bootloader_utility.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898
  1. // Copyright 2018 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <limits.h>
  17. #include <sys/param.h>
  18. #include "esp_attr.h"
  19. #include "esp_log.h"
  20. #include "esp_rom_sys.h"
  21. #include "esp_rom_uart.h"
  22. #if CONFIG_IDF_TARGET_ESP32
  23. #include "soc/dport_reg.h"
  24. #include "esp32/rom/cache.h"
  25. #include "esp32/rom/spi_flash.h"
  26. #include "esp32/rom/rtc.h"
  27. #include "esp32/rom/secure_boot.h"
  28. #elif CONFIG_IDF_TARGET_ESP32S2
  29. #include "esp32s2/rom/cache.h"
  30. #include "esp32s2/rom/spi_flash.h"
  31. #include "esp32s2/rom/rtc.h"
  32. #include "esp32s2/rom/secure_boot.h"
  33. #include "soc/extmem_reg.h"
  34. #include "soc/cache_memory.h"
  35. #elif CONFIG_IDF_TARGET_ESP32S3
  36. #include "esp32s3/rom/cache.h"
  37. #include "esp32s3/rom/spi_flash.h"
  38. #include "esp32s3/rom/rtc.h"
  39. #include "esp32s3/rom/secure_boot.h"
  40. #include "soc/extmem_reg.h"
  41. #include "soc/cache_memory.h"
  42. #elif CONFIG_IDF_TARGET_ESP32C3
  43. #include "esp32c3/rom/cache.h"
  44. #include "esp32c3/rom/efuse.h"
  45. #include "esp32c3/rom/ets_sys.h"
  46. #include "esp32c3/rom/spi_flash.h"
  47. #include "esp32c3/rom/crc.h"
  48. #include "esp32c3/rom/rtc.h"
  49. #include "esp32c3/rom/uart.h"
  50. #include "esp32c3/rom/gpio.h"
  51. #include "esp32c3/rom/secure_boot.h"
  52. #include "soc/extmem_reg.h"
  53. #include "soc/cache_memory.h"
  54. #else // CONFIG_IDF_TARGET_*
  55. #error "Unsupported IDF_TARGET"
  56. #endif
  57. #include "soc/soc.h"
  58. #include "soc/cpu.h"
  59. #include "soc/rtc.h"
  60. #include "soc/gpio_periph.h"
  61. #include "soc/efuse_periph.h"
  62. #include "soc/rtc_periph.h"
  63. #include "soc/timer_periph.h"
  64. #include "sdkconfig.h"
  65. #include "esp_image_format.h"
  66. #include "esp_secure_boot.h"
  67. #include "esp_flash_encrypt.h"
  68. #include "esp_flash_partitions.h"
  69. #include "bootloader_flash_priv.h"
  70. #include "bootloader_random.h"
  71. #include "bootloader_config.h"
  72. #include "bootloader_common.h"
  73. #include "bootloader_utility.h"
  74. #include "bootloader_sha.h"
  75. #include "bootloader_console.h"
  76. #include "esp_efuse.h"
  77. static const char *TAG = "boot";
  78. /* Reduce literal size for some generic string literals */
  79. #define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
  80. static bool ota_has_initial_contents;
  81. static void load_image(const esp_image_metadata_t *image_data);
  82. static void unpack_load_app(const esp_image_metadata_t *data);
  83. static void set_cache_and_start_app(uint32_t drom_addr,
  84. uint32_t drom_load_addr,
  85. uint32_t drom_size,
  86. uint32_t irom_addr,
  87. uint32_t irom_load_addr,
  88. uint32_t irom_size,
  89. uint32_t entry_addr);
  90. // Read ota_info partition and fill array from two otadata structures.
