flash_ops.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <assert.h>
  16. #include <string.h>
  17. #include <stdio.h>
  18. #include <sys/param.h> // For MIN/MAX(a, b)
  19. #include <freertos/FreeRTOS.h>
  20. #include <freertos/task.h>
  21. #include <freertos/semphr.h>
  22. #include <rom/spi_flash.h>
  23. #include <rom/cache.h>
  24. #include <soc/soc.h>
  25. #include <soc/dport_reg.h>
  26. #include "sdkconfig.h"
  27. #include "esp_ipc.h"
  28. #include "esp_attr.h"
  29. #include "esp_spi_flash.h"
  30. #include "esp_log.h"
  31. #include "esp_clk.h"
  32. #include "esp_flash_partitions.h"
  33. #include "esp_ota_ops.h"
  34. #include "cache_utils.h"
  35. /* bytes erased by SPIEraseBlock() ROM function */
  36. #define BLOCK_ERASE_SIZE 65536
  37. /* Limit number of bytes written/read in a single SPI operation,
  38. as these operations disable all higher priority tasks from running.
  39. */
  40. #define MAX_WRITE_CHUNK 8192
  41. #define MAX_READ_CHUNK 16384
  42. static const char *TAG __attribute__((unused)) = "spi_flash";
  43. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  44. static spi_flash_counters_t s_flash_stats;
  45. #define COUNTER_START() uint32_t ts_begin = xthal_get_ccount()
  46. #define COUNTER_STOP(counter) \
  47. do{ \
  48. s_flash_stats.counter.count++; \
  49. s_flash_stats.counter.time += (xthal_get_ccount() - ts_begin) / (esp_clk_cpu_freq() / 1000000); \
  50. } while(0)
  51. #define COUNTER_ADD_BYTES(counter, size) \
  52. do { \
  53. s_flash_stats.counter.bytes += size; \
  54. } while (0)
  55. #else
  56. #define COUNTER_START()
  57. #define COUNTER_STOP(counter)
  58. #define COUNTER_ADD_BYTES(counter, size)
  59. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
  60. static esp_err_t spi_flash_translate_rc(esp_rom_spiflash_result_t rc);
  61. static bool is_safe_write_address(size_t addr, size_t size);
  62. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
  63. .start = spi_flash_disable_interrupts_caches_and_other_cpu,
  64. .end = spi_flash_enable_interrupts_caches_and_other_cpu,
  65. .op_lock = spi_flash_op_lock,
  66. .op_unlock = spi_flash_op_unlock,
  67. #if !CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  68. .is_safe_write_address = is_safe_write_address
  69. #endif
  70. };
  71. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
  72. .start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
  73. .end = spi_flash_enable_interrupts_caches_no_os,
  74. .op_lock = 0,
  75. .op_unlock = 0,
  76. #if !CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  77. .is_safe_write_address = 0
  78. #endif
  79. };
  80. static const spi_flash_guard_funcs_t *s_flash_guard_ops;
  81. #ifdef CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ABORTS
  82. #define UNSAFE_WRITE_ADDRESS abort()
  83. #else
  84. #define UNSAFE_WRITE_ADDRESS return false
  85. #endif
  86. /* CHECK_WRITE_ADDRESS macro to fail writes which land in the
  87. bootloader, partition table, or running application region.
