test_spi_master.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207
  1. /*
  2. Tests for the spi_master device driver
  3. */
  4. #include <esp_types.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <malloc.h>
  8. #include <string.h>
  9. #include "rom/ets_sys.h"
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/task.h"
  12. #include "freertos/semphr.h"
  13. #include "freertos/queue.h"
  14. #include "freertos/xtensa_api.h"
  15. #include "unity.h"
  16. #include "driver/spi_master.h"
  17. #include "driver/spi_slave.h"
  18. #include "soc/dport_reg.h"
  19. #include "esp_heap_caps.h"
  20. #include "esp_log.h"
  21. #include "soc/spi_periph.h"
  22. #include "test_utils.h"
  23. #include "test/test_common_spi.h"
  24. #include "soc/gpio_periph.h"
  25. #include "sdkconfig.h"
  26. const static char TAG[] = "test_spi";
  27. static void check_spi_pre_n_for(int clk, int pre, int n)
  28. {
  29. esp_err_t ret;
  30. spi_device_handle_t handle;
  31. spi_device_interface_config_t devcfg={
  32. .command_bits=0,
  33. .address_bits=0,
  34. .dummy_bits=0,
  35. .clock_speed_hz=clk,
  36. .duty_cycle_pos=128,
  37. .mode=0,
  38. .spics_io_num=21,
  39. .queue_size=3
  40. };
  41. char sendbuf[16]="";
  42. spi_transaction_t t;
  43. memset(&t, 0, sizeof(t));
  44. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle);
  45. TEST_ASSERT(ret==ESP_OK);
  46. t.length=16*8;
  47. t.tx_buffer=sendbuf;
  48. ret=spi_device_transmit(handle, &t);
  49. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1);
  50. TEST_ASSERT(SPI2.clock.clkcnt_n+1==n);
  51. TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre);
  52. ret=spi_bus_remove_device(handle);
  53. TEST_ASSERT(ret==ESP_OK);
  54. }
  55. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  56. {
  57. spi_bus_config_t buscfg={
  58. .mosi_io_num=4,
  59. .miso_io_num=26,
  60. .sclk_io_num=25,
  61. .quadwp_io_num=-1,
  62. .quadhd_io_num=-1
  63. };
  64. esp_err_t ret;
  65. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  66. TEST_ASSERT(ret==ESP_OK);
  67. check_spi_pre_n_for(26000000, 1, 3);
  68. check_spi_pre_n_for(20000000, 1, 4);
  69. check_spi_pre_n_for(8000000, 1, 10);
  70. check_spi_pre_n_for(800000, 2, 50);
  71. check_spi_pre_n_for(100000, 16, 50);
  72. check_spi_pre_n_for(333333, 4, 60);
  73. check_spi_pre_n_for(900000, 2, 44);
  74. check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz
  75. check_spi_pre_n_for(26000000, 1, 3);
  76. ret=spi_bus_free(TEST_SPI_HOST);
  77. TEST_ASSERT(ret==ESP_OK);
  78. }
  79. static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) {
  80. spi_bus_config_t buscfg={
  81. .mosi_io_num=26,
  82. .miso_io_num=26,
  83. .sclk_io_num=25,
  84. .quadwp_io_num=-1,
  85. .quadhd_io_num=-1,
  86. .max_transfer_sz=4096*3
  87. };
  88. spi_device_interface_config_t devcfg={
  89. .command_bits=0,
  90. .address_bits=0,
  91. .dummy_bits=0,
  92. .clock_speed_hz=clkspeed,
  93. .duty_cycle_pos=128,
  94. .mode=0,
  95. .spics_io_num=21,
  96. .queue_size=3,
  97. };
  98. esp_err_t ret;
  99. spi_device_handle_t handle;
  100. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, dma?1:0);
  101. TEST_ASSERT(ret==ESP_OK);
  102. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle);
  103. TEST_ASSERT(ret==ESP_OK);
  104. //connect MOSI to two devices breaks the output, fix it.