  91. static esp_err_t read_otadata(const esp_partition_pos_t *ota_info, esp_ota_select_entry_t *two_otadata)
  92. {
  93. const esp_ota_select_entry_t *ota_select_map;
  94. if (ota_info->offset == 0) {
  95. return ESP_ERR_NOT_FOUND;
  96. }
  97. // partition table has OTA data partition
  98. if (ota_info->size < 2 * SPI_SEC_SIZE) {
  99. ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", ota_info->size, sizeof(esp_ota_select_entry_t));
  100. return ESP_FAIL; // can't proceed
  101. }
  102. ESP_LOGD(TAG, "OTA data offset 0x%x", ota_info->offset);
  103. ota_select_map = bootloader_mmap(ota_info->offset, ota_info->size);
  104. if (!ota_select_map) {
  105. ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ota_info->offset, ota_info->size);
  106. return ESP_FAIL; // can't proceed
  107. }
  108. memcpy(&two_otadata[0], ota_select_map, sizeof(esp_ota_select_entry_t));
  109. memcpy(&two_otadata[1], (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
  110. bootloader_munmap(ota_select_map);
  111. return ESP_OK;
  112. }
  113. bool bootloader_utility_load_partition_table(bootloader_state_t *bs)
  114. {
  115. const esp_partition_info_t *partitions;
  116. const char *partition_usage;
  117. esp_err_t err;
  118. int num_partitions;
  119. partitions = bootloader_mmap(ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
  120. if (!partitions) {
  121. ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN);
  122. return false;
  123. }
  124. ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_OFFSET, (intptr_t)partitions);
  125. err = esp_partition_table_verify(partitions, true, &num_partitions);
  126. if (err != ESP_OK) {
  127. ESP_LOGE(TAG, "Failed to verify partition table");
  128. return false;
  129. }
  130. ESP_LOGI(TAG, "Partition Table:");
  131. ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
  132. for (int i = 0; i < num_partitions; i++) {
  133. const esp_partition_info_t *partition = &partitions[i];
  134. ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
  135. ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
  136. partition_usage = "unknown";
  137. /* valid partition table */
  138. switch (partition->type) {
  139. case PART_TYPE_APP: /* app partition */
  140. switch (partition->subtype) {
  141. case PART_SUBTYPE_FACTORY: /* factory binary */
  142. bs->factory = partition->pos;
  143. partition_usage = "factory app";
  144. break;
  145. case PART_SUBTYPE_TEST: /* test binary */
  146. bs->test = partition->pos;
  147. partition_usage = "test app";
  148. break;
  149. default:
  150. /* OTA binary */
  151. if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
  152. bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
  153. ++bs->app_count;
  154. partition_usage = "OTA app";
  155. } else {
  156. partition_usage = "Unknown app";
  157. }
  158. break;
  159. }
  160. break; /* PART_TYPE_APP */
  161. case PART_TYPE_DATA: /* data partition */
  162. switch (partition->subtype) {
  163. case PART_SUBTYPE_DATA_OTA: /* ota data */
  164. bs->ota_info = partition->pos;
  165. partition_usage = "OTA data";
  166. break;
  167. case PART_SUBTYPE_DATA_RF:
  168. partition_usage = "RF data";
  169. break;
  170. case PART_SUBTYPE_DATA_WIFI:
  171. partition_usage = "WiFi data";
  172. break;
  173. case PART_SUBTYPE_DATA_NVS_KEYS:
  174. partition_usage = "NVS keys";
  175. break;
  176. case PART_SUBTYPE_DATA_EFUSE_EM:
  177. partition_usage = "efuse";
  178. #ifdef CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE
  179. esp_efuse_init(partition->pos.offset, partition->pos.size);
  180. #endif
  181. break;
  182. default:
  183. partition_usage = "Unknown data";
  184. break;
  185. }
  186. break; /* PARTITION_USAGE_DATA */
  187. default: /* other partition type */
  188. break;
  189. }
  190. /* print partition type info */
  191. ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
  192. partition->type, partition->subtype,
  193. partition->pos.offset, partition->pos.size);
  194. }
  195. bootloader_munmap(partitions);
  196. ESP_LOGI(TAG, "End of partition table");
  197. return true;
  198. }
  199. /* Given a partition index, return the partition position data from the bootloader_state_t structure */
  200. static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
  201. {
  202. if (index == FACTORY_INDEX) {
  203. return bs->factory;
  204. }
  205. if (index == TEST_APP_INDEX) {
  206. return bs->test;
  207. }
  208. if (index >= 0 && index < MAX_OTA_SLOTS && index < (int)bs->app_count) {
  209. return bs->ota[index];
  210. }
  211. esp_partition_pos_t invalid = { 0 };
  212. return invalid;
  213. }
  214. static void log_invalid_app_partition(int index)
  215. {
  216. const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
  217. switch (index) {
  218. case FACTORY_INDEX:
  219. ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
  220. break;
  221. case TEST_APP_INDEX:
  222. ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
  223. break;
  224. default:
  225. ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
