| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690 |
- // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include <string.h>
- #include "esp_types.h"
- #include "esp_attr.h"
- #include "esp_intr_alloc.h"
- #include "esp_log.h"
- #include "esp_err.h"
- #include "malloc.h"
- #include "freertos/FreeRTOS.h"
- #include "freertos/semphr.h"
- #include "freertos/xtensa_api.h"
- #include "freertos/task.h"
- #include "freertos/ringbuf.h"
- #include "soc/uart_periph.h"
- #include "driver/uart.h"
- #include "driver/gpio.h"
- #include "driver/uart_select.h"
- #include "sdkconfig.h"
- #if CONFIG_IDF_TARGET_ESP32
- #include "esp32/clk.h"
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- #include "esp32s2beta/clk.h"
- #endif
- #define UART_NUM SOC_UART_NUM
- #define UART_NUM SOC_UART_NUM
- #define XOFF (char)0x13
- #define XON (char)0x11
- static const char *UART_TAG = "uart";
- #define UART_CHECK(a, str, ret_val) \
- if (!(a)) { \
- ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
- return (ret_val); \
- }
- #define UART_EMPTY_THRESH_DEFAULT (10)
- #define UART_FULL_THRESH_DEFAULT (120)
- #define UART_TOUT_THRESH_DEFAULT (10)
- #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
- #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
- #define UART_TX_IDLE_NUM_DEFAULT (0)
- #define UART_PATTERN_DET_QLEN_DEFAULT (10)
- #define UART_MIN_WAKEUP_THRESH (2)
- #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
- #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
- #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
- #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
- // Check actual UART mode set
- #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
- typedef struct {
- uart_event_type_t type; /*!< UART TX data type */
- struct {
- int brk_len;
- size_t size;
- uint8_t data[0];
- } tx_data;
- } uart_tx_data_t;
- typedef struct {
- int wr;
- int rd;
- int len;
- int *data;
- } uart_pat_rb_t;
- typedef struct {
- uart_port_t uart_num; /*!< UART port number*/
- int queue_size; /*!< UART event queue size*/
- QueueHandle_t xQueueUart; /*!< UART queue handler*/
- intr_handle_t intr_handle; /*!< UART interrupt handle*/
- uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
- bool coll_det_flg; /*!< UART collision detection flag */
- //rx parameters
- int rx_buffered_len; /*!< UART cached data length */
- SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
- int rx_buf_size; /*!< RX ring buffer size */
- RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
- bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
- int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
- uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
- uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
- uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
- uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
- uart_pat_rb_t rx_pattern_pos;
- //tx parameters
- SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
- SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
- SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
- SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
- int tx_buf_size; /*!< TX ring buffer size */
- RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
- bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
- uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
- uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
- uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
- uint32_t tx_len_cur;
- uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
- uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
- uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
- uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
- } uart_obj_t;
- static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
- /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
- static DRAM_ATTR uart_dev_t *const UART[UART_NUM_MAX] = {
- &UART0,
- &UART1,
- #if UART_NUM > 2
- &UART2
- #endif
- };
- static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
- portMUX_INITIALIZER_UNLOCKED,
- portMUX_INITIALIZER_UNLOCKED,
- #if UART_NUM > 2
- portMUX_INITIALIZER_UNLOCKED
- #endif
- };
- static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
- esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->conf0.bit_num = data_bit;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- *(data_bit) = UART[uart_num]->conf0.bit_num;
- return ESP_OK;
- }
- esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- //workaround for hardware bug, when uart stop bit set as 2-bit mode.
- if (stop_bit == UART_STOP_BITS_2) {
- stop_bit = UART_STOP_BITS_1;
- UART[uart_num]->rs485_conf.dl1_en = 1;
- } else {
- UART[uart_num]->rs485_conf.dl1_en = 0;
- }
- UART[uart_num]->conf0.stop_bit_num = stop_bit;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- #if CONFIG_IDF_TARGET_ESP32
- //workaround for hardware bug, when uart stop bit set as 2-bit mode.
