spi_common.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. // Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "driver/spi_master.h"
  15. #include "soc/dport_reg.h"
  16. #include "soc/spi_periph.h"
  17. #include "rom/ets_sys.h"
  18. #include "esp_types.h"
  19. #include "esp_attr.h"
  20. #include "esp_intr.h"
  21. #include "esp_intr_alloc.h"
  22. #include "esp_log.h"
  23. #include "esp_err.h"
  24. #include "soc/soc.h"
  25. #include "soc/dport_reg.h"
  26. #include "rom/lldesc.h"
  27. #include "driver/gpio.h"
  28. #include "driver/periph_ctrl.h"
  29. #include "esp_heap_caps.h"
  30. #include "driver/spi_common.h"
  31. #include "stdatomic.h"
  32. static const char *SPI_TAG = "spi";
  33. #define SPI_CHECK(a, str, ret_val) do { \
  34. if (!(a)) { \
  35. ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  36. return (ret_val); \
  37. } \
  38. } while(0)
  39. #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \
  40. SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  41. } else { \
  42. SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \
  43. }
  44. typedef struct spi_device_t spi_device_t;
  45. #define FUNC_SPI 1 //all pins of HSPI and VSPI shares this function number
  46. #define FUNC_GPIO PIN_FUNC_GPIO
  47. #define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
  48. //Periph 1 is 'claimed' by SPI flash code.
  49. static atomic_bool spi_periph_claimed[3] = { ATOMIC_VAR_INIT(true), ATOMIC_VAR_INIT(false), ATOMIC_VAR_INIT(false)};
  50. static const char* spi_claiming_func[3] = {NULL, NULL, NULL};
  51. static uint8_t spi_dma_chan_enabled = 0;
  52. static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
  53. //Returns true if this peripheral is successfully claimed, false if otherwise.
  54. bool spicommon_periph_claim(spi_host_device_t host, const char* source)
  55. {
  56. bool false_var = false;
  57. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &false_var, true);
  58. if (ret) {
  59. spi_claiming_func[host] = source;
  60. periph_module_enable(spi_periph_signal[host].module);
  61. } else {
  62. ESP_EARLY_LOGE(SPI_TAG, "SPI%d already claimed by %s.", host+1, spi_claiming_func[host]);
  63. }
  64. return ret;
  65. }
  66. bool spicommon_periph_in_use(spi_host_device_t host)
  67. {
  68. return atomic_load(&spi_periph_claimed[host]);
  69. }
  70. //Returns true if this peripheral is successfully freed, false if otherwise.
  71. bool spicommon_periph_free(spi_host_device_t host)
  72. {
  73. bool true_var = true;
  74. bool ret = atomic_compare_exchange_strong(&spi_periph_claimed[host], &true_var, false);
  75. if (ret) periph_module_disable(spi_periph_signal[host].module);
  76. return ret;
  77. }
  78. int spicommon_irqsource_for_host(spi_host_device_t host)
  79. {
  80. return spi_periph_signal[host].irq;
  81. }
  82. spi_dev_t *spicommon_hw_for_host(spi_host_device_t host)
  83. {
  84. return spi_periph_signal[host].hw;
  85. }
  86. bool spicommon_dma_chan_claim (int dma_chan)
  87. {
  88. bool ret = false;
  89. assert( dma_chan == 1 || dma_chan == 2 );
  90. portENTER_CRITICAL(&spi_dma_spinlock);
  91. if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) {
  92. // get the channel only when it's not claimed yet.
  93. spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan);
  94. ret = true;
  95. }
  96. periph_module_enable( PERIPH_SPI_DMA_MODULE );
  97. portEXIT_CRITICAL(&spi_dma_spinlock);
  98. return ret;
  99. }
  100. bool spicommon_dma_chan_in_use(int dma_chan)
  101. {
  102. assert(dma_chan==1 || dma_chan == 2);
  103. return spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan);
  104. }
  105. bool spicommon_dma_chan_free(int dma_chan)
  106. {
  107. assert( dma_chan == 1 || dma_chan == 2 );
  108. assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
  109. portENTER_CRITICAL(&spi_dma_spinlock);
  110. spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan);
  111. if ( spi_dma_chan_enabled == 0 ) {
  112. //disable the DMA only when all the channels are freed.