  105. spitest_gpio_output_sel(26, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  106. printf("Bus/dev inited.\n");
  107. return handle;
  108. }
  109. static int spi_test(spi_device_handle_t handle, int num_bytes) {
  110. esp_err_t ret;
  111. int x;
  112. bool success = true;
  113. srand(num_bytes);
  114. char *sendbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  115. char *recvbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA);
  116. for (x=0; x<num_bytes; x++) {
  117. sendbuf[x]=rand()&0xff;
  118. recvbuf[x]=0x55;
  119. }
  120. spi_transaction_t t;
  121. memset(&t, 0, sizeof(t));
  122. t.length=num_bytes*8;
  123. t.tx_buffer=sendbuf;
  124. t.rx_buffer=recvbuf;
  125. t.addr=0xA00000000000000FL;
  126. t.cmd=0x55;
  127. printf("Transmitting %d bytes...\n", num_bytes);
  128. ret=spi_device_transmit(handle, &t);
  129. TEST_ASSERT(ret==ESP_OK);
  130. srand(num_bytes);
  131. for (x=0; x<num_bytes; x++) {
  132. if (sendbuf[x]!=(rand()&0xff)) {
  133. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  134. TEST_ASSERT(0);
  135. }
  136. if (sendbuf[x]!=recvbuf[x]) break;
  137. }
  138. if (x!=num_bytes) {
  139. int from=x-16;
  140. if (from<0) from=0;
  141. success = false;
  142. printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from);
  143. for (int i=0; i<32; i++) {
  144. if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]);
  145. }
  146. printf("\n");
  147. for (int i=0; i<32; i++) {
  148. if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]);
  149. }
  150. printf("\n");
  151. }
  152. if (success) printf("Success!\n");
  153. free(sendbuf);
  154. free(recvbuf);
  155. return success;
  156. }
  157. TEST_CASE("SPI Master test", "[spi]")
  158. {
  159. bool success = true;
  160. printf("Testing bus at 80KHz\n");
  161. spi_device_handle_t handle=setup_spi_bus(80000, true);
  162. success &= spi_test(handle, 16); //small
  163. success &= spi_test(handle, 21); //small, unaligned
  164. success &= spi_test(handle, 36); //aligned
  165. success &= spi_test(handle, 128); //aligned
  166. success &= spi_test(handle, 129); //unaligned
  167. success &= spi_test(handle, 4096-2); //multiple descs, edge case 1
  168. success &= spi_test(handle, 4096-1); //multiple descs, edge case 2
  169. success &= spi_test(handle, 4096*3); //multiple descs
  170. master_free_device_bus(handle);
  171. printf("Testing bus at 80KHz, non-DMA\n");
  172. handle=setup_spi_bus(80000, false);
  173. success &= spi_test(handle, 4); //aligned
  174. success &= spi_test(handle, 16); //small
  175. success &= spi_test(handle, 21); //small, unaligned
  176. success &= spi_test(handle, 32); //small
  177. success &= spi_test(handle, 47); //small, unaligned
  178. success &= spi_test(handle, 63); //small
  179. success &= spi_test(handle, 64); //small, unaligned
  180. master_free_device_bus(handle);
  181. printf("Testing bus at 26MHz\n");
  182. handle=setup_spi_bus(20000000, true);
  183. success &= spi_test(handle, 128); //DMA, aligned
  184. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  185. master_free_device_bus(handle);
  186. printf("Testing bus at 900KHz\n");
  187. handle=setup_spi_bus(9000000, true);
  188. success &= spi_test(handle, 128); //DMA, aligned
  189. success &= spi_test(handle, 4096*3); //DMA, multiple descs
  190. master_free_device_bus(handle);
  191. TEST_ASSERT(success);
  192. }
  193. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]") {
  194. esp_err_t ret;
  195. bool success = true;
  196. spi_device_interface_config_t devcfg={
  197. .command_bits=0,
  198. .address_bits=0,
  199. .dummy_bits=0,
  200. .clock_speed_hz=1000000,
  201. .duty_cycle_pos=128,
  202. .mode=0,
  203. .spics_io_num=23,
  204. .queue_size=3,
  205. };
  206. spi_device_handle_t handle1=setup_spi_bus(80000, true);
  207. spi_device_handle_t handle2;
  208. spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle2);
  209. printf("Sending to dev 1\n");
  210. success &= spi_test(handle1, 7);
  211. printf("Sending to dev 1\n");
  212. success &= spi_test(handle1, 15);
  213. printf("Sending to dev 2\n");
  214. success &= spi_test(handle2, 15);
  215. printf("Sending to dev 1\n");
  216. success &= spi_test(handle1, 32);
  217. printf("Sending to dev 2\n");
  218. success &= spi_test(handle2, 32);
  219. printf("Sending to dev 1\n");
  220. success &= spi_test(handle1, 63);
  221. printf("Sending to dev 2\n");
  222. success &= spi_test(handle2, 63);
  223. printf("Sending to dev 1\n");
  224. success &= spi_test(handle1, 5000);
  225. printf("Sending to dev 2\n");
  226. success &= spi_test(handle2, 5000);
  227. ret=spi_bus_remove_device(handle2);
  228. TEST_ASSERT(ret==ESP_OK);
  229. master_free_device_bus(handle1);
  230. TEST_ASSERT(success);
  231. }
  232. static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs)
  233. {
  234. esp_err_t ret;
  235. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  236. cfg.mosi_io_num = mosi;
  237. cfg.miso_io_num = miso;
  238. cfg.sclk_io_num = sclk;
  239. spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  240. master_cfg.spics_io_num = cs;
  241. ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, 1);
  242. if (ret != ESP_OK) return ret;
  243. spi_device_handle_t spi;
  244. ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi);
  245. if (ret != ESP_OK) {
  246. spi_bus_free(TEST_SPI_HOST);
  247. return ret;
  248. }
  249. master_free_device_bus(spi);
  250. return ESP_OK;
  251. }
  252. static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs)
  253. {
  254. esp_err_t ret;
  255. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  256. cfg.mosi_io_num = mosi;
  257. cfg.miso_io_num = miso;
  258. cfg.sclk_io_num = sclk;
  259. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  260. slave_cfg.spics_io_num = cs;
  261. ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, 1);
  262. if (ret != ESP_OK) return ret;
  263. spi_slave_free(TEST_SLAVE_HOST);
  264. return ESP_OK;
  265. }
  266. TEST_CASE("spi placed on input-only pins", "[spi]")
  267. {
  268. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  269. TEST_ASSERT(test_master_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK);
  270. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS));
  271. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS)!=ESP_OK);
  272. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34)!=ESP_OK);
  273. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  274. TEST_ESP_OK(test_slave_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  275. TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK);
  276. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS));
  277. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34));
  278. }
  279. TEST_CASE("spi bus setting with different pin configs", "[spi]")
  280. {
  281. spi_bus_config_t cfg;
  282. uint32_t flags_o;
  283. uint32_t flags_expected;
  284. ESP_LOGI(TAG, "test 6 iomux output pins...");
  285. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_QUAD;
  286. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  287. .max_transfer_sz = 8, .flags = flags_expected};
  288. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  289. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  290. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  291. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  292. ESP_LOGI(TAG, "test 4 iomux output pins...");
  293. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_DUAL;
  294. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  295. .max_transfer_sz = 8, .flags = flags_expected};