- if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
- (*stop_bit) = UART_STOP_BITS_2;
- } else {
- (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
- }
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
- #endif
- return ESP_OK;
- }
- esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->conf0.parity = parity_mode & 0x1;
- UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- int val = UART[uart_num]->conf0.val;
- if (val & UART_PARITY_EN_M) {
- if (val & UART_PARITY_M) {
- (*parity_mode) = UART_PARITY_ODD;
- } else {
- (*parity_mode) = UART_PARITY_EVEN;
- }
- } else {
- (*parity_mode) = UART_PARITY_DISABLE;
- }
- return ESP_OK;
- }
- esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- esp_err_t ret = ESP_OK;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- int uart_clk_freq;
- if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
- /* this UART has been configured to use REF_TICK */
- uart_clk_freq = REF_CLK_FREQ;
- } else {
- uart_clk_freq = esp_clk_apb_freq();
- }
- uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
- if (clk_div < 16) {
- /* baud rate is too high for this clock frequency */
- ret = ESP_ERR_INVALID_ARG;
- } else {
- UART[uart_num]->clk_div.div_int = clk_div >> 4;
- UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- uint32_t uart_clk_freq = esp_clk_apb_freq();
- if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
- uart_clk_freq = REF_CLK_FREQ;
- }
- (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
- return ESP_OK;
- }
- esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
- SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
- UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->flow_conf.sw_flow_con_en = enable ? 1 : 0;
- UART[uart_num]->flow_conf.xonoff_del = enable ? 1 : 0;
- #if CONFIG_IDF_TARGET_ESP32
- UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
- UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
- UART[uart_num]->swfc_conf.xon_char = XON;
- UART[uart_num]->swfc_conf.xoff_char = XOFF;
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- UART[uart_num]->swfc_conf1.xon_threshold = rx_thresh_xon;
- UART[uart_num]->swfc_conf0.xoff_threshold = rx_thresh_xoff;
- UART[uart_num]->swfc_conf1.xon_char = XON;
- UART[uart_num]->swfc_conf0.xoff_char = XOFF;
- #endif
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
- esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
- UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- if (flow_ctrl & UART_HW_FLOWCTRL_RTS) {
- #if CONFIG_IDF_TARGET_ESP32
- UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- UART[uart_num]->mem_conf.rx_flow_thrhd = rx_thresh;
- #endif
- UART[uart_num]->conf1.rx_flow_en = 1;
- } else {
- UART[uart_num]->conf1.rx_flow_en = 0;
- }
- if (flow_ctrl & UART_HW_FLOWCTRL_CTS) {
- UART[uart_num]->conf0.tx_flow_en = 1;
- } else {
- UART[uart_num]->conf0.tx_flow_en = 0;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
- if (UART[uart_num]->conf1.rx_flow_en) {
- val |= UART_HW_FLOWCTRL_RTS;
- }
- if (UART[uart_num]->conf0.tx_flow_en) {
- val |= UART_HW_FLOWCTRL_CTS;
- }
- (*flow_ctrl) = val;
- return ESP_OK;
- }
- static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- #if CONFIG_IDF_TARGET_ESP32
- //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
- //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
- // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
- while (UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
- READ_PERI_REG(UART_FIFO_REG(uart_num));
- }
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- UART[uart_num]->conf0.rxfifo_rst = 1;
- UART[uart_num]->conf0.rxfifo_rst = 0;
- #endif
- return ESP_OK;
- }
- esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- //intr_clr register is write-only
- UART[uart_num]->int_clr.val = clr_mask;
- return ESP_OK;
- }
- esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
- SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
- {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
- {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
- SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
- int *pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
- p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
- p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- free(pdata);
- }
- return ESP_OK;
- }
- static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- esp_err_t ret = ESP_OK;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int next = p_pos->wr + 1;
- if (next >= p_pos->len) {
- next = 0;
- }
- if (next == p_pos->rd) {
- ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
- ret = ESP_FAIL;
- } else {
- p_pos->data[p_pos->wr] = pos;
- p_pos->wr = next;
- ret = ESP_OK;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
- return ESP_ERR_INVALID_STATE;
- } else {
- esp_err_t ret = ESP_OK;
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- if (p_pos->rd == p_pos->wr) {
- ret = ESP_FAIL;
- } else {
- p_pos->rd++;
- }
- if (p_pos->rd >= p_pos->len) {
- p_pos->rd = 0;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- }
- static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int rd = p_pos->rd;
- while (rd != p_pos->wr) {
- p_pos->data[rd] -= diff_len;
- int rd_rec = rd;
- rd ++;
- if (rd >= p_pos->len) {
- rd = 0;
- }
- if (p_pos->data[rd_rec] < 0) {
- p_pos->rd = rd;
- }
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- int uart_pattern_pop_pos(uart_port_t uart_num)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int pos = -1;
- if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
- pos = pat_pos->data[pat_pos->rd];
- uart_pattern_dequeue(uart_num);
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return pos;
- }
- int uart_pattern_get_pos(uart_port_t uart_num)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
- int pos = -1;
- if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
- pos = pat_pos->data[pat_pos->rd];
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return pos;
- }
- esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
- int *pdata = (int *) malloc(queue_length * sizeof(int));
- if (pdata == NULL) {
- return ESP_ERR_NO_MEM;
- }
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
- p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
- p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
- p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
- p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- free(ptmp);
- return ESP_OK;
- }
- #if CONFIG_IDF_TARGET_ESP32
- esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
- {
- //This function is deprecated, please use uart_enable_pattern_det_baud_intr instead.