  226. break;
  227. }
  228. }
  229. static esp_err_t write_otadata(esp_ota_select_entry_t *otadata, uint32_t offset, bool write_encrypted)
  230. {
  231. esp_err_t err = bootloader_flash_erase_sector(offset / FLASH_SECTOR_SIZE);
  232. if (err == ESP_OK) {
  233. err = bootloader_flash_write(offset, otadata, sizeof(esp_ota_select_entry_t), write_encrypted);
  234. }
  235. if (err != ESP_OK) {
  236. ESP_LOGE(TAG, "Error in write_otadata operation. err = 0x%x", err);
  237. }
  238. return err;
  239. }
  240. static bool check_anti_rollback(const esp_partition_pos_t *partition)
  241. {
  242. #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  243. esp_app_desc_t app_desc;
  244. esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc);
  245. return err == ESP_OK && esp_efuse_check_secure_version(app_desc.secure_version) == true;
  246. #else
  247. return true;
  248. #endif
  249. }
  250. #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  251. static void update_anti_rollback(const esp_partition_pos_t *partition)
  252. {
  253. esp_app_desc_t app_desc;
  254. esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc);
  255. if (err == ESP_OK) {
  256. esp_efuse_update_secure_version(app_desc.secure_version);
  257. }
  258. }
  259. static int get_active_otadata_with_check_anti_rollback(const bootloader_state_t *bs, esp_ota_select_entry_t *two_otadata)
  260. {
  261. uint32_t ota_seq;
  262. uint32_t ota_slot;
  263. bool valid_otadata[2];
  264. valid_otadata[0] = bootloader_common_ota_select_valid(&two_otadata[0]);
  265. valid_otadata[1] = bootloader_common_ota_select_valid(&two_otadata[1]);
  266. bool sec_ver_valid_otadata[2] = { 0 };
  267. for (int i = 0; i < 2; ++i) {
  268. if (valid_otadata[i] == true) {
  269. ota_seq = two_otadata[i].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots
  270. ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
  271. if (check_anti_rollback(&bs->ota[ota_slot]) == false) {
  272. // invalid. This otadata[i] will not be selected as active.
  273. ESP_LOGD(TAG, "OTA slot %d has an app with secure_version, this version is smaller than in the device. This OTA slot will not be selected.", ota_slot);
  274. } else {
  275. sec_ver_valid_otadata[i] = true;
  276. }
  277. }
  278. }
  279. return bootloader_common_select_otadata(two_otadata, sec_ver_valid_otadata, true);
  280. }
  281. #endif
  282. int bootloader_utility_get_selected_boot_partition(const bootloader_state_t *bs)
  283. {
  284. esp_ota_select_entry_t otadata[2];
  285. int boot_index = FACTORY_INDEX;
  286. if (bs->ota_info.offset == 0) {
  287. return FACTORY_INDEX;
  288. }
  289. if (read_otadata(&bs->ota_info, otadata) != ESP_OK) {
  290. return INVALID_INDEX;
  291. }
  292. ota_has_initial_contents = false;
  293. ESP_LOGD(TAG, "otadata[0]: sequence values 0x%08x", otadata[0].ota_seq);
  294. ESP_LOGD(TAG, "otadata[1]: sequence values 0x%08x", otadata[1].ota_seq);
  295. #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
  296. bool write_encrypted = esp_flash_encryption_enabled();
  297. for (int i = 0; i < 2; ++i) {
  298. if (otadata[i].ota_state == ESP_OTA_IMG_PENDING_VERIFY) {
  299. ESP_LOGD(TAG, "otadata[%d] is marking as ABORTED", i);
  300. otadata[i].ota_state = ESP_OTA_IMG_ABORTED;
  301. write_otadata(&otadata[i], bs->ota_info.offset + FLASH_SECTOR_SIZE * i, write_encrypted);
  302. }
  303. }
  304. #endif
  305. #ifndef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  306. if ((bootloader_common_ota_select_invalid(&otadata[0]) &&
  307. bootloader_common_ota_select_invalid(&otadata[1])) ||
  308. bs->app_count == 0) {
  309. ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF) or partition table does not have bootable ota_apps (app_count=%d)", bs->app_count);
  310. if (bs->factory.offset != 0) {
  311. ESP_LOGI(TAG, "Defaulting to factory image");
  312. boot_index = FACTORY_INDEX;
  313. } else {
  314. ESP_LOGI(TAG, "No factory image, trying OTA 0");
  315. boot_index = 0;
  316. // Try to boot from ota_0.
  317. if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) &&
  318. (otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) {
  319. // Factory is not found and both otadata are initial(0xFFFFFFFF) or incorrect crc.
  320. // will set correct ota_seq.
  321. ota_has_initial_contents = true;
  322. }
  323. }
  324. } else {
  325. int active_otadata = bootloader_common_get_active_otadata(otadata);
  326. #else
  327. ESP_LOGI(TAG, "Enabled a check secure version of app for anti rollback");
  328. ESP_LOGI(TAG, "Secure version (from eFuse) = %d", esp_efuse_read_secure_version());
  329. // When CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK is enabled factory partition should not be in partition table, only two ota_app are there.
  330. if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) &&
  331. (otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) {
  332. ESP_LOGI(TAG, "otadata[0..1] in initial state");
  333. // both otadata are initial(0xFFFFFFFF) or incorrect crc.
  334. // will set correct ota_seq.
