {
  266. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  267. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  268. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  269. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  270. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  271. return ESP_OK;
  272. }
  273. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  274. {
  275. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  276. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  277. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  278. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  279. return ESP_OK;
  280. }
  281. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  282. {
  283. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  284. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  285. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  286. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  287. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  288. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  289. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  290. free(pdata);
  291. }
  292. return ESP_OK;
  293. }
  294. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  295. {
  296. esp_err_t ret = ESP_OK;
  297. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  298. int next = p_pos->wr + 1;
  299. if (next >= p_pos->len) {
  300. next = 0;
  301. }
  302. if (next == p_pos->rd) {
  303. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  304. ret = ESP_FAIL;
  305. } else {
  306. p_pos->data[p_pos->wr] = pos;
  307. p_pos->wr = next;
  308. ret = ESP_OK;
  309. }
  310. return ret;
  311. }
  312. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  313. {
  314. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  315. return ESP_ERR_INVALID_STATE;
  316. } else {
  317. esp_err_t ret = ESP_OK;
  318. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  319. if (p_pos->rd == p_pos->wr) {
  320. ret = ESP_FAIL;
  321. } else {
  322. p_pos->rd++;
  323. }
  324. if (p_pos->rd >= p_pos->len) {
  325. p_pos->rd = 0;
  326. }
  327. return ret;
  328. }
  329. }
  330. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  331. {
  332. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  333. int rd = p_pos->rd;
  334. while(rd != p_pos->wr) {
  335. p_pos->data[rd] -= diff_len;
  336. int rd_rec = rd;
  337. rd ++;
  338. if (rd >= p_pos->len) {
  339. rd = 0;
  340. }
  341. if (p_pos->data[rd_rec] < 0) {
  342. p_pos->rd = rd;
  343. }
  344. }
  345. return ESP_OK;
  346. }
  347. int uart_pattern_pop_pos(uart_port_t uart_num)
  348. {
  349. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  350. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  351. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  352. int pos = -1;
  353. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  354. pos = pat_pos->data[pat_pos->rd];
  355. uart_pattern_dequeue(uart_num);
  356. }
  357. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  358. return pos;
  359. }
  360. int uart_pattern_get_pos(uart_port_t uart_num)
  361. {
  362. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  363. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  364. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  365. int pos = -1;
  366. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  367. pos = pat_pos->data[pat_pos->rd];
  368. }
  369. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  370. return pos;
  371. }
  372. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  373. {
  374. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  375. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  376. int* pdata = (int*) malloc(queue_length * sizeof(int));
  377. if(pdata == NULL) {
  378. return ESP_ERR_NO_MEM;
  379. }
  380. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  381. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  382. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  383. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  384. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  385. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  386. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  387. free(ptmp);
  388. return ESP_OK;
  389. }
  390. #if CONFIG_IDF_TARGET_ESP32
  391. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  392. {
  393. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  394. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  395. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  396. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  397. uart_at_cmd_t at_cmd = {0};
  398. at_cmd.cmd_char = pattern_chr;
  399. at_cmd.char_num = chr_num;
  400. at_cmd.gap_tout = chr_tout;
  401. at_cmd.pre_idle = pre_idle;
  402. at_cmd.post_idle = post_idle;
  403. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  404. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  405. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  406. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  407. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  408. return ESP_OK;
  409. }
  410. #endif
  411. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  412. {
  413. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  414. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  415. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  416. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  417. uart_at_cmd_t at_cmd = {0};
  418. at_cmd.cmd_char = pattern_chr;
  419. at_cmd.char_num = chr_num;
  420. #if CONFIG_IDF_TARGET_ESP32
  421. int apb_clk_freq = 0;
  422. uint32_t uart_baud = 0;
  423. uint32_t uart_div = 0;
  424. uart_get_baudrate(uart_num, &uart_baud);
  425. apb_clk_freq = esp_clk_apb_freq();
  426. uart_div = apb_clk_freq / uart_baud;
  427. at_cmd.gap_tout = chr_tout * uart_div;
  428. at_cmd.pre_idle = pre_idle * uart_div;
  429. at_cmd.post_idle = post_idle * uart_div;
  430. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  431. at_cmd.gap_tout = chr_tout;
  432. at_cmd.pre_idle = pre_idle;
  433. at_cmd.post_idle = post_idle;
  434. #endif
  435. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  436. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  437. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  438. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  439. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  440. return ESP_OK;
  441. }
  442. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  443. {
  444. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  445. }
  446. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  447. {