  88. */
  89. #if CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  90. #define CHECK_WRITE_ADDRESS(ADDR, SIZE)
  91. #else /* FAILS or ABORTS */
  92. #define CHECK_WRITE_ADDRESS(ADDR, SIZE) do { \
  93. if (s_flash_guard_ops && s_flash_guard_ops->is_safe_write_address && !s_flash_guard_ops->is_safe_write_address(ADDR, SIZE)) { \
  94. return ESP_ERR_INVALID_ARG; \
  95. } \
  96. } while(0)
  97. #endif // CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  98. static __attribute__((unused)) bool is_safe_write_address(size_t addr, size_t size)
  99. {
  100. bool result = true;
  101. if (addr <= ESP_PARTITION_TABLE_OFFSET + ESP_PARTITION_TABLE_MAX_LEN) {
  102. UNSAFE_WRITE_ADDRESS;
  103. }
  104. const esp_partition_t *p = esp_ota_get_running_partition();
  105. if (addr >= p->address && addr < p->address + p->size) {
  106. UNSAFE_WRITE_ADDRESS;
  107. }
  108. if (addr < p->address && addr + size > p->address) {
  109. UNSAFE_WRITE_ADDRESS;
  110. }
  111. return result;
  112. }
  113. void spi_flash_init()
  114. {
  115. spi_flash_init_lock();
  116. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  117. spi_flash_reset_counters();
  118. #endif
  119. }
  120. void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t *funcs)
  121. {
  122. s_flash_guard_ops = funcs;
  123. }
  124. const spi_flash_guard_funcs_t *IRAM_ATTR spi_flash_guard_get()
  125. {
  126. return s_flash_guard_ops;
  127. }
  128. size_t IRAM_ATTR spi_flash_get_chip_size()
  129. {
  130. return g_rom_flashchip.chip_size;
  131. }
  132. static inline void IRAM_ATTR spi_flash_guard_start()
  133. {
  134. if (s_flash_guard_ops && s_flash_guard_ops->start) {
  135. s_flash_guard_ops->start();
  136. }
  137. }
  138. static inline void IRAM_ATTR spi_flash_guard_end()
  139. {
  140. if (s_flash_guard_ops && s_flash_guard_ops->end) {
  141. s_flash_guard_ops->end();
  142. }
  143. }
  144. static inline void IRAM_ATTR spi_flash_guard_op_lock()
  145. {
  146. if (s_flash_guard_ops && s_flash_guard_ops->op_lock) {
  147. s_flash_guard_ops->op_lock();
  148. }
  149. }
  150. static inline void IRAM_ATTR spi_flash_guard_op_unlock()
  151. {
  152. if (s_flash_guard_ops && s_flash_guard_ops->op_unlock) {
  153. s_flash_guard_ops->op_unlock();
  154. }
  155. }
  156. static esp_rom_spiflash_result_t IRAM_ATTR spi_flash_unlock()
  157. {
  158. static bool unlocked = false;
  159. if (!unlocked) {
  160. spi_flash_guard_start();
  161. esp_rom_spiflash_result_t rc = esp_rom_spiflash_unlock();
  162. spi_flash_guard_end();
  163. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  164. return rc;
  165. }
  166. unlocked = true;
  167. }
  168. return ESP_ROM_SPIFLASH_RESULT_OK;
  169. }
  170. esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
  171. {
  172. CHECK_WRITE_ADDRESS(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  173. return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  174. }
  175. esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
  176. {
  177. CHECK_WRITE_ADDRESS(start_addr, size);
  178. if (start_addr % SPI_FLASH_SEC_SIZE != 0) {
  179. return ESP_ERR_INVALID_ARG;
  180. }
  181. if (size % SPI_FLASH_SEC_SIZE != 0) {
  182. return ESP_ERR_INVALID_SIZE;
  183. }
  184. if (size + start_addr > spi_flash_get_chip_size()) {
  185. return ESP_ERR_INVALID_SIZE;
  186. }
  187. size_t start = start_addr / SPI_FLASH_SEC_SIZE;
  188. size_t end = start + size / SPI_FLASH_SEC_SIZE;
  189. const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
  190. COUNTER_START();
  191. esp_rom_spiflash_result_t rc;
  192. rc = spi_flash_unlock();
  193. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  194. for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) {
  195. spi_flash_guard_start();
  196. if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) {
  197. rc = esp_rom_spiflash_erase_block(sector / sectors_per_block);
  198. sector += sectors_per_block;
  199. COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE);
  200. } else {
  201. rc = esp_rom_spiflash_erase_sector(sector);
  202. ++sector;
  203. COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE);
  204. }
  205. spi_flash_guard_end();
  206. }
  207. }
  208. COUNTER_STOP(erase);
  209. spi_flash_guard_start();
  210. spi_flash_check_and_flush_cache(start_addr, size);
  211. spi_flash_guard_end();
  212. return spi_flash_translate_rc(rc);
  213. }
  214. /* Wrapper around esp_rom_spiflash_write() that verifies data as written if CONFIG_SPI_FLASH_VERIFY_WRITE is set.