  335. ota_has_initial_contents = true;
  336. } else {
  337. int active_otadata = get_active_otadata_with_check_anti_rollback(bs, otadata);
  338. #endif
  339. if (active_otadata != -1) {
  340. ESP_LOGD(TAG, "Active otadata[%d]", active_otadata);
  341. uint32_t ota_seq = otadata[active_otadata].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots
  342. boot_index = ota_seq % bs->app_count; // Actual OTA partition selection
  343. ESP_LOGD(TAG, "Mapping seq %d -> OTA slot %d", ota_seq, boot_index);
  344. #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
  345. if (otadata[active_otadata].ota_state == ESP_OTA_IMG_NEW) {
  346. ESP_LOGD(TAG, "otadata[%d] is selected as new and marked PENDING_VERIFY state", active_otadata);
  347. otadata[active_otadata].ota_state = ESP_OTA_IMG_PENDING_VERIFY;
  348. write_otadata(&otadata[active_otadata], bs->ota_info.offset + FLASH_SECTOR_SIZE * active_otadata, write_encrypted);
  349. }
  350. #endif // CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE
  351. #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  352. if (otadata[active_otadata].ota_state == ESP_OTA_IMG_VALID) {
  353. update_anti_rollback(&bs->ota[boot_index]);
  354. }
  355. #endif // CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  356. } else if (bs->factory.offset != 0) {
  357. ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
  358. boot_index = FACTORY_INDEX;
  359. } else {
  360. ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
  361. boot_index = FACTORY_INDEX;
  362. }
  363. }
  364. return boot_index;
  365. }
  366. /* Return true if a partition has a valid app image that was successfully loaded */
  367. static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
  368. {
  369. if (partition->size == 0) {
  370. ESP_LOGD(TAG, "Can't boot from zero-length partition");
  371. return false;
  372. }
  373. #ifdef BOOTLOADER_BUILD
  374. if (bootloader_load_image(partition, data) == ESP_OK) {
  375. ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
  376. partition->offset);
  377. return true;
  378. }
  379. #endif
  380. return false;
  381. }
  382. // ota_has_initial_contents flag is set if factory does not present in partition table and
  383. // otadata has initial content(0xFFFFFFFF), then set actual ota_seq.
  384. static void set_actual_ota_seq(const bootloader_state_t *bs, int index)
  385. {
  386. if (index > FACTORY_INDEX && ota_has_initial_contents == true) {
  387. esp_ota_select_entry_t otadata;
  388. memset(&otadata, 0xFF, sizeof(otadata));
  389. otadata.ota_seq = index + 1;
  390. otadata.ota_state = ESP_OTA_IMG_VALID;
  391. otadata.crc = bootloader_common_ota_select_crc(&otadata);
  392. bool write_encrypted = esp_flash_encryption_enabled();
  393. write_otadata(&otadata, bs->ota_info.offset + FLASH_SECTOR_SIZE * 0, write_encrypted);
  394. ESP_LOGI(TAG, "Set actual ota_seq=%d in otadata[0]", otadata.ota_seq);
  395. #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK
  396. update_anti_rollback(&bs->ota[index]);
  397. #endif
  398. }
  399. #if defined( CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP ) || defined( CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC )
  400. esp_partition_pos_t partition = index_to_partition(bs, index);
  401. bootloader_common_update_rtc_retain_mem(&partition, true);
  402. #endif
  403. }
  404. #ifdef CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP
  405. void bootloader_utility_load_boot_image_from_deep_sleep(void)
  406. {
  407. if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) {
  408. esp_partition_pos_t *partition = bootloader_common_get_rtc_retain_mem_partition();
  409. if (partition != NULL) {
  410. esp_image_metadata_t image_data;
  411. if (bootloader_load_image_no_verify(partition, &image_data) == ESP_OK) {
  412. ESP_LOGI(TAG, "Fast booting app from partition at offset 0x%x", partition->offset);
  413. bootloader_common_update_rtc_retain_mem(NULL, true);
  414. load_image(&image_data);
  415. }
  416. }
  417. ESP_LOGE(TAG, "Fast booting is not successful");
  418. ESP_LOGI(TAG, "Try to load an app as usual with all validations");
  419. }
  420. }
  421. #endif
  422. #define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
  423. void bootloader_utility_load_boot_image(const bootloader_state_t *bs, int start_index)
  424. {
  425. int index = start_index;
  426. esp_partition_pos_t part;
  427. esp_image_metadata_t image_data;
  428. if (start_index == TEST_APP_INDEX) {
  429. if (check_anti_rollback(&bs->test) && try_load_partition(&bs->test, &image_data)) {
  430. load_image(&image_data);
  431. } else {
  432. ESP_LOGE(TAG, "No bootable test partition in the partition table");
  433. bootloader_reset();
  434. }
  435. }
  436. /* work backwards from start_index, down to the factory app */
  437. for (index = start_index; index >= FACTORY_INDEX; index--) {
  438. part = index_to_partition(bs, index);
  439. if (part.size == 0) {
  440. continue;
  441. }
  442. ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
  443. if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) {
  444. set_actual_ota_seq(bs, index);
  445. load_image(&image_data);
  446. }
  447. log_invalid_app_partition(index);
  448. }
  449. /* failing that work forwards from start_index, try valid OTA slots */
  450. for (index = start_index + 1; index < (int)bs->app_count; index++) {
  451. part = index_to_partition(bs, index);
  452. if (part.size == 0) {
  453. continue;
  454. }
  455. ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
  456. if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) {
  457. set_actual_ota_seq(bs, index);
  458. load_image(&image_data);
  459. }
  460. log_invalid_app_partition(index);
  461. }
  462. if (check_anti_rollback(&bs->test) && try_load_partition(&bs->test, &image_data)) {
  463. ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
  464. load_image(&image_data);
  465. }
  466. ESP_LOGE(TAG, "No bootable app partitions in the partition table");
  467. bzero(&image_data, sizeof(esp_image_metadata_t));
  468. bootloader_reset();
  469. }
  470. // Copy loaded segments to RAM, set up caches for mapped segments, and start application.