  448. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  449. }
  450. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  451. {
  452. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  453. }
  454. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  455. {
  456. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  457. }
  458. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  459. {
  460. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  461. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  462. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  463. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  464. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  465. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  466. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  467. return ESP_OK;
  468. }
  469. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  470. {
  471. int ret;
  472. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  473. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  474. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  475. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  476. return ret;
  477. }
  478. esp_err_t uart_isr_free(uart_port_t uart_num)
  479. {
  480. esp_err_t ret;
  481. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  482. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  483. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  484. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  485. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  486. p_uart_obj[uart_num]->intr_handle=NULL;
  487. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  488. return ret;
  489. }
  490. //internal signal can be output to multiple GPIO pads
  491. //only one GPIO pad can connect with input signal
  492. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  493. {
  494. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  495. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  496. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  497. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  498. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  499. if(tx_io_num >= 0) {
  500. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  501. gpio_set_level(tx_io_num, 1);
  502. gpio_matrix_out(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  503. }
  504. if(rx_io_num >= 0) {
  505. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  506. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  507. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  508. gpio_matrix_in(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  509. }
  510. if(rts_io_num >= 0) {
  511. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  512. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  513. gpio_matrix_out(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  514. }
  515. if(cts_io_num >= 0) {
  516. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  517. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  518. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  519. gpio_matrix_in(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  520. }
  521. return ESP_OK;
  522. }
  523. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  524. {
  525. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  526. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  527. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  528. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  529. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  530. return ESP_OK;
  531. }
  532. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  533. {
  534. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  535. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  536. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  537. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  538. return ESP_OK;
  539. }
  540. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  541. {
  542. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  543. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  544. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  545. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  546. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  547. return ESP_OK;
  548. }
  549. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  550. {
  551. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  552. UART_CHECK((uart_config), "param null", ESP_FAIL);
  553. UART_CHECK((uart_config->rx_flow_ctrl_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  554. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  555. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  556. uart_module_enable(uart_num);
  557. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  558. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  559. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->source_clk, uart_config->baud_rate);
  560. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  561. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  562. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  563. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  564. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  565. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  566. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  567. return ESP_OK;
  568. }
  569. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  570. {
  571. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  572. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  573. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  574. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  575. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  576. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  577. } else {
  578. //Disable rx_tout intr
  579. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  580. }
  581. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  582. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  583. }
  584. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  585. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  586. }
  587. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  588. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  589. return ESP_OK;
  590. }
  591. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  592. {
  593. int cnt = 0;
  594. int len = length;
  595. while (len >= 0) {
  596. if (buf[len] == pat_chr) {
  597. cnt++;
  598. } else {
  599. cnt = 0;
  600. }
  601. if (cnt >= pat_num) {
  602. break;
  603. }
  604. len --;
  605. }
  606. return len;
  607. }
  608. //internal isr handler for default driver code.