  296. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  297. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  298. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  299. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  300. ESP_LOGI(TAG, "test 6 output pins...");
  301. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD;
  302. //swap MOSI and MISO
  303. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  304. .max_transfer_sz = 8, .flags = flags_expected};
  305. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  306. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  307. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  308. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  309. ESP_LOGI(TAG, "test 4 output pins...");
  310. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL;
  311. //swap MOSI and MISO
  312. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  313. .max_transfer_sz = 8, .flags = flags_expected};
  314. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  315. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  316. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  317. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  318. ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
  319. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
  320. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  321. .max_transfer_sz = 8, .flags = flags_expected};
  322. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  323. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  324. ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
  325. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD;
  326. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  327. .max_transfer_sz = 8, .flags = flags_expected};
  328. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  329. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  330. ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
  331. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
  332. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  333. .max_transfer_sz = 8, .flags = flags_expected};
  334. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  335. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  336. ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
  337. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO;
  338. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  339. .max_transfer_sz = 8, .flags = flags_expected};
  340. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  341. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  342. ESP_LOGI(TAG, "check native flag for 6 output pins...");
  343. flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS;
  344. //swap MOSI and MISO
  345. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  346. .max_transfer_sz = 8, .flags = flags_expected};
  347. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  348. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  349. ESP_LOGI(TAG, "check native flag for 4 output pins...");
  350. flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS;
  351. //swap MOSI and MISO
  352. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  353. .max_transfer_sz = 8, .flags = flags_expected};
  354. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  355. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  356. ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
  357. flags_expected = SPICOMMON_BUSFLAG_DUAL;
  358. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  359. .max_transfer_sz = 8, .flags = flags_expected};
  360. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  361. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  362. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  363. .max_transfer_sz = 8, .flags = flags_expected};
  364. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  365. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  366. ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
  367. flags_expected = SPICOMMON_BUSFLAG_DUAL;
  368. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  369. .max_transfer_sz = 8, .flags = flags_expected};
  370. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  371. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  372. cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1,
  373. .max_transfer_sz = 8, .flags = flags_expected};
  374. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  375. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  376. ESP_LOGI(TAG, "check sclk flag...");
  377. flags_expected = SPICOMMON_BUSFLAG_SCLK;
  378. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = -1, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  379. .max_transfer_sz = 8, .flags = flags_expected};
  380. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  381. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  382. ESP_LOGI(TAG, "check mosi flag...");
  383. flags_expected = SPICOMMON_BUSFLAG_MOSI;
  384. cfg = (spi_bus_config_t){.mosi_io_num = -1, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  385. .max_transfer_sz = 8, .flags = flags_expected};
  386. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  387. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  388. ESP_LOGI(TAG, "check miso flag...");
  389. flags_expected = SPICOMMON_BUSFLAG_MISO;
  390. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = -1, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  391. .max_transfer_sz = 8, .flags = flags_expected};
  392. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  393. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  394. ESP_LOGI(TAG, "check quad flag...");
  395. flags_expected = SPICOMMON_BUSFLAG_QUAD;
  396. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP,
  397. .max_transfer_sz = 8, .flags = flags_expected};
  398. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  399. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  400. cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = -1,
  401. .max_transfer_sz = 8, .flags = flags_expected};
  402. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o));
  403. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  404. }
  405. TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]")
  406. {
  407. //spi config
  408. spi_bus_config_t bus_config;
  409. spi_device_interface_config_t device_config;
  410. spi_device_handle_t spi;
  411. spi_host_device_t host;
  412. int dma = 1;
  413. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  414. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  415. bus_config.miso_io_num = -1;
  416. bus_config.mosi_io_num = 26;
  417. bus_config.sclk_io_num = 25;
  418. bus_config.quadwp_io_num = -1;
  419. bus_config.quadhd_io_num = -1;
  420. device_config.clock_speed_hz = 50000;
  421. device_config.mode = 0;
  422. device_config.spics_io_num = -1;
  423. device_config.queue_size = 1;
  424. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  425. struct spi_transaction_t transaction = {
  426. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  427. .length = 16,
  428. .rx_buffer = NULL,
  429. .tx_data = {0x04, 0x00}
  430. };
  431. //initialize for first host
  432. host = 1;
  433. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  434. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  435. printf("before first xmit\n");
  436. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  437. printf("after first xmit\n");
  438. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  439. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  440. //for second host and failed before
  441. host = 2;
  442. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  443. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  444. printf("before second xmit\n");
  445. // the original version (bit mis-written) stucks here.
  446. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  447. // test case success when see this.
  448. printf("after second xmit\n");
  449. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  450. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  451. }
  452. DRAM_ATTR static uint32_t data_dram[80]={0};
  453. //force to place in code area.
  454. static const uint8_t data_drom[320+3] = {
  455. 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
  456. 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
  457. 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
  458. 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
  459. 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
  460. 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
  461. 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
  462. 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
  463. 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
  464. 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
  465. };
  466. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  467. {
  468. #ifdef CONFIG_SPIRAM_SUPPORT
  469. //test psram if enabled
  470. ESP_LOGI(TAG, "testing PSRAM...");
  471. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
  472. TEST_ASSERT(esp_ptr_external_ram(data_malloc));
  473. #else
  474. uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_DMA);
  475. TEST_ASSERT(esp_ptr_in_dram(data_malloc));
  476. #endif
  477. TEST_ASSERT(data_malloc != NULL);
  478. //refer to soc_memory_layout.c
  479. uint32_t* data_iram = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_EXEC);
  480. TEST_ASSERT(data_iram != NULL);
  481. ESP_LOGI(TAG, "iram: %p, dram: %p", data_iram, data_dram);
  482. ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
  483. TEST_ASSERT(esp_ptr_in_dram(data_dram));
  484. TEST_ASSERT(esp_ptr_in_iram(data_iram));
  485. TEST_ASSERT(esp_ptr_in_drom(data_drom));
  486. srand(52);
  487. for (int i = 0; i < 320/4; i++) {
  488. data_iram[i] = rand();
  489. data_dram[i] = rand();
  490. data_malloc[i] = rand();
  491. }
  492. esp_err_t ret;
  493. spi_device_handle_t spi;
  494. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  495. buscfg.miso_io_num = PIN_NUM_MOSI;
  496. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  497. //Initialize the SPI bus
  498. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  499. TEST_ASSERT(ret==ESP_OK);
  500. //Attach the LCD to the SPI bus
  501. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi);
  502. TEST_ASSERT(ret==ESP_OK);
  503. //connect MOSI to two devices breaks the output, fix it.
  504. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  505. #define TEST_REGION_SIZE 5
  506. static spi_transaction_t trans[TEST_REGION_SIZE];
  507. int x;
  508. memset(trans, 0, sizeof(trans));
  509. trans[0].length = 320*8,
  510. trans[0].tx_buffer = data_iram;
  511. trans[0].rx_buffer = data_malloc+1;
  512. trans[1].length = 320*8,
  513. trans[1].tx_buffer = data_dram;
  514. trans[1].rx_buffer = data_iram;
  515. trans[2].length = 320*8,
  516. trans[2].tx_buffer = data_malloc+2;
  517. trans[2].rx_buffer = data_dram;
  518. trans[3].length = 320*8,
  519. trans[3].tx_buffer = data_drom;
  520. trans[3].rx_buffer = data_iram;
  521. trans[4].length = 4*8,
  522. trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  523. uint32_t* ptr = (uint32_t*)trans[4].rx_data;
  524. *ptr = 0x54545454;
  525. ptr = (uint32_t*)trans[4].tx_data;
  526. *ptr = 0xbc124960;
  527. //Queue all transactions.