  113. periph_module_disable( PERIPH_SPI_DMA_MODULE );
  114. }
  115. portEXIT_CRITICAL(&spi_dma_spinlock);
  116. return true;
  117. }
  118. static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config)
  119. {
  120. if (bus_config->sclk_io_num>=0 &&
  121. bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) return false;
  122. if (bus_config->quadwp_io_num>=0 &&
  123. bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) return false;
  124. if (bus_config->quadhd_io_num>=0 &&
  125. bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) return false;
  126. if (bus_config->mosi_io_num >= 0 &&
  127. bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) return false;
  128. if (bus_config->miso_io_num>=0 &&
  129. bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) return false;
  130. return true;
  131. }
  132. /*
  133. Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
  134. bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value,
  135. it should be able to be initialized.
  136. */
  137. esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan, uint32_t flags, uint32_t* flags_o)
  138. {
  139. uint32_t temp_flag=0;
  140. bool miso_need_output;
  141. bool mosi_need_output;
  142. bool sclk_need_output;
  143. if ((flags&SPICOMMON_BUSFLAG_MASTER) != 0) {
  144. //initial for master
  145. miso_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  146. mosi_need_output = true;
  147. sclk_need_output = true;
  148. } else {
  149. //initial for slave
  150. miso_need_output = true;
  151. mosi_need_output = ((flags&SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false;
  152. sclk_need_output = false;
  153. }
  154. const bool wp_need_output = true;
  155. const bool hd_need_output = true;
  156. //check pin capabilities
  157. if (bus_config->sclk_io_num>=0) {
  158. temp_flag |= SPICOMMON_BUSFLAG_SCLK;
  159. SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output);
  160. }
  161. if (bus_config->quadwp_io_num>=0) {
  162. SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output);
  163. }
  164. if (bus_config->quadhd_io_num>=0) {
  165. SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output);
  166. }
  167. //set flags for QUAD mode according to the existence of wp and hd
  168. if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) temp_flag |= SPICOMMON_BUSFLAG_WPHD;
  169. if (bus_config->mosi_io_num >= 0) {
  170. temp_flag |= SPICOMMON_BUSFLAG_MOSI;
  171. SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output);
  172. }
  173. if (bus_config->miso_io_num>=0) {
  174. temp_flag |= SPICOMMON_BUSFLAG_MISO;
  175. SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output);
  176. }
  177. //set flags for DUAL mode according to output-capability of MOSI and MISO pins.
  178. if ( (bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) &&
  179. (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num)) ) {
  180. temp_flag |= SPICOMMON_BUSFLAG_DUAL;
  181. }
  182. //check if the selected pins correspond to the iomux pins of the peripheral
  183. bool use_iomux = bus_uses_iomux_pins(host, bus_config);
  184. if (use_iomux) temp_flag |= SPICOMMON_BUSFLAG_NATIVE_PINS;
  185. uint32_t missing_flag = flags & ~temp_flag;
  186. missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag
  187. if (missing_flag != 0) {
  188. //check pins existence
  189. if (missing_flag & SPICOMMON_BUSFLAG_SCLK) ESP_LOGE(SPI_TAG, "sclk pin required.");
  190. if (missing_flag & SPICOMMON_BUSFLAG_MOSI) ESP_LOGE(SPI_TAG, "mosi pin required.");
  191. if (missing_flag & SPICOMMON_BUSFLAG_MISO) ESP_LOGE(SPI_TAG, "miso pin required.");
  192. if (missing_flag & SPICOMMON_BUSFLAG_DUAL) ESP_LOGE(SPI_TAG, "not both mosi and miso output capable");
  193. if (missing_flag & SPICOMMON_BUSFLAG_WPHD) ESP_LOGE(SPI_TAG, "both wp and hd required.");
  194. if (missing_flag & SPICOMMON_BUSFLAG_NATIVE_PINS) ESP_LOGE(SPI_TAG, "not using iomux pins");
  195. SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG);
  196. }
  197. if (use_iomux) {
  198. //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure
  199. //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
  200. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host+1);
  201. if (bus_config->mosi_io_num >= 0) {
  202. gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in);
  203. gpio_iomux_out(bus_config->mosi_io_num, FUNC_SPI, false);
  204. }
  205. if (bus_config->miso_io_num >= 0) {
  206. gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in);
  207. gpio_iomux_out(bus_config->miso_io_num, FUNC_SPI, false);
  208. }
  209. if (bus_config->quadwp_io_num >= 0) {