  471. static void load_image(const esp_image_metadata_t *image_data)
  472. {
  473. /**
  474. * Rough steps for a first boot, when encryption and secure boot are both disabled:
  475. * 1) Generate secure boot key and write to EFUSE.
  476. * 2) Write plaintext digest based on plaintext bootloader
  477. * 3) Generate flash encryption key and write to EFUSE.
  478. * 4) Encrypt flash in-place including bootloader, then digest,
  479. * then app partitions and other encrypted partitions
  480. * 5) Burn EFUSE to enable flash encryption (FLASH_CRYPT_CNT)
  481. * 6) Burn EFUSE to enable secure boot (ABS_DONE_0)
  482. *
  483. * If power failure happens during Step 1, probably the next boot will continue from Step 2.
  484. * There is some small chance that EFUSEs will be part-way through being written so will be
  485. * somehow corrupted here. Thankfully this window of time is very small, but if that's the
  486. * case, one has to use the espefuse tool to manually set the remaining bits and enable R/W
  487. * protection. Once the relevant EFUSE bits are set and R/W protected, Step 1 will be skipped
  488. * successfully on further reboots.
  489. *
  490. * If power failure happens during Step 2, Step 1 will be skipped and Step 2 repeated:
  491. * the digest will get re-written on the next boot.
  492. *
  493. * If power failure happens during Step 3, it's possible that EFUSE was partially written
  494. * with the generated flash encryption key, though the time window for that would again
  495. * be very small. On reboot, Step 1 will be skipped and Step 2 repeated, though, Step 3
  496. * may fail due to the above mentioned reason, in which case, one has to use the espefuse
  497. * tool to manually set the remaining bits and enable R/W protection. Once the relevant EFUSE
  498. * bits are set and R/W protected, Step 3 will be skipped successfully on further reboots.
  499. *
  500. * If power failure happens after start of 4 and before end of 5, the next boot will fail
  501. * (bootloader header is encrypted and flash encryption isn't enabled yet, so it looks like
  502. * noise to the ROM bootloader). The check in the ROM is pretty basic so if the first byte of
  503. * ciphertext happens to be the magic byte E9 then it may try to boot, but it will definitely
  504. * crash (no chance that the remaining ciphertext will look like a valid bootloader image).
  505. * Only solution is to reflash with all plaintext and the whole process starts again: skips
  506. * Step 1, repeats Step 2, skips Step 3, etc.
  507. *
  508. * If power failure happens after 5 but before 6, the device will reboot with flash
  509. * encryption on and will regenerate an encrypted digest in Step 2. This should still
  510. * be valid as the input data for the digest is read via flash cache (so will be decrypted)
  511. * and the code in secure_boot_generate() tells bootloader_flash_write() to encrypt the data
  512. * on write if flash encryption is enabled. Steps 3 - 5 are skipped (encryption already on),
  513. * then Step 6 enables secure boot.