  528. for (x=0; x<TEST_REGION_SIZE; x++) {
  529. ESP_LOGI(TAG, "transmitting %d...", x);
  530. ret=spi_device_transmit(spi,&trans[x]);
  531. TEST_ASSERT(ret==ESP_OK);
  532. if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
  533. TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
  534. } else {
  535. TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 /4);
  536. }
  537. }
  538. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  539. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  540. free(data_malloc);
  541. free(data_iram);
  542. }
  543. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  544. // 1. RX buffer not aligned (start and end)
  545. // 2. not setting rx_buffer
  546. // 3. setting rx_length != length
  547. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  548. {
  549. uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  550. uint8_t rx_buf[320];
  551. esp_err_t ret;
  552. spi_device_handle_t spi;
  553. spi_bus_config_t buscfg={
  554. .miso_io_num=PIN_NUM_MOSI,
  555. .mosi_io_num=PIN_NUM_MOSI,
  556. .sclk_io_num=PIN_NUM_CLK,
  557. .quadwp_io_num=-1,
  558. .quadhd_io_num=-1
  559. };
  560. spi_device_interface_config_t devcfg={
  561. .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
  562. .mode=0, //SPI mode 0
  563. .spics_io_num=PIN_NUM_CS, //CS pin
  564. .queue_size=7, //We want to be able to queue 7 transactions at a time
  565. .pre_cb=NULL,
  566. };
  567. //Initialize the SPI bus
  568. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  569. TEST_ASSERT(ret==ESP_OK);
  570. //Attach the LCD to the SPI bus
  571. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi);
  572. TEST_ASSERT(ret==ESP_OK);
  573. //connect MOSI to two devices breaks the output, fix it.
  574. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  575. memset(rx_buf, 0x66, 320);
  576. for ( int i = 0; i < 8; i ++ ) {
  577. memset( rx_buf, 0x66, sizeof(rx_buf));
  578. spi_transaction_t t = {};
  579. t.length = 8*(i+1);
  580. t.rxlength = 0;
  581. t.tx_buffer = tx_buf+2*i;
  582. t.rx_buffer = rx_buf + i;
  583. if ( i == 1 ) {
  584. //test set no start
  585. t.rx_buffer = NULL;
  586. } else if ( i == 2 ) {
  587. //test rx length != tx_length
  588. t.rxlength = t.length - 8;
  589. }
  590. spi_device_transmit( spi, &t );
  591. for( int i = 0; i < 16; i ++ ) {
  592. printf("%02X ", rx_buf[i]);
  593. }
  594. printf("\n");
  595. if ( i == 1 ) {
  596. // no rx, skip check
  597. } else if ( i == 2 ) {
  598. //test rx length = tx length-1
  599. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8-1 );
  600. } else {
  601. //normal check
  602. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8 );
  603. }
  604. }
  605. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  606. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  607. }
  608. static uint8_t bitswap(uint8_t in)
  609. {
  610. uint8_t out = 0;
  611. for (int i = 0; i < 8; i++) {
  612. out = out >> 1;
  613. if (in&0x80) out |= 0x80;
  614. in = in << 1;
  615. }
  616. return out;
  617. }
  618. void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
  619. {
  620. spi_device_handle_t spi;
  621. ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first?"LSB":"MSB");
  622. //initial master, mode 0, 1MHz
  623. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  624. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1));
  625. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  626. devcfg.clock_speed_hz = 1*1000*1000;
  627. if (lsb_first) devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
  628. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  629. //connecting pins to two peripherals breaks the output, fix it.
  630. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  631. spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  632. spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  633. spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  634. for (int i= 0; i < 8; i++) {
  635. //prepare slave tx data
  636. slave_txdata_t slave_txdata = (slave_txdata_t) {
  637. .start = spitest_slave_send + 4*(i%3),
  638. .len = 256,
  639. };
  640. xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
  641. vTaskDelay(50);
  642. //prepare master tx data
  643. int cmd_bits = (i+1)*2;
  644. int addr_bits = 56-8*i;
  645. int round_up = (cmd_bits+addr_bits+7)/8*8;
  646. addr_bits = round_up - cmd_bits;
  647. spi_transaction_ext_t trans = (spi_transaction_ext_t) {
  648. .base = {
  649. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  650. .addr = 0x456789abcdef0123,
  651. .cmd = 0xcdef,
  652. },
  653. .command_bits = cmd_bits,
  654. .address_bits = addr_bits,
  655. };
  656. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  657. ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
  658. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&trans));
  659. //wait for both master and slave end
  660. size_t rcv_len;
  661. slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
  662. rcv_len-=8;
  663. uint8_t *buffer = rcv_data->data;
  664. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  665. TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len+7)/8);
  666. TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits+addr_bits);
  667. ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
  668. uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
  669. uint64_t addr_expected = trans.base.addr & ((1ULL<<addr_bits) - 1);
  670. uint8_t *data_ptr = buffer;
  671. uint16_t cmd_got = *(uint16_t*)data_ptr;
  672. data_ptr += cmd_bits/8;
  673. cmd_got = __builtin_bswap16(cmd_got);
  674. cmd_got = cmd_got >> (16-cmd_bits);
  675. int remain_bits = cmd_bits % 8;
  676. uint64_t addr_got = *(uint64_t*)data_ptr;
  677. data_ptr += 8;
  678. addr_got = __builtin_bswap64(addr_got);
  679. addr_got = (addr_got << remain_bits);
  680. addr_got |= (*data_ptr >> (8-remain_bits));
  681. addr_got = addr_got >> (64-addr_bits);
  682. if (lsb_first) {
  683. cmd_got = __builtin_bswap16(cmd_got);
  684. addr_got = __builtin_bswap64(addr_got);
  685. uint8_t *swap_ptr = (uint8_t*)&cmd_got;
  686. swap_ptr[0] = bitswap(swap_ptr[0]);
  687. swap_ptr[1] = bitswap(swap_ptr[1]);
  688. cmd_got = cmd_got >> (16-cmd_bits);
  689. swap_ptr = (uint8_t*)&addr_got;
  690. for (int j = 0; j < 8; j++) swap_ptr[j] = bitswap(swap_ptr[j]);
  691. addr_got = addr_got >> (64-addr_bits);
  692. }
  693. ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got>>32), (uint32_t)addr_got);
  694. TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
  695. if (addr_bits > 0) {
  696. TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
  697. TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
  698. }
  699. //clean
  700. vRingbufferReturnItem(slave_context->data_received, buffer);
  701. }
  702. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  703. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  704. }
  705. TEST_CASE("SPI master variable cmd & addr test","[spi]")
  706. {
  707. spi_slave_task_context_t slave_context = {};
  708. esp_err_t err = init_slave_context( &slave_context );
  709. TEST_ASSERT( err == ESP_OK );
  710. TaskHandle_t handle_slave;
  711. xTaskCreate( spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  712. //initial slave, mode 0, no dma
  713. int dma_chan = 0;
  714. int slave_mode = 0;
  715. spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  716. spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
  717. slvcfg.mode = slave_mode;
  718. //Initialize SPI slave interface
  719. TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
  720. test_cmd_addr(&slave_context, false);
  721. test_cmd_addr(&slave_context, true);
  722. vTaskDelete( handle_slave );
  723. handle_slave = 0;
  724. deinit_slave_context(&slave_context);
  725. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  726. ESP_LOGI(MASTER_TAG, "test passed.");
  727. }
  728. void test_dummy(spi_device_handle_t spi, int dummy_n, uint8_t* data_to_send, int len)
  729. {
  730. ESP_LOGI(TAG, "testing dummy n=%d", dummy_n);
  731. WORD_ALIGNED_ATTR uint8_t slave_buffer[len+(dummy_n+7)/8];
  732. spi_slave_transaction_t slave_t = {
  733. .tx_buffer = slave_buffer,
  734. .rx_buffer = slave_buffer,
  735. .length = len*8+((dummy_n+7)&(~8))+32, //receive more bytes to avoid slave discarding data
  736. };
  737. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  738. vTaskDelay(50);
  739. spi_transaction_ext_t t = {
  740. .base = {
  741. .tx_buffer = data_to_send,
  742. .length = (len+1)*8, //send one more byte force slave receive all data
  743. .flags = SPI_TRANS_VARIABLE_DUMMY,
  744. },
  745. .dummy_bits = dummy_n,
  746. };
  747. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&t));
  748. spi_slave_transaction_t *ret_slave;
  749. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  750. TEST_ASSERT(ret_slave == &slave_t);
  751. ESP_LOG_BUFFER_HEXDUMP("rcv", slave_buffer, len+4, ESP_LOG_INFO);
  752. int skip_cnt = dummy_n/8;
  753. int dummy_remain = dummy_n % 8;
  754. uint8_t *slave_ptr = slave_buffer;
  755. if (dummy_remain > 0) {
  756. for (int i = 0; i < len; i++) {
  757. slave_ptr[0] = (slave_ptr[skip_cnt] << dummy_remain) | (slave_ptr[skip_cnt+1] >> (8-dummy_remain));
  758. slave_ptr++;
  759. }
  760. } else {
  761. for (int i = 0; i < len; i++) {
  762. slave_ptr[0] = slave_ptr[skip_cnt];
  763. slave_ptr++;
  764. }
  765. }
  766. TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_send, slave_buffer, len);
  767. }
  768. TEST_CASE("SPI master variable dummy test", "[spi]")
  769. {
  770. spi_device_handle_t spi;
  771. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  772. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  773. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  774. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, 0));
  775. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  776. spi_slave_interface_config_t slave_cfg =SPI_SLAVE_TEST_DEFAULT_CONFIG();
  777. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, 0));
  778. spitest_gpio_output_sel(bus_cfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  779. spitest_gpio_output_sel(bus_cfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  780. spitest_gpio_output_sel(dev_cfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  781. spitest_gpio_output_sel(bus_cfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  782. uint8_t data_to_send[] = {0x12, 0x34, 0x56, 0x78};