  210. gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in);
  211. gpio_iomux_out(bus_config->quadwp_io_num, FUNC_SPI, false);
  212. }
  213. if (bus_config->quadhd_io_num >= 0) {
  214. gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in);
  215. gpio_iomux_out(bus_config->quadhd_io_num, FUNC_SPI, false);
  216. }
  217. if (bus_config->sclk_io_num >= 0) {
  218. gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in);
  219. gpio_iomux_out(bus_config->sclk_io_num, FUNC_SPI, false);
  220. }
  221. temp_flag |= SPICOMMON_BUSFLAG_NATIVE_PINS;
  222. } else {
  223. //Use GPIO matrix
  224. ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host+1);
  225. if (bus_config->mosi_io_num >= 0) {
  226. if (mosi_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  227. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT);
  228. gpio_matrix_out(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false);
  229. } else {
  230. gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT);
  231. }
  232. gpio_matrix_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false);
  233. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], FUNC_GPIO);
  234. }
  235. if (bus_config->miso_io_num >= 0) {
  236. if (miso_need_output || (temp_flag&SPICOMMON_BUSFLAG_DUAL)) {
  237. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT);
  238. gpio_matrix_out(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false);
  239. } else {
  240. gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
  241. }
  242. gpio_matrix_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false);
  243. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], FUNC_GPIO);
  244. }
  245. if (bus_config->quadwp_io_num >= 0) {
  246. gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT);
  247. gpio_matrix_out(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false);
  248. gpio_matrix_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false);
  249. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], FUNC_GPIO);
  250. }
  251. if (bus_config->quadhd_io_num >= 0) {
  252. gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT);
  253. gpio_matrix_out(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false);
  254. gpio_matrix_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false);
  255. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], FUNC_GPIO);
  256. }
  257. if (bus_config->sclk_io_num >= 0) {
  258. if (sclk_need_output) {
  259. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT);
  260. gpio_matrix_out(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false);
  261. } else {
  262. gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT);
  263. }
  264. gpio_matrix_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false);
  265. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], FUNC_GPIO);
  266. }
  267. }
  268. //Select DMA channel.
  269. DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
  270. if (flags_o) *flags_o = temp_flag;
  271. return ESP_OK;
  272. }
  273. //Find any pin with output muxed to ``func`` and reset it to GPIO
  274. static void reset_func_to_gpio(int func)
  275. {
  276. for (int x = 0; x < GPIO_PIN_COUNT; x++) {
  277. if (GPIO_IS_VALID_GPIO(x) && (READ_PERI_REG(GPIO_FUNC0_OUT_SEL_CFG_REG + (x * 4))&GPIO_FUNC0_OUT_SEL_M) == func) {
  278. gpio_matrix_out(x, SIG_GPIO_OUT_IDX, false, false);
  279. }
  280. }
  281. }
  282. esp_err_t spicommon_bus_free_io(spi_host_device_t host)
  283. {
  284. if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spid_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spid_iomux_pin], PIN_FUNC_GPIO);
  285. if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiq_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiq_iomux_pin], PIN_FUNC_GPIO);
  286. if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiclk_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiclk_iomux_pin], PIN_FUNC_GPIO);
  287. if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiwp_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spiwp_iomux_pin], PIN_FUNC_GPIO);
  288. if (REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spihd_iomux_pin], MCU_SEL) == 1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spihd_iomux_pin], PIN_FUNC_GPIO);
  289. reset_func_to_gpio(spi_periph_signal[host].spid_out);
  290. reset_func_to_gpio(spi_periph_signal[host].spiq_out);
  291. reset_func_to_gpio(spi_periph_signal[host].spiclk_out);
  292. reset_func_to_gpio(spi_periph_signal[host].spiwp_out);
  293. reset_func_to_gpio(spi_periph_signal[host].spihd_out);
  294. return ESP_OK;
  295. }
  296. esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg)
  297. {
  298. int pin_array[] = {