  609. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  610. {
  611. uart_obj_t *p_uart = (uart_obj_t*) param;
  612. uint8_t uart_num = p_uart->uart_num;
  613. int rx_fifo_len = 0;
  614. uint32_t uart_intr_status = 0;
  615. uart_event_t uart_event;
  616. portBASE_TYPE HPTaskAwoken = 0;
  617. static uint8_t pat_flg = 0;
  618. while(1) {
  619. // The `continue statement` may cause the interrupt to loop infinitely
  620. // we exit the interrupt here
  621. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  622. //Exit form while loop
  623. if(uart_intr_status == 0){
  624. break;
  625. }
  626. uart_event.type = UART_EVENT_MAX;
  627. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  628. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  629. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  630. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  631. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  632. if(p_uart->tx_waiting_brk) {
  633. continue;
  634. }
  635. //TX semaphore will only be used when tx_buf_size is zero.
  636. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  637. p_uart->tx_waiting_fifo = false;
  638. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  639. } else {
  640. //We don't use TX ring buffer, because the size is zero.
  641. if(p_uart->tx_buf_size == 0) {
  642. continue;
  643. }
  644. bool en_tx_flg = false;
  645. int tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  646. //We need to put a loop here, in case all the buffer items are very short.
  647. //That would cause a watch_dog reset because empty interrupt happens so often.
  648. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  649. while(tx_fifo_rem) {
  650. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  651. size_t size;
  652. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  653. if(p_uart->tx_head) {
  654. //The first item is the data description
  655. //Get the first item to get the data information
  656. if(p_uart->tx_len_tot == 0) {
  657. p_uart->tx_ptr = NULL;
  658. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  659. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  660. p_uart->tx_brk_flg = 1;
  661. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  662. }
  663. //We have saved the data description from the 1st item, return buffer.
  664. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  665. } else if(p_uart->tx_ptr == NULL) {
  666. //Update the TX item pointer, we will need this to return item to buffer.
  667. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  668. en_tx_flg = true;
  669. p_uart->tx_len_cur = size;
  670. }
  671. } else {
  672. //Can not get data from ring buffer, return;
  673. break;
  674. }
  675. }
  676. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  677. //To fill the TX FIFO.
  678. uint32_t send_len = 0;
  679. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  680. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  681. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  682. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  683. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  684. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  685. }
  686. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  687. (const uint8_t *)p_uart->tx_ptr,
  688. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  689. &send_len);
  690. p_uart->tx_ptr += send_len;
  691. p_uart->tx_len_tot -= send_len;
  692. p_uart->tx_len_cur -= send_len;
  693. tx_fifo_rem -= send_len;
  694. if (p_uart->tx_len_cur == 0) {
  695. //Return item to ring buffer.
  696. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  697. p_uart->tx_head = NULL;
  698. p_uart->tx_ptr = NULL;
  699. //Sending item done, now we need to send break if there is a record.
  700. //Set TX break signal after FIFO is empty
  701. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  702. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  703. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  704. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  705. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  706. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  707. p_uart->tx_waiting_brk = 1;
  708. //do not enable TX empty interrupt
  709. en_tx_flg = false;
  710. } else {
  711. //enable TX empty interrupt
  712. en_tx_flg = true;
  713. }
  714. } else {
  715. //enable TX empty interrupt
  716. en_tx_flg = true;
  717. }
  718. }
  719. }
  720. if (en_tx_flg) {
  721. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  722. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  723. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  724. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  725. }
  726. }
  727. }
  728. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  729. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  730. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  731. ) {
  732. if(pat_flg == 1) {
  733. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  734. pat_flg = 0;
  735. }
  736. if (p_uart->rx_buffer_full_flg == false) {
  737. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  738. uint8_t pat_chr = 0;
  739. uint8_t pat_num = 0;
  740. int pat_idx = -1;
  741. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  742. //Get the buffer from the FIFO
  743. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  744. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  745. uart_event.type = UART_PATTERN_DET;
  746. uart_event.size = rx_fifo_len;
  747. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  748. } else {
  749. //After Copying the Data From FIFO ,Clear intr_status
  750. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  751. uart_event.type = UART_DATA;
  752. uart_event.size = rx_fifo_len;
  753. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  754. if (p_uart->uart_select_notif_callback) {
  755. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  756. }
  757. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  758. }
  759. p_uart->rx_stash_len = rx_fifo_len;
  760. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  761. //Mainly for applications that uses flow control or small ring buffer.