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
- UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
- UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
- UART[uart_num]->at_cmd_char.data = pattern_chr;
- UART[uart_num]->at_cmd_char.char_num = chr_num;
- UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
- UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
- UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
- return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
- }
- #endif
- esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
- UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
- UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
- UART[uart_num]->at_cmd_char.data = pattern_chr;
- UART[uart_num]->at_cmd_char.char_num = chr_num;
- #if CONFIG_IDF_TARGET_ESP32
- int apb_clk_freq = 0;
- uint32_t uart_baud = 0;
- uint32_t uart_div = 0;
- uart_get_baudrate(uart_num, &uart_baud);
- apb_clk_freq = esp_clk_apb_freq();
- uart_div = apb_clk_freq / uart_baud;
- UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout * uart_div;
- UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle * uart_div;
- UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle * uart_div;
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
- UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
- UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
- #endif
- return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
- }
- esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
- }
- esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
- {
- return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
- }
- esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
- }
- esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
- {
- return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
- }
- esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->int_clr.txfifo_empty = 1;
- UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
- UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
- {
- int ret;
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- switch(uart_num) {
- case UART_NUM_1:
- ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
- break;
- #if UART_NUM > 2
- case UART_NUM_2:
- ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
- break;
- #endif
- case UART_NUM_0:
- default:
- ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
- break;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- esp_err_t uart_isr_free(uart_port_t uart_num)
- {
- esp_err_t ret;
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- if (p_uart_obj[uart_num]->intr_handle == NULL) {
- return ESP_ERR_INVALID_ARG;
- }
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
- p_uart_obj[uart_num]->intr_handle = NULL;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ret;
- }
- //internal signal can be output to multiple GPIO pads
- //only one GPIO pad can connect with input signal
- esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
- UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
- UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
- UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
- int tx_sig, rx_sig, rts_sig, cts_sig;
- switch(uart_num) {
- case UART_NUM_0:
- tx_sig = U0TXD_OUT_IDX;
- rx_sig = U0RXD_IN_IDX;
- rts_sig = U0RTS_OUT_IDX;
- cts_sig = U0CTS_IN_IDX;
- break;
- case UART_NUM_1:
- tx_sig = U1TXD_OUT_IDX;
- rx_sig = U1RXD_IN_IDX;
- rts_sig = U1RTS_OUT_IDX;
- cts_sig = U1CTS_IN_IDX;
- break;
- #if UART_NUM > 2
- case UART_NUM_2:
- tx_sig = U2TXD_OUT_IDX;
- rx_sig = U2RXD_IN_IDX;
- rts_sig = U2RTS_OUT_IDX;
- cts_sig = U2CTS_IN_IDX;
- break;
- #endif
- case UART_NUM_MAX:
- default:
- tx_sig = U0TXD_OUT_IDX;
- rx_sig = U0RXD_IN_IDX;
- rts_sig = U0RTS_OUT_IDX;
- cts_sig = U0CTS_IN_IDX;
- break;
- }
- if (tx_io_num >= 0) {
- PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
- gpio_set_level(tx_io_num, 1);
- gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
- }
- if (rx_io_num >= 0) {
- PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
- gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
- gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
- gpio_matrix_in(rx_io_num, rx_sig, 0);
- }
- if (rts_io_num >= 0) {
- PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
- gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
- gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
- }
- if (cts_io_num >= 0) {
- PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
- gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
- gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
- gpio_matrix_in(cts_io_num, cts_sig, 0);
- }
- return ESP_OK;
- }
- esp_err_t uart_set_rts(uart_port_t uart_num, int level)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->conf0.sw_rts = level & 0x1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->conf0.sw_dtr = level & 0x1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->idle_conf.tx_idle_num = idle_num;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
- {
- esp_err_t r;
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((uart_config), "param null", ESP_FAIL);
- if (uart_num == UART_NUM_0) {
- periph_module_enable(PERIPH_UART0_MODULE);
- } else if (uart_num == UART_NUM_1) {
- periph_module_enable(PERIPH_UART1_MODULE);
- #if UART_NUM > 2
- } else if(uart_num == UART_NUM_2) {
- periph_module_enable(PERIPH_UART2_MODULE);
- #endif
- }
- r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
- if (r != ESP_OK) {
- return r;
- }
- UART[uart_num]->conf0.val =
- (uart_config->parity << UART_PARITY_S)
- | (uart_config->data_bits << UART_BIT_NUM_S)
- | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
- | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
- r = uart_set_baudrate(uart_num, uart_config->baud_rate);
- if (r != ESP_OK) {
- return r;
- }
- r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
- if (r != ESP_OK) {
- return r;
- }
- r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
- //A hardware reset does not reset the fifo,
- //so we need to reset the fifo manually.