  514. */
  515. #if defined(CONFIG_SECURE_BOOT) || defined(CONFIG_SECURE_FLASH_ENC_ENABLED)
  516. esp_err_t err;
  517. #endif
  518. #ifdef CONFIG_SECURE_BOOT_V2_ENABLED
  519. err = esp_secure_boot_v2_permanently_enable(image_data);
  520. if (err != ESP_OK) {
  521. ESP_LOGE(TAG, "Secure Boot v2 failed (%d)", err);
  522. return;
  523. }
  524. #endif
  525. #ifdef CONFIG_SECURE_BOOT_V1_ENABLED
  526. /* Steps 1 & 2 (see above for full description):
  527. * 1) Generate secure boot EFUSE key
  528. * 2) Compute digest of plaintext bootloader
  529. */
  530. err = esp_secure_boot_generate_digest();
  531. if (err != ESP_OK) {
  532. ESP_LOGE(TAG, "Bootloader digest generation for secure boot failed (%d).", err);
  533. return;
  534. }
  535. #endif
  536. #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
  537. /* Steps 3, 4 & 5 (see above for full description):
  538. * 3) Generate flash encryption EFUSE key
  539. * 4) Encrypt flash contents
  540. * 5) Burn EFUSE to enable flash encryption
  541. */
  542. ESP_LOGI(TAG, "Checking flash encryption...");
  543. bool flash_encryption_enabled = esp_flash_encryption_enabled();
  544. err = esp_flash_encrypt_check_and_update();
  545. if (err != ESP_OK) {
  546. ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
  547. return;
  548. }
  549. #endif
  550. #ifdef CONFIG_SECURE_BOOT_V1_ENABLED
  551. /* Step 6 (see above for full description):
  552. * 6) Burn EFUSE to enable secure boot
  553. */
  554. ESP_LOGI(TAG, "Checking secure boot...");
  555. err = esp_secure_boot_permanently_enable();
  556. if (err != ESP_OK) {
  557. ESP_LOGE(TAG, "FAILED TO ENABLE SECURE BOOT (%d).", err);
  558. /* Panic here as secure boot is not properly enabled
  559. due to one of the reasons in above function
  560. */
  561. abort();
  562. }
  563. #endif
  564. #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
  565. if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
  566. /* Flash encryption was just enabled for the first time,
  567. so issue a system reset to ensure flash encryption
  568. cache resets properly */
  569. ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
  570. esp_rom_uart_tx_wait_idle(0);
  571. bootloader_reset();
  572. }
  573. #endif
  574. ESP_LOGI(TAG, "Disabling RNG early entropy source...");
  575. bootloader_random_disable();
  576. // copy loaded segments to RAM, set up caches for mapped segments, and start application
  577. unpack_load_app(image_data);
  578. }
  579. static void unpack_load_app(const esp_image_metadata_t *data)
  580. {
  581. uint32_t drom_addr = 0;
  582. uint32_t drom_load_addr = 0;
  583. uint32_t drom_size = 0;
  584. uint32_t irom_addr = 0;
  585. uint32_t irom_load_addr = 0;
  586. uint32_t irom_size = 0;
  587. // Find DROM & IROM addresses, to configure cache mappings
  588. for (int i = 0; i < data->image.segment_count; i++) {
  589. const esp_image_segment_header_t *header = &data->segments[i];
  590. if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
  591. if (drom_addr != 0) {
  592. ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
  593. } else {
  594. ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
  595. }
  596. drom_addr = data->segment_data[i];
  597. drom_load_addr = header->load_addr;
  598. drom_size = header->data_len;
  599. }
  600. if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
  601. if (irom_addr != 0) {
  602. ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
  603. } else {
  604. ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
  605. }
  606. irom_addr = data->segment_data[i];
  607. irom_load_addr = header->load_addr;
  608. irom_size = header->data_len;
  609. }
  610. }
  611. ESP_LOGD(TAG, "calling set_cache_and_start_app");
  612. set_cache_and_start_app(drom_addr,
  613. drom_load_addr,
  614. drom_size,
  615. irom_addr,
  616. irom_load_addr,
  617. irom_size,
  618. data->image.entry_addr);
  619. }
  620. static void set_cache_and_start_app(
  621. uint32_t drom_addr,
  622. uint32_t drom_load_addr,
  623. uint32_t drom_size,
  624. uint32_t irom_addr,
  625. uint32_t irom_load_addr,
  626. uint32_t irom_size,
  627. uint32_t entry_addr)
  628. {
  629. int rc;
  630. ESP_LOGD(TAG, "configure drom and irom and start");
  631. #if CONFIG_IDF_TARGET_ESP32
  632. Cache_Read_Disable(0);
  633. Cache_Flush(0);
  634. #elif CONFIG_IDF_TARGET_ESP32S2
  635. uint32_t autoload = Cache_Suspend_ICache();
  636. Cache_Invalidate_ICache_All();
  637. #elif CONFIG_IDF_TARGET_ESP32S3
  638. uint32_t autoload = Cache_Suspend_DCache();
  639. Cache_Invalidate_DCache_All();
  640. #elif CONFIG_IDF_TARGET_ESP32C3
  641. uint32_t autoload = Cache_Suspend_ICache();
  642. Cache_Invalidate_ICache_All();
  643. #endif
  644. /* Clear the MMU entries that are already set up,
  645. so the new app only has the mappings it creates.