  215. If CONFIG_SPI_FLASH_VERIFY_WRITE is not set, this is esp_rom_spiflash_write().
  216. */
  217. static IRAM_ATTR esp_rom_spiflash_result_t spi_flash_write_inner(uint32_t target, const uint32_t *src_addr, int32_t len)
  218. {
  219. #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
  220. return esp_rom_spiflash_write(target, src_addr, len);
  221. #else // CONFIG_SPI_FLASH_VERIFY_WRITE
  222. esp_rom_spiflash_result_t res = ESP_ROM_SPIFLASH_RESULT_OK;
  223. assert(len % sizeof(uint32_t) == 0);
  224. uint32_t before_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  225. uint32_t after_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  226. int32_t remaining = len;
  227. for(int i = 0; i < len; i += sizeof(before_buf)) {
  228. int i_w = i / sizeof(uint32_t); // index in words (i is an index in bytes)
  229. int32_t read_len = MIN(sizeof(before_buf), remaining);
  230. // Read "before" contents from flash
  231. res = esp_rom_spiflash_read(target + i, before_buf, read_len);
  232. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  233. break;
  234. }
  235. #ifdef CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
  236. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  237. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  238. uint32_t write = src_addr[i_w + r_w];
  239. uint32_t before = before_buf[r_w];
  240. if ((before & write) != write) {
  241. spi_flash_guard_end();
  242. ESP_LOGW(TAG, "Write at offset 0x%x requests 0x%08x but will write 0x%08x -> 0x%08x",
  243. target + i + r, write, before, before & write);
  244. spi_flash_guard_start();
  245. }
  246. }
  247. #endif
  248. res = esp_rom_spiflash_write(target + i, &src_addr[i_w], read_len);
  249. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  250. break;
  251. }
  252. res = esp_rom_spiflash_read(target + i, after_buf, read_len);
  253. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  254. break;
  255. }
  256. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  257. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  258. uint32_t expected = src_addr[i_w + r_w] & before_buf[r_w];
  259. uint32_t actual = after_buf[r_w];
  260. if (expected != actual) {
  261. #ifdef CONFIG_SPI_FLASH_LOG_FAILED_WRITE
  262. spi_flash_guard_end();
  263. ESP_LOGE(TAG, "Bad write at offset 0x%x expected 0x%08x readback 0x%08x", target + i + r, expected, actual);
  264. spi_flash_guard_start();
  265. #endif
  266. res = ESP_ROM_SPIFLASH_RESULT_ERR;
  267. }
  268. }
  269. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  270. break;
  271. }
  272. remaining -= read_len;
  273. }
  274. return res;
  275. #endif // CONFIG_SPI_FLASH_VERIFY_WRITE
  276. }
  277. esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
  278. {
  279. CHECK_WRITE_ADDRESS(dst, size);
  280. // Out of bound writes are checked in ROM code, but we can give better
  281. // error code here
  282. if (dst + size > g_rom_flashchip.chip_size) {
  283. return ESP_ERR_INVALID_SIZE;
  284. }
  285. if (size == 0) {
  286. return ESP_OK;
  287. }
  288. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  289. COUNTER_START();
  290. const uint8_t *srcc = (const uint8_t *) srcv;
  291. /*
  292. * Large operations are split into (up to) 3 parts:
  293. * - Left padding: 4 bytes up to the first 4-byte aligned destination offset.
  294. * - Middle part
  295. * - Right padding: 4 bytes from the last 4-byte aligned offset covered.