- uart_reset_rx_fifo(uart_num);
- return r;
- }
- esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((intr_conf), "param null", ESP_FAIL);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->int_clr.val = UART_INTR_MASK;
- if (intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
- #if CONFIG_IDF_TARGET_ESP32
- //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
- //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
- if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
- UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
- } else {
- UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
- }
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- UART[uart_num]->mem_conf.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
- #endif
- UART[uart_num]->conf1.rx_tout_en = 1;
- } else {
- UART[uart_num]->conf1.rx_tout_en = 0;
- }
- if (intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
- UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
- }
- if (intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
- UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
- }
- UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- static int uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, int pat_num)
- {
- int cnt = 0;
- int len = length;
- while (len >= 0) {
- if (buf[len] == pat_chr) {
- cnt++;
- } else {
- cnt = 0;
- }
- if (cnt >= pat_num) {
- break;
- }
- len --;
- }
- return len;
- }
- //internal isr handler for default driver code.
- static void uart_rx_intr_handler_default(void *param)
- {
- uart_obj_t *p_uart = (uart_obj_t *) param;
- uint8_t uart_num = p_uart->uart_num;
- uart_dev_t *uart_reg = UART[uart_num];
- int rx_fifo_len = 0;
- uint8_t buf_idx = 0;
- uint32_t uart_intr_status = 0;
- uart_event_t uart_event;
- portBASE_TYPE HPTaskAwoken = 0;
- static uint8_t pat_flg = 0;
- while(1) {
- uart_intr_status = uart_reg->int_st.val;
- // The `continue statement` may cause the interrupt to loop infinitely
- // we exit the interrupt here
- if(uart_intr_status == 0) {
- break;
- }
- uart_event.type = UART_EVENT_MAX;
- if (uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
- uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
- uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
- if (p_uart->tx_waiting_brk) {
- continue;
- }
- //TX semaphore will only be used when tx_buf_size is zero.
- if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
- p_uart->tx_waiting_fifo = false;
- xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
- } else {
- //We don't use TX ring buffer, because the size is zero.
- if (p_uart->tx_buf_size == 0) {
- continue;
- }
- int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
- bool en_tx_flg = false;
- //We need to put a loop here, in case all the buffer items are very short.
- //That would cause a watch_dog reset because empty interrupt happens so often.
- //Although this is a loop in ISR, this loop will execute at most 128 turns.
- while (tx_fifo_rem) {
- if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
- size_t size;
- p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
- if (p_uart->tx_head) {
- //The first item is the data description
- //Get the first item to get the data information
- if (p_uart->tx_len_tot == 0) {
- p_uart->tx_ptr = NULL;
- p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
- if (p_uart->tx_head->type == UART_DATA_BREAK) {
- p_uart->tx_brk_flg = 1;
- p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
- }
- //We have saved the data description from the 1st item, return buffer.
- vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
- }else if(p_uart->tx_ptr == NULL) {
- //Update the TX item pointer, we will need this to return item to buffer.
- p_uart->tx_ptr = (uint8_t *) p_uart->tx_head;
- en_tx_flg = true;
- p_uart->tx_len_cur = size;
- }
- } else {
- //Can not get data from ring buffer, return;
- break;
- }
- }
- if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
- //To fill the TX FIFO.
- int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
- // Set RS485 RTS pin before transmission if the half duplex mode is enabled
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reg->conf0.sw_rts = 0;
- uart_reg->int_ena.tx_done = 1;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
- WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
- *(p_uart->tx_ptr++) & 0xff);
- }
- p_uart->tx_len_tot -= send_len;
- p_uart->tx_len_cur -= send_len;
- tx_fifo_rem -= send_len;
- if (p_uart->tx_len_cur == 0) {
- //Return item to ring buffer.
- vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
- p_uart->tx_head = NULL;
- p_uart->tx_ptr = NULL;
- //Sending item done, now we need to send break if there is a record.
- //Set TX break signal after FIFO is empty
- if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reg->int_ena.tx_brk_done = 0;
- uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
- uart_reg->conf0.txd_brk = 1;
- uart_reg->int_clr.tx_brk_done = 1;
- uart_reg->int_ena.tx_brk_done = 1;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- p_uart->tx_waiting_brk = 1;
- //do not enable TX empty interrupt
- en_tx_flg = false;
- } else {
- //enable TX empty interrupt
- en_tx_flg = true;
- }
- } else {
- //enable TX empty interrupt
- en_tx_flg = true;
- }
- }
- }
- if (en_tx_flg) {
- uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
- uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
- }
- }
- } else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
- || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
- || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
- ) {
- rx_fifo_len = uart_reg->status.rxfifo_cnt;
- if (pat_flg == 1) {
- uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
- pat_flg = 0;
- }
- if (p_uart->rx_buffer_full_flg == false) {
- //We have to read out all data in RX FIFO to clear the interrupt signal
- for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
- #if CONFIG_IDF_TARGET_ESP32
- p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- p_uart->rx_data_buf[buf_idx++] = READ_PERI_REG(UART_FIFO_AHB_REG(uart_num));
- #endif
- }
- uint8_t pat_chr = uart_reg->at_cmd_char.data;
- int pat_num = uart_reg->at_cmd_char.char_num;
- int pat_idx = -1;
- //Get the buffer from the FIFO
- if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
- uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
- uart_event.type = UART_PATTERN_DET;
- uart_event.size = rx_fifo_len;
- pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
- } else {
- //After Copying the Data From FIFO ,Clear intr_status
- uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
- uart_event.type = UART_DATA;
- uart_event.size = rx_fifo_len;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- }
- p_uart->rx_stash_len = rx_fifo_len;
- //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
- //Mainly for applications that uses flow control or small ring buffer.