  646. */
  647. #if CONFIG_IDF_TARGET_ESP32
  648. for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
  649. DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
  650. }
  651. #else
  652. for (size_t i = 0; i < FLASH_MMU_TABLE_SIZE; i++) {
  653. FLASH_MMU_TABLE[i] = MMU_TABLE_INVALID_VAL;
  654. }
  655. #endif
  656. uint32_t drom_load_addr_aligned = drom_load_addr & MMU_FLASH_MASK;
  657. uint32_t drom_page_count = bootloader_cache_pages_to_map(drom_size, drom_load_addr);
  658. ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d",
  659. drom_addr & MMU_FLASH_MASK, drom_load_addr_aligned, drom_size, drom_page_count);
  660. #if CONFIG_IDF_TARGET_ESP32
  661. rc = cache_flash_mmu_set(0, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count);
  662. #elif CONFIG_IDF_TARGET_ESP32S2
  663. rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count, 0);
  664. #elif CONFIG_IDF_TARGET_ESP32S3
  665. rc = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count, 0);
  666. #elif CONFIG_IDF_TARGET_ESP32C3
  667. rc = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count, 0);
  668. #endif
  669. ESP_LOGV(TAG, "rc=%d", rc);
  670. #if CONFIG_IDF_TARGET_ESP32
  671. rc = cache_flash_mmu_set(1, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count);
  672. ESP_LOGV(TAG, "rc=%d", rc);
  673. #endif
  674. uint32_t irom_load_addr_aligned = irom_load_addr & MMU_FLASH_MASK;
  675. uint32_t irom_page_count = bootloader_cache_pages_to_map(irom_size, irom_load_addr);
  676. ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d",
  677. irom_addr & MMU_FLASH_MASK, irom_load_addr_aligned, irom_size, irom_page_count);
  678. #if CONFIG_IDF_TARGET_ESP32
  679. rc = cache_flash_mmu_set(0, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count);
  680. #elif CONFIG_IDF_TARGET_ESP32S2
  681. uint32_t iram1_used = 0;
  682. if (irom_load_addr + irom_size > IRAM1_ADDRESS_LOW) {
  683. iram1_used = 1;
  684. }
  685. if (iram1_used) {
  686. rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, IRAM0_ADDRESS_LOW, 0, 64, 64, 1);
  687. rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, IRAM1_ADDRESS_LOW, 0, 64, 64, 1);
  688. REG_CLR_BIT(EXTMEM_PRO_ICACHE_CTRL1_REG, EXTMEM_PRO_ICACHE_MASK_IRAM1);
  689. }
  690. rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count, 0);
  691. #elif CONFIG_IDF_TARGET_ESP32S3
  692. rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count, 0);
  693. #elif CONFIG_IDF_TARGET_ESP32C3
  694. rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count, 0);
  695. #endif
  696. ESP_LOGV(TAG, "rc=%d", rc);
  697. #if CONFIG_IDF_TARGET_ESP32
  698. rc = cache_flash_mmu_set(1, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count);
  699. ESP_LOGV(TAG, "rc=%d", rc);
  700. DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG,
  701. (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) |
  702. (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 |
  703. DPORT_PRO_CACHE_MASK_DRAM1 );
  704. DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG,
  705. (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) |
  706. (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 |
  707. DPORT_APP_CACHE_MASK_DRAM1 );
  708. #elif CONFIG_IDF_TARGET_ESP32S2
  709. REG_CLR_BIT( EXTMEM_PRO_ICACHE_CTRL1_REG, (EXTMEM_PRO_ICACHE_MASK_IRAM0) | (EXTMEM_PRO_ICACHE_MASK_IRAM1 & 0) | EXTMEM_PRO_ICACHE_MASK_DROM0 );
  710. #elif CONFIG_IDF_TARGET_ESP32S3
  711. REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE0_BUS);
  712. #if !CONFIG_FREERTOS_UNICORE
  713. REG_CLR_BIT(EXTMEM_DCACHE_CTRL1_REG, EXTMEM_DCACHE_SHUT_CORE1_BUS);
  714. #endif
  715. #elif CONFIG_IDF_TARGET_ESP32C3
  716. REG_CLR_BIT(EXTMEM_ICACHE_CTRL1_REG, EXTMEM_ICACHE_SHUT_IBUS);
  717. REG_CLR_BIT(EXTMEM_ICACHE_CTRL1_REG, EXTMEM_ICACHE_SHUT_DBUS);
  718. #endif
  719. #if CONFIG_IDF_TARGET_ESP32
  720. Cache_Read_Enable(0);
  721. #elif CONFIG_IDF_TARGET_ESP32S2
  722. Cache_Resume_ICache(autoload);
  723. #elif CONFIG_IDF_TARGET_ESP32S3
  724. Cache_Resume_DCache(autoload);
  725. #elif CONFIG_IDF_TARGET_ESP32C3
  726. Cache_Resume_ICache(autoload);
  727. #endif
  728. // Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
  729. ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
  730. bootloader_atexit();
  731. typedef void (*entry_t)(void) __attribute__((noreturn));
  732. entry_t entry = ((entry_t) entry_addr);
  733. // TODO: we have used quite a bit of stack at this point.