  783. test_dummy(spi, 0, data_to_send, sizeof(data_to_send));
  784. test_dummy(spi, 1, data_to_send, sizeof(data_to_send));
  785. test_dummy(spi, 2, data_to_send, sizeof(data_to_send));
  786. test_dummy(spi, 3, data_to_send, sizeof(data_to_send));
  787. test_dummy(spi, 4, data_to_send, sizeof(data_to_send));
  788. test_dummy(spi, 8, data_to_send, sizeof(data_to_send));
  789. test_dummy(spi, 12, data_to_send, sizeof(data_to_send));
  790. test_dummy(spi, 16, data_to_send, sizeof(data_to_send));
  791. spi_slave_free(TEST_SLAVE_HOST);
  792. master_free_device_bus(spi);
  793. }
  794. /********************************************************************************
  795. * Test SPI transaction interval
  796. ********************************************************************************/
  797. #define RECORD_TIME_PREPARE() uint32_t __t1, __t2
  798. #define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0)
  799. #define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1)/240;}while(0)
  800. static void speed_setup(spi_device_handle_t* spi, bool use_dma)
  801. {
  802. esp_err_t ret;
  803. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  804. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  805. devcfg.queue_size=8; //We want to be able to queue 7 transactions at a time
  806. //Initialize the SPI bus and the device to test
  807. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, (use_dma?1:0));
  808. TEST_ASSERT(ret==ESP_OK);
  809. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi);
  810. TEST_ASSERT(ret==ESP_OK);
  811. }
  812. static void sorted_array_insert(uint32_t* array, int* size, uint32_t item)
  813. {
  814. int pos;
  815. for (pos = *size; pos>0; pos--) {
  816. if (array[pos-1] < item) break;
  817. array[pos] = array[pos-1];
  818. }
  819. array[pos]=item;
  820. (*size)++;
  821. }
  822. #define TEST_TIMES 11
  823. static IRAM_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  824. {
  825. RECORD_TIME_PREPARE();
  826. spi_device_transmit(spi, trans); // prime the flash cache
  827. RECORD_TIME_START();
  828. spi_device_transmit(spi, trans);
  829. RECORD_TIME_END(t_flight);
  830. }
  831. static IRAM_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight)
  832. {
  833. RECORD_TIME_PREPARE();
  834. spi_device_polling_transmit(spi, trans); // prime the flash cache
  835. RECORD_TIME_START();
  836. spi_device_polling_transmit(spi, trans);
  837. RECORD_TIME_END(t_flight);
  838. }
  839. TEST_CASE("spi_speed","[spi]")
  840. {
  841. uint32_t t_flight;
  842. //to get rid of the influence of randomly interrupts, we measured the performance by median value
  843. uint32_t t_flight_sorted[TEST_TIMES];
  844. esp_err_t ret;
  845. int t_flight_num = 0;
  846. spi_device_handle_t spi;
  847. const bool use_dma = true;
  848. WORD_ALIGNED_ATTR spi_transaction_t trans = {
  849. .length = 1*8,
  850. .flags = SPI_TRANS_USE_TXDATA,
  851. };
  852. //first work with DMA
  853. speed_setup(&spi, use_dma);
  854. //record flight time by isr, with DMA
  855. t_flight_num = 0;
  856. for (int i = 0; i < TEST_TIMES; i++) {
  857. spi_transmit_measure(spi, &trans, &t_flight);
  858. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  859. }
  860. for (int i = 0; i < TEST_TIMES; i++) {
  861. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  862. }
  863. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  864. //acquire the bus to send polling transactions faster
  865. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  866. TEST_ESP_OK(ret);
  867. //record flight time by polling and with DMA
  868. t_flight_num = 0;
  869. for (int i = 0; i < TEST_TIMES; i++) {
  870. spi_transmit_polling_measure(spi, &trans, &t_flight);
  871. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  872. }
  873. for (int i = 0; i < TEST_TIMES; i++) {
  874. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  875. }
  876. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  877. //release the bus
  878. spi_device_release_bus(spi);
  879. master_free_device_bus(spi);
  880. speed_setup(&spi, !use_dma);
  881. //record flight time by isr, without DMA
  882. t_flight_num = 0;
  883. for (int i = 0; i < TEST_TIMES; i++) {
  884. spi_transmit_measure(spi, &trans, &t_flight);
  885. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  886. }
  887. for (int i = 0; i < TEST_TIMES; i++) {
  888. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  889. }
  890. TEST_PERFORMANCE_LESS_THAN( SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  891. //acquire the bus to send polling transactions faster
  892. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  893. TEST_ESP_OK(ret);
  894. //record flight time by polling, without DMA
  895. t_flight_num = 0;
  896. for (int i = 0; i < TEST_TIMES; i++) {
  897. spi_transmit_polling_measure(spi, &trans, &t_flight);
  898. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  899. }
  900. for (int i = 0; i < TEST_TIMES; i++) {