  296. */
  297. size_t left_off = dst & ~3U;
  298. size_t left_size = MIN(((dst + 3) & ~3U) - dst, size);
  299. size_t mid_off = left_size;
  300. size_t mid_size = (size - left_size) & ~3U;
  301. size_t right_off = left_size + mid_size;
  302. size_t right_size = size - mid_size - left_size;
  303. rc = spi_flash_unlock();
  304. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  305. goto out;
  306. }
  307. if (left_size > 0) {
  308. uint32_t t = 0xffffffff;
  309. memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
  310. spi_flash_guard_start();
  311. rc = spi_flash_write_inner(left_off, &t, 4);
  312. spi_flash_guard_end();
  313. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  314. goto out;
  315. }
  316. COUNTER_ADD_BYTES(write, 4);
  317. }
  318. if (mid_size > 0) {
  319. /* If src buffer is 4-byte aligned as well and is not in a region that requires cache access to be enabled, we
  320. * can write directly without buffering in RAM. */
  321. #ifdef ESP_PLATFORM
  322. bool direct_write = esp_ptr_internal(srcc)
  323. && esp_ptr_byte_accessible(srcc)
  324. && ((uintptr_t) srcc + mid_off) % 4 == 0;
  325. #else
  326. bool direct_write = true;
  327. #endif
  328. while(mid_size > 0 && rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  329. uint32_t write_buf[8];
  330. uint32_t write_size = MIN(mid_size, MAX_WRITE_CHUNK);
  331. const uint8_t *write_src = srcc + mid_off;
  332. if (!direct_write) {
  333. write_size = MIN(write_size, sizeof(write_buf));
  334. memcpy(write_buf, write_src, write_size);
  335. write_src = (const uint8_t *)write_buf;
  336. }
  337. spi_flash_guard_start();
  338. rc = spi_flash_write_inner(dst + mid_off, (const uint32_t *) write_src, write_size);
  339. spi_flash_guard_end();
  340. COUNTER_ADD_BYTES(write, write_size);
  341. mid_size -= write_size;
  342. mid_off += write_size;
  343. }
  344. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  345. goto out;
  346. }
  347. }
  348. if (right_size > 0) {
  349. uint32_t t = 0xffffffff;
  350. memcpy(&t, srcc + right_off, right_size);
  351. spi_flash_guard_start();
  352. rc = spi_flash_write_inner(dst + right_off, &t, 4);
  353. spi_flash_guard_end();
  354. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  355. goto out;
  356. }
  357. COUNTER_ADD_BYTES(write, 4);
  358. }
  359. out:
  360. COUNTER_STOP(write);
  361. spi_flash_guard_start();
  362. spi_flash_check_and_flush_cache(dst, size);
  363. spi_flash_guard_end();
  364. return spi_flash_translate_rc(rc);
  365. }
  366. esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
  367. {
  368. CHECK_WRITE_ADDRESS(dest_addr, size);
  369. const uint8_t *ssrc = (const uint8_t *)src;
  370. if ((dest_addr % 16) != 0) {
  371. return ESP_ERR_INVALID_ARG;
  372. }
  373. if ((size % 16) != 0) {
  374. return ESP_ERR_INVALID_SIZE;
  375. }
  376. COUNTER_START();
  377. esp_rom_spiflash_result_t rc;
  378. rc = spi_flash_unlock();
  379. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  380. /* esp_rom_spiflash_write_encrypted encrypts data in RAM as it writes,
  381. so copy to a temporary buffer - 32 bytes at a time.
  382. Each call to esp_rom_spiflash_write_encrypted takes a 32 byte "row" of
  383. data to encrypt, and each row is two 16 byte AES blocks
  384. that share a key (as derived from flash address).
  385. */
  386. uint8_t encrypt_buf[32] __attribute__((aligned(4)));
  387. uint32_t row_size;
  388. for (size_t i = 0; i < size; i += row_size) {
  389. uint32_t row_addr = dest_addr + i;
  390. if (i == 0 && (row_addr % 32) != 0) {
  391. /* writing to second block of a 32 byte row */
  392. row_size = 16;
  393. row_addr -= 16;
  394. /* copy to second block in buffer */
  395. memcpy(encrypt_buf + 16, ssrc + i, 16);
  396. /* decrypt the first block from flash, will reencrypt to same bytes */
  397. spi_flash_read_encrypted(row_addr, encrypt_buf, 16);
  398. } else if (size - i == 16) {
  399. /* 16 bytes left, is first block of a 32 byte row */
  400. row_size = 16;
  401. /* copy to first block in buffer */
  402. memcpy(encrypt_buf, ssrc + i, 16);
  403. /* decrypt the second block from flash, will reencrypt to same bytes */
  404. spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16);