  734. // use "movsp" instruction to reset stack back to where ROM stack starts.
  735. (*entry)();
  736. }
  737. void bootloader_reset(void)
  738. {
  739. #ifdef BOOTLOADER_BUILD
  740. bootloader_atexit();
  741. esp_rom_delay_us(1000); /* Allow last byte to leave FIFO */
  742. REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
  743. while (1) { } /* This line will never be reached, used to keep gcc happy */
  744. #else
  745. abort(); /* This function should really not be called from application code */
  746. #endif
  747. }
  748. void bootloader_atexit(void)
  749. {
  750. bootloader_console_deinit();
  751. }
  752. esp_err_t bootloader_sha256_hex_to_str(char *out_str, const uint8_t *in_array_hex, size_t len)
  753. {
  754. if (out_str == NULL || in_array_hex == NULL || len == 0) {
  755. return ESP_ERR_INVALID_ARG;
  756. }
  757. for (size_t i = 0; i < len; i++) {
  758. for (int shift = 0; shift < 2; shift++) {
  759. uint8_t nibble = (in_array_hex[i] >> (shift ? 0 : 4)) & 0x0F;
  760. if (nibble < 10) {
  761. out_str[i * 2 + shift] = '0' + nibble;
  762. } else {
  763. out_str[i * 2 + shift] = 'a' + nibble - 10;
  764. }
  765. }
  766. }
  767. return ESP_OK;
  768. }
  769. void bootloader_debug_buffer(const void *buffer, size_t length, const char *label)
  770. {
  771. #if BOOT_LOG_LEVEL >= LOG_LEVEL_DEBUG
  772. assert(length <= 128); // Avoid unbounded VLA size
  773. const uint8_t *bytes = (const uint8_t *)buffer;
  774. char hexbuf[length * 2 + 1];
  775. hexbuf[length * 2] = 0;
  776. for (size_t i = 0; i < length; i++) {
  777. for (int shift = 0; shift < 2; shift++) {
  778. uint8_t nibble = (bytes[i] >> (shift ? 0 : 4)) & 0x0F;
  779. if (nibble < 10) {
  780. hexbuf[i * 2 + shift] = '0' + nibble;
  781. } else {
  782. hexbuf[i * 2 + shift] = 'a' + nibble - 10;
  783. }
  784. }
  785. }
  786. ESP_LOGD(TAG, "%s: %s", label, hexbuf);
  787. #endif
  788. }
  789. esp_err_t bootloader_sha256_flash_contents(uint32_t flash_offset, uint32_t len, uint8_t *digest)
  790. {
  791. if (digest == NULL) {
  792. return ESP_ERR_INVALID_ARG;
  793. }
  794. /* Handling firmware images larger than MMU capacity */
  795. uint32_t mmu_free_pages_count = bootloader_mmap_get_free_pages();
  796. bootloader_sha256_handle_t sha_handle = NULL;
  797. sha_handle = bootloader_sha256_start();
  798. if (sha_handle == NULL) {
  799. return ESP_ERR_NO_MEM;
  800. }
  801. while (len > 0) {
  802. uint32_t mmu_page_offset = ((flash_offset & MMAP_ALIGNED_MASK) != 0) ? 1 : 0; /* Skip 1st MMU Page if it is already populated */
  803. uint32_t partial_image_len = MIN(len, ((mmu_free_pages_count - mmu_page_offset) * SPI_FLASH_MMU_PAGE_SIZE)); /* Read the image that fits in the free MMU pages */
  804. const void * image = bootloader_mmap(flash_offset, partial_image_len);
  805. if (image == NULL) {
  806. bootloader_sha256_finish(sha_handle, NULL);
  807. return ESP_FAIL;
  808. }
  809. bootloader_sha256_data(sha_handle, image, partial_image_len);
  810. bootloader_munmap(image);
  811. flash_offset += partial_image_len;
  812. len -= partial_image_len;
  813. }
  814. bootloader_sha256_finish(sha_handle, digest);
  815. return ESP_OK;
  816. }