  762. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  763. p_uart->rx_buffer_full_flg = true;
  764. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  765. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  766. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  767. if (uart_event.type == UART_PATTERN_DET) {
  768. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  769. if (rx_fifo_len < pat_num) {
  770. //some of the characters are read out in last interrupt
  771. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  772. } else {
  773. uart_pattern_enqueue(uart_num,
  774. pat_idx <= -1 ?
  775. //can not find the pattern in buffer,
  776. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  777. // find the pattern in buffer
  778. p_uart->rx_buffered_len + pat_idx);
  779. }
  780. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  781. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  782. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  783. }
  784. }
  785. uart_event.type = UART_BUFFER_FULL;
  786. } else {
  787. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  788. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  789. if (rx_fifo_len < pat_num) {
  790. //some of the characters are read out in last interrupt
  791. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  792. } else if(pat_idx >= 0) {
  793. // find the pattern in stash buffer.
  794. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  795. }
  796. }
  797. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  798. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  799. }
  800. } else {
  801. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  802. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  803. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  804. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  805. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  806. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  807. uart_event.type = UART_PATTERN_DET;
  808. uart_event.size = rx_fifo_len;
  809. pat_flg = 1;
  810. }
  811. }
  812. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  813. // When fifo overflows, we reset the fifo.
  814. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  815. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  816. if (p_uart->uart_select_notif_callback) {
  817. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  818. }
  819. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  820. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  821. uart_event.type = UART_FIFO_OVF;
  822. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  823. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  824. uart_event.type = UART_BREAK;
  825. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  826. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  827. if (p_uart->uart_select_notif_callback) {
  828. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  829. }
  830. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  831. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  832. uart_event.type = UART_FRAME_ERR;
  833. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  834. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  835. if (p_uart->uart_select_notif_callback) {
  836. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  837. }
  838. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  839. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  840. uart_event.type = UART_PARITY_ERR;
  841. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  842. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  843. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  844. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  845. if(p_uart->tx_brk_flg == 1) {
  846. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  847. }
  848. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  849. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  850. if(p_uart->tx_brk_flg == 1) {
  851. p_uart->tx_brk_flg = 0;
  852. p_uart->tx_waiting_brk = 0;
  853. } else {
  854. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  855. }
  856. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  857. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  858. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  859. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  860. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  861. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  862. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  863. uart_event.type = UART_PATTERN_DET;
  864. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  865. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  866. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  867. // RS485 collision or frame error interrupt triggered
  868. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  869. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  870. // Set collision detection flag
  871. p_uart_obj[uart_num]->coll_det_flg = true;
  872. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  873. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  874. uart_event.type = UART_EVENT_MAX;
  875. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  876. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  877. // The TX_DONE interrupt is triggered but transmit is active
  878. // then postpone interrupt processing for next interrupt
  879. uart_event.type = UART_EVENT_MAX;
  880. } else {
  881. // Workaround for RS485: If the RS485 half duplex mode is active
  882. // and transmitter is in idle state then reset received buffer and reset RTS pin
  883. // skip this behavior for other UART modes
  884. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  885. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  886. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  887. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  888. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  889. }
  890. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  891. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  892. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  893. }
  894. } else {
  895. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  896. uart_event.type = UART_EVENT_MAX;
  897. }
  898. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  899. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  900. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  901. }
  902. }
  903. }
  904. if(HPTaskAwoken == pdTRUE) {
  905. portYIELD_FROM_ISR();
  906. }
  907. }
  908. /**************************************************************/