- if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
- p_uart->rx_buffer_full_flg = true;
- uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
- if (uart_event.type == UART_PATTERN_DET) {
- if (rx_fifo_len < pat_num) {
- //some of the characters are read out in last interrupt
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
- } else {
- uart_pattern_enqueue(uart_num,
- pat_idx <= -1 ?
- //can not find the pattern in buffer,
- p_uart->rx_buffered_len + p_uart->rx_stash_len :
- // find the pattern in buffer
- p_uart->rx_buffered_len + pat_idx);
- }
- if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
- ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
- }
- }
- uart_event.type = UART_BUFFER_FULL;
- } else {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
- if (rx_fifo_len < pat_num) {
- //some of the characters are read out in last interrupt
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
- } else if (pat_idx >= 0) {
- // find pattern in statsh buffer.
- uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
- }
- }
- p_uart->rx_buffered_len += p_uart->rx_stash_len;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- } else {
- uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
- uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
- if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
- uart_reg->int_clr.at_cmd_char_det = 1;
- uart_event.type = UART_PATTERN_DET;
- uart_event.size = rx_fifo_len;
- pat_flg = 1;
- }
- }
- } else if (uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
- // When fifo overflows, we reset the fifo.
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reset_rx_fifo(uart_num);
- uart_reg->int_clr.rxfifo_ovf = 1;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_event.type = UART_FIFO_OVF;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- } else if (uart_intr_status & UART_BRK_DET_INT_ST_M) {
- uart_reg->int_clr.brk_det = 1;
- uart_event.type = UART_BREAK;
- } else if (uart_intr_status & UART_FRM_ERR_INT_ST_M) {
- uart_reg->int_clr.frm_err = 1;
- uart_event.type = UART_FRAME_ERR;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- } else if (uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
- uart_reg->int_clr.parity_err = 1;
- uart_event.type = UART_PARITY_ERR;
- UART_ENTER_CRITICAL_ISR(&uart_selectlock);
- if (p_uart->uart_select_notif_callback) {
- p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
- }
- UART_EXIT_CRITICAL_ISR(&uart_selectlock);
- } else if (uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reg->conf0.txd_brk = 0;
- uart_reg->int_ena.tx_brk_done = 0;
- uart_reg->int_clr.tx_brk_done = 1;
- if (p_uart->tx_brk_flg == 1) {
- uart_reg->int_ena.txfifo_empty = 1;
- }
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- if (p_uart->tx_brk_flg == 1) {
- p_uart->tx_brk_flg = 0;
- p_uart->tx_waiting_brk = 0;
- } else {
- xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
- }
- } else if (uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
- uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
- uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
- } else if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
- uart_reg->int_clr.at_cmd_char_det = 1;
- uart_event.type = UART_PATTERN_DET;
- } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
- || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
- || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
- // RS485 collision or frame error interrupt triggered
- uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reset_rx_fifo(uart_num);
- // Set collision detection flag
- p_uart_obj[uart_num]->coll_det_flg = true;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_event.type = UART_EVENT_MAX;
- } else if (uart_intr_status & UART_TX_DONE_INT_ST_M) {
- uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
- uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
- // If RS485 half duplex mode is enable then reset FIFO and
- // reset RTS pin to start receiver driver
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
- UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
- uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
- uart_reg->conf0.sw_rts = 1;
- UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
- }
- xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
- } else {
- uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
- uart_event.type = UART_EVENT_MAX;
- }
- if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
- if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
- ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
- }
- }
- }
- if(HPTaskAwoken == pdTRUE) {
- portYIELD_FROM_ISR();
- }
- }
- /**************************************************************/
- esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- BaseType_t res;
- portTickType ticks_start = xTaskGetTickCount();
- //Take tx_mux
- res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
- if (res == pdFALSE) {
- return ESP_ERR_TIMEOUT;
- }
- xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
- typeof(UART0.status) status = UART[uart_num]->status;
- //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
- #ifdef CONFIG_IDF_TARGET_ESP32
- if (status.txfifo_cnt == 0 && status.st_utx_out == 0) {
- #else /* TODO: check transmitter state machine on ESP32S2Beta */
- if (status.txfifo_cnt == 0) {
- #endif
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_OK;
- }
- uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
- TickType_t ticks_end = xTaskGetTickCount();
- if (ticks_end - ticks_start > ticks_to_wait) {
- ticks_to_wait = 0;
- } else {
- ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
- }
- //take 2nd tx_done_sem, wait given from ISR
- res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
- if (res == pdFALSE) {
- uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_ERR_TIMEOUT;
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return ESP_OK;
- }
- static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
- {
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->idle_conf.tx_brk_num = break_num;
- UART[uart_num]->conf0.txd_brk = 1;
- UART[uart_num]->int_clr.tx_brk_done = 1;
- UART[uart_num]->int_ena.tx_brk_done = 1;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- //Fill UART tx_fifo and return a number,
- //This function by itself is not thread-safe, always call from within a muxed section.