  299. bus_cfg->mosi_io_num,
  300. bus_cfg->miso_io_num,
  301. bus_cfg->sclk_io_num,
  302. bus_cfg->quadwp_io_num,
  303. bus_cfg->quadhd_io_num,
  304. };
  305. for (int i = 0; i < sizeof(pin_array)/sizeof(int); i ++) {
  306. const int io = pin_array[i];
  307. if (io >= 0 && GPIO_IS_VALID_GPIO(io)) gpio_reset_pin(io);
  308. }
  309. return ESP_OK;
  310. }
  311. void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix)
  312. {
  313. if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) {
  314. //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
  315. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in);
  316. gpio_iomux_out(cs_io_num, FUNC_SPI, false);
  317. } else {
  318. //Use GPIO matrix
  319. if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) {
  320. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
  321. gpio_matrix_out(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false);
  322. } else {
  323. gpio_set_direction(cs_io_num, GPIO_MODE_INPUT);
  324. }
  325. if (cs_num == 0) gpio_matrix_in(cs_io_num, spi_periph_signal[host].spics_in, false);
  326. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], FUNC_GPIO);
  327. }
  328. }
  329. void spicommon_cs_free(spi_host_device_t host, int cs_io_num)
  330. {
  331. if (cs_io_num == 0 && REG_GET_FIELD(GPIO_PIN_MUX_REG[spi_periph_signal[host].spics0_iomux_pin], MCU_SEL) == 1) {
  332. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[spi_periph_signal[host].spics0_iomux_pin], PIN_FUNC_GPIO);
  333. }
  334. reset_func_to_gpio(spi_periph_signal[host].spics_out[cs_io_num]);
  335. }
  336. void spicommon_cs_free_io(int cs_gpio_num)
  337. {
  338. assert(cs_gpio_num>=0 && GPIO_IS_VALID_GPIO(cs_gpio_num));
  339. gpio_reset_pin(cs_gpio_num);
  340. }
  341. //Set up a list of dma descriptors. dmadesc is an array of descriptors. Data is the buffer to point to.
  342. void IRAM_ATTR spicommon_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx)
  343. {
  344. int n = 0;
  345. while (len) {
  346. int dmachunklen = len;
  347. if (dmachunklen > SPI_MAX_DMA_LEN) dmachunklen = SPI_MAX_DMA_LEN;
  348. if (isrx) {
  349. //Receive needs DMA length rounded to next 32-bit boundary
  350. dmadesc[n].size = (dmachunklen + 3) & (~3);
  351. dmadesc[n].length = (dmachunklen + 3) & (~3);
  352. } else {
  353. dmadesc[n].size = dmachunklen;
  354. dmadesc[n].length = dmachunklen;
  355. }
  356. dmadesc[n].buf = (uint8_t *)data;
  357. dmadesc[n].eof = 0;
  358. dmadesc[n].sosf = 0;
  359. dmadesc[n].owner = 1;
  360. dmadesc[n].qe.stqe_next = &dmadesc[n + 1];
  361. len -= dmachunklen;
  362. data += dmachunklen;
  363. n++;
  364. }
  365. dmadesc[n - 1].eof = 1; //Mark last DMA desc as end of stream.
  366. dmadesc[n - 1].qe.stqe_next = NULL;
  367. }
  368. /*
  369. Code for workaround for DMA issue in ESP32 v0/v1 silicon
  370. */
  371. static volatile int dmaworkaround_channels_busy[2] = {0, 0};
  372. static dmaworkaround_cb_t dmaworkaround_cb;
  373. static void *dmaworkaround_cb_arg;
  374. static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
  375. static int dmaworkaround_waiting_for_chan = 0;
  376. bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
  377. {
  378. int otherchan = (dmachan == 1) ? 2 : 1;
  379. bool ret;
  380. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  381. if (dmaworkaround_channels_busy[otherchan-1]) {
  382. //Other channel is busy. Call back when it's done.
  383. dmaworkaround_cb = cb;
  384. dmaworkaround_cb_arg = arg;
  385. dmaworkaround_waiting_for_chan = otherchan;
  386. ret = false;
  387. } else {
  388. //Reset DMA
  389. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  390. ret = true;
  391. }
  392. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  393. return ret;
  394. }
  395. bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress()
  396. {
  397. return (dmaworkaround_waiting_for_chan != 0);
  398. }
  399. void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan)
  400. {
  401. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  402. dmaworkaround_channels_busy[dmachan-1] = 0;
  403. if (dmaworkaround_waiting_for_chan == dmachan) {
  404. //Reset DMA
  405. periph_module_reset( PERIPH_SPI_DMA_MODULE );
  406. dmaworkaround_waiting_for_chan = 0;
  407. //Call callback
  408. dmaworkaround_cb(dmaworkaround_cb_arg);
  409. }
  410. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  411. }
  412. void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan)
  413. {
  414. portENTER_CRITICAL_ISR(&dmaworkaround_mux);
  415. dmaworkaround_channels_busy[dmachan-1] = 1;
  416. portEXIT_CRITICAL_ISR(&dmaworkaround_mux);
  417. }