  909. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  910. {
  911. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  912. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  913. BaseType_t res;
  914. portTickType ticks_start = xTaskGetTickCount();
  915. //Take tx_mux
  916. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  917. if(res == pdFALSE) {
  918. return ESP_ERR_TIMEOUT;
  919. }
  920. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  921. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  922. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  923. return ESP_OK;
  924. }
  925. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  926. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  927. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  928. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  929. TickType_t ticks_end = xTaskGetTickCount();
  930. if (ticks_end - ticks_start > ticks_to_wait) {
  931. ticks_to_wait = 0;
  932. } else {
  933. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  934. }
  935. //take 2nd tx_done_sem, wait given from ISR
  936. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  937. if(res == pdFALSE) {
  938. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  939. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  940. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  941. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  942. }
  943. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  944. return ESP_OK;
  945. }
  946. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  947. {
  948. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  949. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  950. UART_CHECK(buffer, "buffer null", (-1));
  951. if(len == 0) {
  952. return 0;
  953. }
  954. int tx_len = 0;
  955. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  956. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  957. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  958. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  959. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  960. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  961. }
  962. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  963. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  964. return tx_len;
  965. }
  966. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  967. {
  968. if(size == 0) {
  969. return 0;
  970. }
  971. size_t original_size = size;
  972. //lock for uart_tx
  973. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  974. p_uart_obj[uart_num]->coll_det_flg = false;
  975. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  976. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  977. int offset = 0;
  978. uart_tx_data_t evt;
  979. evt.tx_data.size = size;
  980. evt.tx_data.brk_len = brk_len;
  981. if(brk_en) {
  982. evt.type = UART_DATA_BREAK;
  983. } else {
  984. evt.type = UART_DATA;
  985. }
  986. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  987. while(size > 0) {
  988. int send_size = size > max_size / 2 ? max_size / 2 : size;
  989. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  990. size -= send_size;
  991. offset += send_size;
  992. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  993. }
  994. } else {
  995. while(size) {
  996. //semaphore for tx_fifo available
  997. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  998. uint32_t sent = 0;
  999. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1000. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1001. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1002. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1003. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1004. }
  1005. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1006. if(sent < size) {
  1007. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1008. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1009. }
  1010. size -= sent;
  1011. src += sent;
  1012. }
  1013. }
  1014. if(brk_en) {
  1015. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1016. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1017. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1018. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1019. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1020. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1021. }
  1022. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1023. }
  1024. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1025. return original_size;
  1026. }
  1027. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1028. {
  1029. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1030. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1031. UART_CHECK(src, "buffer null", (-1));
  1032. return uart_tx_all(uart_num, src, size, 0, 0);
  1033. }
  1034. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1035. {
  1036. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1037. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1038. UART_CHECK((size > 0), "uart size error", (-1));
  1039. UART_CHECK((src), "uart data null", (-1));
  1040. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1041. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1042. }
  1043. static bool uart_check_buf_full(uart_port_t uart_num)
  1044. {
  1045. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1046. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1047. if(res == pdTRUE) {
  1048. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1049. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1050. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1051. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1052. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1053. return true;
  1054. }
  1055. }
  1056. return false;
  1057. }
  1058. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1059. {
  1060. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1061. UART_CHECK((buf), "uart data null", (-1));
  1062. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1063. uint8_t* data = NULL;
  1064. size_t size;
  1065. size_t copy_len = 0;
  1066. int len_tmp;
  1067. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1068. return -1;
  1069. }
  1070. while(length) {
  1071. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1072. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1073. if(data) {
  1074. p_uart_obj[uart_num]->rx_head_ptr = data;
  1075. p_uart_obj[uart_num]->rx_ptr = data;
  1076. p_uart_obj[uart_num]->rx_cur_remain = size;
  1077. } else {
  1078. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1079. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1080. //to solve the possible asynchronous issues.
  1081. if(uart_check_buf_full(uart_num)) {
  1082. //This condition will never be true if `uart_read_bytes`
  1083. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1084. continue;
  1085. } else {
  1086. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1087. return copy_len;
  1088. }
  1089. }
  1090. }
  1091. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1092. len_tmp = length;
  1093. } else {
  1094. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1095. }
  1096. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1097. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1098. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1099. uart_pattern_queue_update(uart_num, len_tmp);
  1100. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1101. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1102. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1103. copy_len += len_tmp;
  1104. length -= len_tmp;
  1105. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1106. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1107. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1108. p_uart_obj[uart_num]->rx_ptr = NULL;
  1109. uart_check_buf_full(uart_num);
  1110. }
  1111. }
  1112. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1113. return copy_len;
  1114. }
  1115. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1116. {
  1117. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1118. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1119. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1120. return ESP_OK;
  1121. }
  1122. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1123. esp_err_t uart_flush_input(uart_port_t uart_num)
  1124. {
  1125. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1126. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1127. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1128. uint8_t* data;
  1129. size_t size;
  1130. //rx sem protect the ring buffer read related functions
  1131. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1132. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1133. while(true) {
  1134. if(p_uart->rx_head_ptr) {
  1135. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1136. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1137. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1138. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1139. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1140. p_uart->rx_ptr = NULL;
  1141. p_uart->rx_cur_remain = 0;
  1142. p_uart->rx_head_ptr = NULL;
  1143. }
  1144. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1145. if(data == NULL) {
  1146. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1147. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1148. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1149. }
  1150. //We also need to clear the `rx_buffer_full_flg` here.
  1151. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1152. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1153. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1154. break;
  1155. }
  1156. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1157. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1158. uart_pattern_queue_update(uart_num, size);
  1159. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1160. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1161. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1162. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1163. if(res == pdTRUE) {
  1164. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1165. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1166. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1167. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1168. }
  1169. }
  1170. }
  1171. p_uart->rx_ptr = NULL;
  1172. p_uart->rx_cur_remain = 0;
  1173. p_uart->rx_head_ptr = NULL;
  1174. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1175. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1176. xSemaphoreGive(p_uart->rx_mux);
  1177. return ESP_OK;
  1178. }
  1179. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1180. {
  1181. esp_err_t r;
  1182. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1183. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1184. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1185. #if CONFIG_UART_ISR_IN_IRAM
  1186. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1187. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1188. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1189. }
  1190. #else
  1191. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1192. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1193. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1194. }
  1195. #endif
  1196. if(p_uart_obj[uart_num] == NULL) {
  1197. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1198. if(p_uart_obj[uart_num] == NULL) {
  1199. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1200. return ESP_FAIL;
  1201. }
  1202. p_uart_obj[uart_num]->uart_num = uart_num;
  1203. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1204. p_uart_obj[uart_num]->coll_det_flg = false;
  1205. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1206. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1207. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1208. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1209. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1210. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1211. p_uart_obj[uart_num]->queue_size = queue_size;
  1212. p_uart_obj[uart_num]->tx_ptr = NULL;
  1213. p_uart_obj[uart_num]->tx_head = NULL;
  1214. p_uart_obj[uart_num]->tx_len_tot = 0;
  1215. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1216. p_uart_obj[uart_num]->tx_brk_len = 0;
  1217. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1218. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1219. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1220. if(uart_queue) {
  1221. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1222. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1223. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1224. } else {
  1225. p_uart_obj[uart_num]->xQueueUart = NULL;
  1226. }
  1227. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1228. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1229. p_uart_obj[uart_num]->rx_ptr = NULL;
  1230. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1231. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1232. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1233. if(tx_buffer_size > 0) {
  1234. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1235. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1236. } else {