  901. ESP_LOGI(TAG, "%d", t_flight_sorted[i]);
  902. }
  903. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]);
  904. //release the bus
  905. spi_device_release_bus(spi);
  906. master_free_device_bus(spi);
  907. }
  908. typedef struct {
  909. spi_device_handle_t handle;
  910. bool finished;
  911. } task_context_t;
  912. void spi_task1(void* arg)
  913. {
  914. //task1 send 50 polling transactions, acquire the bus and send another 50
  915. int count=0;
  916. spi_transaction_t t = {
  917. .flags = SPI_TRANS_USE_TXDATA,
  918. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  919. .length = 4*8,
  920. };
  921. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  922. for( int j = 0; j < 50; j ++ ) {
  923. TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
  924. ESP_LOGI( TAG, "task1:%d", count++ );
  925. }
  926. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  927. for( int j = 0; j < 50; j ++ ) {
  928. TEST_ESP_OK(spi_device_polling_transmit( handle, &t ));
  929. ESP_LOGI( TAG, "task1:%d", count++ );
  930. }
  931. spi_device_release_bus(handle);
  932. ESP_LOGI(TAG, "task1 terminates");
  933. ((task_context_t*)arg)->finished = true;
  934. vTaskDelete(NULL);
  935. }
  936. void spi_task2(void* arg)
  937. {
  938. int count=0;
  939. //task2 acquire the bus, send 50 polling transactions and then 50 non-polling
  940. spi_transaction_t t = {
  941. .flags = SPI_TRANS_USE_TXDATA,
  942. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  943. .length = 4*8,
  944. };
  945. spi_transaction_t *ret_t;
  946. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  947. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  948. for (int i = 0; i < 50; i ++) {
  949. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  950. ESP_LOGI( TAG, "task2: %d", count++ );
  951. }
  952. for( int j = 0; j < 50; j ++ ) {
  953. TEST_ESP_OK(spi_device_queue_trans( handle, &t, portMAX_DELAY ));
  954. }
  955. for( int j = 0; j < 50; j ++ ) {
  956. TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
  957. assert(ret_t == &t);
  958. ESP_LOGI( TAG, "task2: %d", count++ );
  959. }
  960. spi_device_release_bus(handle);
  961. vTaskDelay(1);
  962. ESP_LOGI(TAG, "task2 terminates");
  963. ((task_context_t*)arg)->finished = true;
  964. vTaskDelete(NULL);
  965. }
  966. void spi_task3(void* arg)
  967. {
  968. //task3 send 30 polling transactions, acquire the bus, send 20 polling transactions and then 50 non-polling
  969. int count=0;
  970. spi_transaction_t t = {
  971. .flags = SPI_TRANS_USE_TXDATA,
  972. .tx_data = { 0x80, 0x12, 0x34, 0x56 },
  973. .length = 4*8,
  974. };
  975. spi_transaction_t *ret_t;
  976. spi_device_handle_t handle = ((task_context_t*)arg)->handle;
  977. for (int i = 0; i < 30; i ++) {
  978. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  979. ESP_LOGI( TAG, "task3: %d", count++ );
  980. }
  981. TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY ));
  982. for (int i = 0; i < 20; i ++) {
  983. TEST_ESP_OK(spi_device_polling_transmit(handle, &t));
  984. ESP_LOGI( TAG, "task3: %d", count++ );
  985. }
  986. for (int j = 0; j < 50; j++) {
  987. TEST_ESP_OK(spi_device_queue_trans(handle, &t, portMAX_DELAY));
  988. }
  989. for (int j = 0; j < 50; j++) {
  990. TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY));
  991. assert(ret_t == &t);
  992. ESP_LOGI(TAG, "task3: %d", count++);
  993. }
  994. spi_device_release_bus(handle);
  995. ESP_LOGI(TAG, "task3 terminates");
  996. ((task_context_t*)arg)->finished = true;
  997. vTaskDelete(NULL);
  998. }
  999. TEST_CASE("spi poll tasks","[spi]")
  1000. {
  1001. task_context_t context1={};
  1002. task_context_t context2={};
  1003. task_context_t context3={};
  1004. TaskHandle_t task1, task2, task3;
  1005. esp_err_t ret;
  1006. spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
  1007. spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1008. devcfg.queue_size = 100;
  1009. //Initialize the SPI bus and 3 devices
  1010. ret=spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1);
  1011. TEST_ASSERT(ret==ESP_OK);
  1012. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &context1.handle);
  1013. TEST_ASSERT(ret==ESP_OK);
  1014. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &context2.handle);
  1015. TEST_ASSERT(ret==ESP_OK);
  1016. ret=spi_bus_add_device(TEST_SPI_HOST, &devcfg, &context3.handle);
  1017. TEST_ASSERT(ret==ESP_OK);
  1018. xTaskCreate( spi_task1, "task1", 2048, &context1, 0, &task1 );
  1019. xTaskCreate( spi_task2, "task2", 2048, &context2, 0, &task2 );
  1020. xTaskCreate( spi_task3, "task3", 2048, &context3, 0, &task3 );
  1021. for(;;){
  1022. vTaskDelay(10);
  1023. if (context1.finished && context2.finished && context3.finished) break;
  1024. }
  1025. TEST_ESP_OK( spi_bus_remove_device(context1.handle) );
  1026. TEST_ESP_OK( spi_bus_remove_device(context2.handle) );
  1027. TEST_ESP_OK( spi_bus_remove_device(context3.handle) );
  1028. TEST_ESP_OK( spi_bus_free(TEST_SPI_HOST) );
  1029. }
  1030. //TODO: add a case when a non-polling transaction happened in the bus-acquiring time and then release the bus then queue a new trans