  405. } else {
  406. /* Writing a full 32 byte row (2 blocks) */
  407. row_size = 32;
  408. memcpy(encrypt_buf, ssrc + i, 32);
  409. }
  410. spi_flash_guard_start();
  411. rc = esp_rom_spiflash_write_encrypted(row_addr, (uint32_t *)encrypt_buf, 32);
  412. spi_flash_guard_end();
  413. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  414. break;
  415. }
  416. }
  417. bzero(encrypt_buf, sizeof(encrypt_buf));
  418. }
  419. COUNTER_ADD_BYTES(write, size);
  420. COUNTER_STOP(write);
  421. spi_flash_guard_start();
  422. spi_flash_check_and_flush_cache(dest_addr, size);
  423. spi_flash_guard_end();
  424. return spi_flash_translate_rc(rc);
  425. }
  426. esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
  427. {
  428. // Out of bound reads are checked in ROM code, but we can give better
  429. // error code here
  430. if (src + size > g_rom_flashchip.chip_size) {
  431. return ESP_ERR_INVALID_SIZE;
  432. }
  433. if (size == 0) {
  434. return ESP_OK;
  435. }
  436. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  437. COUNTER_START();
  438. spi_flash_guard_start();
  439. /* To simplify boundary checks below, we handle small reads separately. */
  440. if (size < 16) {
  441. uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
  442. uint32_t read_src = src & ~3U;
  443. uint32_t left_off = src & 3U;
  444. uint32_t read_size = (left_off + size + 3) & ~3U;
  445. rc = esp_rom_spiflash_read(read_src, t, read_size);
  446. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  447. goto out;
  448. }
  449. COUNTER_ADD_BYTES(read, read_size);
  450. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  451. goto out;
  452. }
  453. uint8_t *dstc = (uint8_t *) dstv;
  454. intptr_t dsti = (intptr_t) dstc;
  455. /*
  456. * Large operations are split into (up to) 3 parts:
  457. * - The middle part: from the first 4-aligned position in src to the first
  458. * 4-aligned position in dst.
  459. */
  460. size_t src_mid_off = (src % 4 == 0 ? 0 : 4 - (src % 4));
  461. size_t dst_mid_off = (dsti % 4 == 0 ? 0 : 4 - (dsti % 4));
  462. size_t mid_size = (size - MAX(src_mid_off, dst_mid_off)) & ~3U;
  463. /*
  464. * - Once the middle part is in place, src_mid_off bytes from the preceding
  465. * 4-aligned source location are added on the left.
  466. */
  467. size_t pad_left_src = src & ~3U;
  468. size_t pad_left_size = src_mid_off;
  469. /*
  470. * - Finally, the right part is added: from the end of the middle part to
  471. * the end. Depending on the alignment of source and destination, this may
  472. * be a 4 or 8 byte read from pad_right_src.
  473. */
  474. size_t pad_right_src = (src + pad_left_size + mid_size) & ~3U;
  475. size_t pad_right_off = (pad_right_src - src);
  476. size_t pad_right_size = (size - pad_right_off);
  477. #ifdef ESP_PLATFORM
  478. bool direct_read = esp_ptr_internal(dstc)
  479. && esp_ptr_byte_accessible(dstc)
  480. && ((uintptr_t) dstc + dst_mid_off) % 4 == 0;
  481. #else
  482. bool direct_read = true;
  483. #endif
  484. if (mid_size > 0) {
  485. uint32_t mid_remaining = mid_size;
  486. uint32_t mid_read = 0;
  487. while (mid_remaining > 0) {
  488. uint32_t read_size = MIN(mid_remaining, MAX_READ_CHUNK);
  489. uint32_t read_buf[8];
  490. uint8_t *read_dst_final = dstc + dst_mid_off + mid_read;
  491. uint8_t *read_dst = read_dst_final;
  492. if (!direct_read) {
  493. read_size = MIN(read_size, sizeof(read_buf));
  494. read_dst = (uint8_t *) read_buf;
  495. }
  496. rc = esp_rom_spiflash_read(src + src_mid_off + mid_read,
  497. (uint32_t *) read_dst, read_size);
  498. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  499. goto out;
  500. }
  501. mid_remaining -= read_size;
  502. mid_read += read_size;
  503. if (!direct_read) {
  504. spi_flash_guard_end();
  505. memcpy(read_dst_final, read_buf, read_size);
  506. spi_flash_guard_start();
  507. } else if (mid_remaining > 0) {
  508. /* Drop guard momentarily, allows other tasks to preempt */
  509. spi_flash_guard_end();
  510. spi_flash_guard_start();
  511. }
  512. }
  513. COUNTER_ADD_BYTES(read, mid_size);
  514. /*
  515. * If offsets in src and dst are different, perform an in-place shift
  516. * to put destination data into its final position.