- static int uart_fill_fifo(uart_port_t uart_num, const char *buffer, uint32_t len)
- {
- uint8_t i = 0;
- uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
- uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
- uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
- // Set the RTS pin if RS485 mode is enabled
- if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
- UART[uart_num]->conf0.sw_rts = 0;
- UART[uart_num]->int_ena.tx_done = 1;
- }
- for (i = 0; i < copy_cnt; i++) {
- WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
- }
- return copy_cnt;
- }
- int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- UART_CHECK(buffer, "buffer null", (-1));
- if (len == 0) {
- return 0;
- }
- xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
- int tx_len = uart_fill_fifo(uart_num, (const char *) buffer, len);
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return tx_len;
- }
- static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
- {
- if (size == 0) {
- return 0;
- }
- size_t original_size = size;
- //lock for uart_tx
- xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
- p_uart_obj[uart_num]->coll_det_flg = false;
- if (p_uart_obj[uart_num]->tx_buf_size > 0) {
- int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
- int offset = 0;
- uart_tx_data_t evt;
- evt.tx_data.size = size;
- evt.tx_data.brk_len = brk_len;
- if (brk_en) {
- evt.type = UART_DATA_BREAK;
- } else {
- evt.type = UART_DATA;
- }
- xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
- while (size > 0) {
- int send_size = size > max_size / 2 ? max_size / 2 : size;
- xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
- size -= send_size;
- offset += send_size;
- uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
- }
- } else {
- while (size) {
- //semaphore for tx_fifo available
- if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
- size_t sent = uart_fill_fifo(uart_num, (char *) src, size);
- if (sent < size) {
- p_uart_obj[uart_num]->tx_waiting_fifo = true;
- uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
- }
- size -= sent;
- src += sent;
- }
- }
- if (brk_en) {
- uart_set_break(uart_num, brk_len);
- xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
- }
- xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
- return original_size;
- }
- int uart_write_bytes(uart_port_t uart_num, const char *src, size_t size)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
- UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
- UART_CHECK(src, "buffer null", (-1));
- return uart_tx_all(uart_num, src, size, 0, 0);
- }
- int uart_write_bytes_with_break(uart_port_t uart_num, const char *src, size_t size, int brk_len)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- UART_CHECK((size > 0), "uart size error", (-1));
- UART_CHECK((src), "uart data null", (-1));
- UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
- return uart_tx_all(uart_num, src, size, 1, brk_len);
- }
- static bool uart_check_buf_full(uart_port_t uart_num)
- {
- if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
- BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
- if (res == pdTRUE) {
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
- return true;
- }
- }
- return false;
- }
- int uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
- UART_CHECK((buf), "uart data null", (-1));
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
- uint8_t *data = NULL;
- size_t size;
- size_t copy_len = 0;
- int len_tmp;
- if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
- return -1;
- }
- while (length) {
- if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
- data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
- if (data) {
- p_uart_obj[uart_num]->rx_head_ptr = data;
- p_uart_obj[uart_num]->rx_ptr = data;
- p_uart_obj[uart_num]->rx_cur_remain = size;
- } else {
- //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
- //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
- //to solve the possible asynchronous issues.
- if (uart_check_buf_full(uart_num)) {
- //This condition will never be true if `uart_read_bytes`
- //and `uart_rx_intr_handler_default` are scheduled on the same core.
- continue;
- } else {
- xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
- return copy_len;
- }
- }
- }
- if (p_uart_obj[uart_num]->rx_cur_remain > length) {
- len_tmp = length;
- } else {
- len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
- }
- memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
- uart_pattern_queue_update(uart_num, len_tmp);
- p_uart_obj[uart_num]->rx_ptr += len_tmp;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
- copy_len += len_tmp;
- length -= len_tmp;
- if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
- vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
- p_uart_obj[uart_num]->rx_head_ptr = NULL;
- p_uart_obj[uart_num]->rx_ptr = NULL;
- uart_check_buf_full(uart_num);
- }
- }
- xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
- return copy_len;
- }
- esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- *size = p_uart_obj[uart_num]->rx_buffered_len;
- return ESP_OK;
- }
- esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
- esp_err_t uart_flush_input(uart_port_t uart_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
- uart_obj_t *p_uart = p_uart_obj[uart_num];
- uint8_t *data;
- size_t size;
- //rx sem protect the ring buffer read related functions
- xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
- uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
- while (true) {
- if (p_uart->rx_head_ptr) {
- vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
- uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- p_uart->rx_ptr = NULL;
- p_uart->rx_cur_remain = 0;
- p_uart->rx_head_ptr = NULL;
- }
- data = (uint8_t *) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
- if (data == NULL) {
- if ( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
- ESP_LOGE(UART_TAG, "rx_buffered_len error");
- p_uart_obj[uart_num]->rx_buffered_len = 0;
- }
- //We also need to clear the `rx_buffer_full_flg` here.
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- break;
- }
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len -= size;
- uart_pattern_queue_update(uart_num, size);
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- vRingbufferReturnItem(p_uart->rx_ring_buf, data);
- if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
- BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
- if (res == pdTRUE) {
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- }
- }
- }
- p_uart->rx_ptr = NULL;
- p_uart->rx_cur_remain = 0;
- p_uart->rx_head_ptr = NULL;
- uart_reset_rx_fifo(uart_num);
- uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
- xSemaphoreGive(p_uart->rx_mux);
- return ESP_OK;
- }
- esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
- {
- esp_err_t r;
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
- UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
- UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
- if (p_uart_obj[uart_num] == NULL) {
- p_uart_obj[uart_num] = (uart_obj_t *) calloc(1, sizeof(uart_obj_t));
- if (p_uart_obj[uart_num] == NULL) {
- ESP_LOGE(UART_TAG, "UART driver malloc error");
- return ESP_FAIL;
- }
- p_uart_obj[uart_num]->uart_num = uart_num;
- p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
- p_uart_obj[uart_num]->coll_det_flg = false;
- p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
- xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
- p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
- p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
- p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
- p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
- p_uart_obj[uart_num]->queue_size = queue_size;
- p_uart_obj[uart_num]->tx_ptr = NULL;
- p_uart_obj[uart_num]->tx_head = NULL;
- p_uart_obj[uart_num]->tx_len_tot = 0;
- p_uart_obj[uart_num]->tx_brk_flg = 0;
- p_uart_obj[uart_num]->tx_brk_len = 0;
- p_uart_obj[uart_num]->tx_waiting_brk = 0;
- p_uart_obj[uart_num]->rx_buffered_len = 0;
- uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
- if (uart_queue) {
- p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
- *uart_queue = p_uart_obj[uart_num]->xQueueUart;
- ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
- } else {
- p_uart_obj[uart_num]->xQueueUart = NULL;
- }
- p_uart_obj[uart_num]->rx_buffer_full_flg = false;
- p_uart_obj[uart_num]->tx_waiting_fifo = false;
- p_uart_obj[uart_num]->rx_ptr = NULL;
- p_uart_obj[uart_num]->rx_cur_remain = 0;
- p_uart_obj[uart_num]->rx_head_ptr = NULL;
- p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
- if (tx_buffer_size > 0) {
- p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
- p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
- } else {
- p_uart_obj[uart_num]->tx_ring_buf = NULL;
- p_uart_obj[uart_num]->tx_buf_size = 0;
- }
- p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
- } else {
- ESP_LOGE(UART_TAG, "UART driver already installed");
- return ESP_FAIL;
- }
- r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
- if (r != ESP_OK) {
- goto err;
- }
- uart_intr_config_t uart_intr = {
- .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
- | UART_RXFIFO_TOUT_INT_ENA_M
- | UART_FRM_ERR_INT_ENA_M
- | UART_RXFIFO_OVF_INT_ENA_M
- | UART_BRK_DET_INT_ENA_M
- | UART_PARITY_ERR_INT_ENA_M,
- .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
- .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
- .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
- };
- r = uart_intr_config(uart_num, &uart_intr);
- if (r != ESP_OK) {
- goto err;
- }
- return r;
- err:
- uart_driver_delete(uart_num);
- return r;
- }
- //Make sure no other tasks are still using UART before you call this function
- esp_err_t uart_driver_delete(uart_port_t uart_num)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
- if (p_uart_obj[uart_num] == NULL) {
- ESP_LOGI(UART_TAG, "ALREADY NULL");
- return ESP_OK;
- }
- esp_intr_free(p_uart_obj[uart_num]->intr_handle);
- uart_disable_rx_intr(uart_num);
- uart_disable_tx_intr(uart_num);
- uart_pattern_link_free(uart_num);
- if (p_uart_obj[uart_num]->tx_fifo_sem) {
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
- p_uart_obj[uart_num]->tx_fifo_sem = NULL;
- }
- if (p_uart_obj[uart_num]->tx_done_sem) {
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
- p_uart_obj[uart_num]->tx_done_sem = NULL;
- }
- if (p_uart_obj[uart_num]->tx_brk_sem) {
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
- p_uart_obj[uart_num]->tx_brk_sem = NULL;
- }
- if (p_uart_obj[uart_num]->tx_mux) {
- vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
- p_uart_obj[uart_num]->tx_mux = NULL;
- }
- if (p_uart_obj[uart_num]->rx_mux) {
- vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
- p_uart_obj[uart_num]->rx_mux = NULL;
- }
- if (p_uart_obj[uart_num]->xQueueUart) {
- vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
- p_uart_obj[uart_num]->xQueueUart = NULL;
- }
- if (p_uart_obj[uart_num]->rx_ring_buf) {
- vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
- p_uart_obj[uart_num]->rx_ring_buf = NULL;
- }
- if (p_uart_obj[uart_num]->tx_ring_buf) {
- vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
- p_uart_obj[uart_num]->tx_ring_buf = NULL;
- }
- free(p_uart_obj[uart_num]);
- p_uart_obj[uart_num] = NULL;
- if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
- if(uart_num == UART_NUM_0) {
- periph_module_disable(PERIPH_UART0_MODULE);
- } else if(uart_num == UART_NUM_1) {
- periph_module_disable(PERIPH_UART1_MODULE);
- #if UART_NUM > 2
- } else if(uart_num == UART_NUM_2) {
- periph_module_disable(PERIPH_UART2_MODULE);
- #endif
- }
- }
- return ESP_OK;
- }
- void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
- {
- if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
- p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
- }
- }
- portMUX_TYPE *uart_get_selectlock(void)
- {
- return &uart_selectlock;
- }
- // Set UART mode
- esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
- {
- UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
- || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
- UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
- "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
- }
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- UART[uart_num]->rs485_conf.en = 0;
- UART[uart_num]->rs485_conf.tx_rx_en = 0;
- UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
- UART[uart_num]->conf0.irda_en = 0;
- UART[uart_num]->conf0.sw_rts = 0;
- switch (mode) {
- case UART_MODE_UART:
- break;
- case UART_MODE_RS485_COLLISION_DETECT:
- // This mode allows read while transmitting that allows collision detection
- p_uart_obj[uart_num]->coll_det_flg = false;
- // Transmitters output signal loop back to the receivers input signal
- UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
- // Transmitter should send data when its receiver is busy
- UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
- UART[uart_num]->rs485_conf.en = 1;
- // Enable collision detection interrupts
- uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
- | UART_RXFIFO_FULL_INT_ENA
- | UART_RS485_CLASH_INT_ENA
- | UART_RS485_FRM_ERR_INT_ENA
- | UART_RS485_PARITY_ERR_INT_ENA);
- break;
- case UART_MODE_RS485_APP_CTRL:
- // Application software control, remove echo
- UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
- UART[uart_num]->rs485_conf.en = 1;
- break;
- case UART_MODE_RS485_HALF_DUPLEX:
- // Enable receiver, sw_rts = 1 generates low level on RTS pin
- UART[uart_num]->conf0.sw_rts = 1;
- UART[uart_num]->rs485_conf.en = 1;
- // Must be set to 0 to automatically remove echo
- UART[uart_num]->rs485_conf.tx_rx_en = 0;
- // This is to void collision
- UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
- break;
- case UART_MODE_IRDA:
- UART[uart_num]->conf0.irda_en = 1;
- break;
- default:
- UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
- break;
- }
- p_uart_obj[uart_num]->uart_mode = mode;
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
- UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
- // The tout_thresh = 1, defines TOUT interrupt timeout equal to
- // transmission time of one symbol (~11 bit) on current baudrate
- if (tout_thresh > 0) {
- #if CONFIG_IDF_TARGET_ESP32
- //ESP32 hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
- //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
- if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
- UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
- } else {
- UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
- }
- #elif CONFIG_IDF_TARGET_ESP32S2BETA
- UART[uart_num]->mem_conf.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
- #endif
- UART[uart_num]->conf1.rx_tout_en = 1;
- } else {
- UART[uart_num]->conf1.rx_tout_en = 0;
- }
- UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
- return ESP_OK;
- }
- esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
- UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
- || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
- "wrong mode", ESP_ERR_INVALID_ARG);
- *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
- return ESP_OK;
- }
- esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
- wakeup_threshold > UART_MIN_WAKEUP_THRESH),
- "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
- UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
- return ESP_OK;
- }
- esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
- {
- UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
- UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
- *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
- return ESP_OK;
- }
|