  1237. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1238. p_uart_obj[uart_num]->tx_buf_size = 0;
  1239. }
  1240. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1241. } else {
  1242. ESP_LOGE(UART_TAG, "UART driver already installed");
  1243. return ESP_FAIL;
  1244. }
  1245. uart_intr_config_t uart_intr = {
  1246. .intr_enable_mask = UART_INTR_RXFIFO_FULL
  1247. | UART_INTR_RXFIFO_TOUT
  1248. | UART_INTR_PARITY_ERR
  1249. | UART_INTR_RXFIFO_OVF
  1250. | UART_INTR_BRK_DET
  1251. | UART_INTR_PARITY_ERR,
  1252. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1253. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1254. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1255. };
  1256. uart_module_enable(uart_num);
  1257. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1258. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_MASK);
  1259. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1260. if (r!=ESP_OK) goto err;
  1261. r=uart_intr_config(uart_num, &uart_intr);
  1262. if (r!=ESP_OK) goto err;
  1263. return r;
  1264. err:
  1265. uart_driver_delete(uart_num);
  1266. return r;
  1267. }
  1268. int a = 0;
  1269. //Make sure no other tasks are still using UART before you call this function
  1270. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1271. {
  1272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1273. if(p_uart_obj[uart_num] == NULL) {
  1274. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1275. return ESP_OK;
  1276. }
  1277. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1278. uart_disable_rx_intr(uart_num);
  1279. uart_disable_tx_intr(uart_num);
  1280. uart_pattern_link_free(uart_num);
  1281. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1282. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1283. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1284. }
  1285. if(p_uart_obj[uart_num]->tx_done_sem) {
  1286. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1287. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1288. }
  1289. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1290. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1291. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1292. }
  1293. if(p_uart_obj[uart_num]->tx_mux) {
  1294. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1295. p_uart_obj[uart_num]->tx_mux = NULL;
  1296. }
  1297. if(p_uart_obj[uart_num]->rx_mux) {
  1298. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1299. p_uart_obj[uart_num]->rx_mux = NULL;
  1300. }
  1301. if(p_uart_obj[uart_num]->xQueueUart) {
  1302. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1303. p_uart_obj[uart_num]->xQueueUart = NULL;
  1304. }
  1305. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1306. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1307. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1308. }
  1309. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1310. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1311. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1312. }
  1313. heap_caps_free(p_uart_obj[uart_num]);
  1314. p_uart_obj[uart_num] = NULL;
  1315. uart_module_disable(uart_num);
  1316. return ESP_OK;
  1317. }
  1318. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1319. {
  1320. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1321. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1322. }
  1323. }
  1324. portMUX_TYPE *uart_get_selectlock(void)
  1325. {
  1326. return &uart_selectlock;
  1327. }
  1328. // Set UART mode
  1329. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1330. {
  1331. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1332. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1333. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1334. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1335. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1336. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1337. }
  1338. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1339. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1340. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1341. // This mode allows read while transmitting that allows collision detection
  1342. p_uart_obj[uart_num]->coll_det_flg = false;
  1343. // Enable collision detection interrupts
  1344. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1345. | UART_INTR_RXFIFO_FULL
  1346. | UART_INTR_RS485_CLASH
  1347. | UART_INTR_RS485_FRM_ERR
  1348. | UART_INTR_RS485_PARITY_ERR);
  1349. }
  1350. p_uart_obj[uart_num]->uart_mode = mode;
  1351. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1352. return ESP_OK;
  1353. }
  1354. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1355. {
  1356. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1357. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1358. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1359. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1360. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1361. return ESP_OK;
  1362. }
  1363. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1364. {
  1365. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1366. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1367. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1368. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1369. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1370. "wrong mode", ESP_ERR_INVALID_ARG);
  1371. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1372. return ESP_OK;
  1373. }
  1374. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1375. {
  1376. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1377. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1378. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1379. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1380. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1381. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1382. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1383. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1384. return ESP_OK;
  1385. }
  1386. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1387. {
  1388. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1389. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1390. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1391. return ESP_OK;
  1392. }
  1393. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1394. {
  1395. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1396. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1397. return ESP_OK;
  1398. }
  1399. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1400. {
  1401. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1402. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1403. return ESP_OK;
  1404. }