  517. * Note that the shift can be left (src_mid_off < dst_mid_off) or right.
  518. */
  519. if (src_mid_off != dst_mid_off) {
  520. if (!direct_read) {
  521. spi_flash_guard_end();
  522. }
  523. memmove(dstc + src_mid_off, dstc + dst_mid_off, mid_size);
  524. if (!direct_read) {
  525. spi_flash_guard_start();
  526. }
  527. }
  528. }
  529. if (pad_left_size > 0) {
  530. uint32_t t;
  531. rc = esp_rom_spiflash_read(pad_left_src, &t, 4);
  532. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  533. goto out;
  534. }
  535. COUNTER_ADD_BYTES(read, 4);
  536. if (!direct_read) {
  537. spi_flash_guard_end();
  538. }
  539. memcpy(dstc, ((uint8_t *) &t) + (4 - pad_left_size), pad_left_size);
  540. if (!direct_read) {
  541. spi_flash_guard_start();
  542. }
  543. }
  544. if (pad_right_size > 0) {
  545. uint32_t t[2];
  546. int32_t read_size = (pad_right_size <= 4 ? 4 : 8);
  547. rc = esp_rom_spiflash_read(pad_right_src, t, read_size);
  548. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  549. goto out;
  550. }
  551. COUNTER_ADD_BYTES(read, read_size);
  552. if (!direct_read) {
  553. spi_flash_guard_end();
  554. }
  555. memcpy(dstc + pad_right_off, t, pad_right_size);
  556. if (!direct_read) {
  557. spi_flash_guard_start();
  558. }
  559. }
  560. out:
  561. spi_flash_guard_end();
  562. COUNTER_STOP(read);
  563. return spi_flash_translate_rc(rc);
  564. }
  565. esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size)
  566. {
  567. if (src + size > g_rom_flashchip.chip_size) {
  568. return ESP_ERR_INVALID_SIZE;
  569. }
  570. if (size == 0) {
  571. return ESP_OK;
  572. }
  573. esp_err_t err;
  574. const uint8_t *map;
  575. spi_flash_mmap_handle_t map_handle;
  576. size_t map_src = src & ~(SPI_FLASH_MMU_PAGE_SIZE - 1);
  577. size_t map_size = size + (src - map_src);
  578. err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle);
  579. if (err != ESP_OK) {
  580. return err;
  581. }
  582. memcpy(dstv, map + (src - map_src), size);
  583. spi_flash_munmap(map_handle);
  584. return err;
  585. }
  586. static esp_err_t IRAM_ATTR spi_flash_translate_rc(esp_rom_spiflash_result_t rc)
  587. {
  588. switch (rc) {
  589. case ESP_ROM_SPIFLASH_RESULT_OK:
  590. return ESP_OK;
  591. case ESP_ROM_SPIFLASH_RESULT_TIMEOUT:
  592. return ESP_ERR_FLASH_OP_TIMEOUT;
  593. case ESP_ROM_SPIFLASH_RESULT_ERR:
  594. default:
  595. return ESP_ERR_FLASH_OP_FAIL;
  596. }
  597. }
  598. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  599. static inline void dump_counter(spi_flash_counter_t *counter, const char *name)
  600. {
  601. ESP_LOGI(TAG, "%s count=%8d time=%8dus bytes=%8d\n", name,
  602. counter->count, counter->time, counter->bytes);
  603. }
  604. const spi_flash_counters_t *spi_flash_get_counters()
  605. {
  606. return &s_flash_stats;
  607. }
  608. void spi_flash_reset_counters()
  609. {
  610. memset(&s_flash_stats, 0, sizeof(s_flash_stats));
  611. }
  612. void spi_flash_dump_counters()
  613. {
  614. dump_counter(&s_flash_stats.read, "read ");
  615. dump_counter(&s_flash_stats.write, "write");
  616. dump_counter(&s_flash_stats.erase, "erase");
  617. }
  618. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS