uart.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/task.h"
  24. #include "freertos/ringbuf.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "sdkconfig.h"
  30. #if CONFIG_IDF_TARGET_ESP32
  31. #include "esp32/clk.h"
  32. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  33. #include "esp32s2beta/clk.h"
  34. #endif
  35. #define UART_NUM SOC_UART_NUM
  36. #define UART_NUM SOC_UART_NUM
  37. #define XOFF (char)0x13
  38. #define XON (char)0x11
  39. static const char *UART_TAG = "uart";
  40. #define UART_CHECK(a, str, ret_val) \
  41. if (!(a)) { \
  42. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  43. return (ret_val); \
  44. }
  45. #define UART_EMPTY_THRESH_DEFAULT (10)
  46. #define UART_FULL_THRESH_DEFAULT (120)
  47. #define UART_TOUT_THRESH_DEFAULT (10)
  48. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  49. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  50. #define UART_TX_IDLE_NUM_DEFAULT (0)
  51. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  52. #define UART_MIN_WAKEUP_THRESH (2)
  53. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  54. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  55. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  56. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  57. // Check actual UART mode set
  58. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  59. typedef struct {
  60. uart_event_type_t type; /*!< UART TX data type */
  61. struct {
  62. int brk_len;
  63. size_t size;
  64. uint8_t data[0];
  65. } tx_data;
  66. } uart_tx_data_t;
  67. typedef struct {
  68. int wr;
  69. int rd;
  70. int len;
  71. int *data;
  72. } uart_pat_rb_t;
  73. typedef struct {
  74. uart_port_t uart_num; /*!< UART port number*/
  75. int queue_size; /*!< UART event queue size*/
  76. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  77. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  78. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  79. bool coll_det_flg; /*!< UART collision detection flag */
  80. //rx parameters
  81. int rx_buffered_len; /*!< UART cached data length */
  82. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  83. int rx_buf_size; /*!< RX ring buffer size */
  84. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  85. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  86. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  87. uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
  88. uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
  89. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  90. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  91. uart_pat_rb_t rx_pattern_pos;
  92. //tx parameters
  93. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  94. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  95. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  96. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  97. int tx_buf_size; /*!< TX ring buffer size */
  98. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  99. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  100. uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  101. uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  102. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  103. uint32_t tx_len_cur;
  104. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  105. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  106. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  107. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  108. } uart_obj_t;
  109. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  110. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  111. static DRAM_ATTR uart_dev_t *const UART[UART_NUM_MAX] = {
  112. &UART0,
  113. &UART1,
  114. #if UART_NUM > 2
  115. &UART2
  116. #endif
  117. };
  118. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  119. portMUX_INITIALIZER_UNLOCKED,
  120. portMUX_INITIALIZER_UNLOCKED,
  121. #if UART_NUM > 2
  122. portMUX_INITIALIZER_UNLOCKED
  123. #endif
  124. };
  125. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  126. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  127. {
  128. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  129. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  130. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  131. UART[uart_num]->conf0.bit_num = data_bit;
  132. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  133. return ESP_OK;
  134. }
  135. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
  136. {
  137. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  138. *(data_bit) = UART[uart_num]->conf0.bit_num;
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  145. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  146. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  147. if (stop_bit == UART_STOP_BITS_2) {
  148. stop_bit = UART_STOP_BITS_1;
  149. UART[uart_num]->rs485_conf.dl1_en = 1;
  150. } else {
  151. UART[uart_num]->rs485_conf.dl1_en = 0;
  152. }
  153. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  154. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. #if CONFIG_IDF_TARGET_ESP32
  161. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  162. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  163. (*stop_bit) = UART_STOP_BITS_2;
  164. } else {
  165. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  166. }
  167. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  168. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  169. #endif
  170. return ESP_OK;
  171. }
  172. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  173. {
  174. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  175. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  176. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  177. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  178. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  179. return ESP_OK;
  180. }
  181. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
  182. {
  183. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  184. int val = UART[uart_num]->conf0.val;
  185. if (val & UART_PARITY_EN_M) {
  186. if (val & UART_PARITY_M) {
  187. (*parity_mode) = UART_PARITY_ODD;
  188. } else {
  189. (*parity_mode) = UART_PARITY_EVEN;
  190. }
  191. } else {
  192. (*parity_mode) = UART_PARITY_DISABLE;
  193. }
  194. return ESP_OK;
  195. }
  196. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  197. {
  198. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  199. esp_err_t ret = ESP_OK;
  200. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  201. int uart_clk_freq;
  202. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  203. /* this UART has been configured to use REF_TICK */
  204. uart_clk_freq = REF_CLK_FREQ;
  205. } else {
  206. uart_clk_freq = esp_clk_apb_freq();
  207. }
  208. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  209. if (clk_div < 16) {
  210. /* baud rate is too high for this clock frequency */
  211. ret = ESP_ERR_INVALID_ARG;
  212. } else {
  213. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  214. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  215. }
  216. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  217. return ret;
  218. }
  219. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  220. {
  221. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  222. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  223. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  224. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  225. uint32_t uart_clk_freq = esp_clk_apb_freq();
  226. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  227. uart_clk_freq = REF_CLK_FREQ;
  228. }
  229. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  230. return ESP_OK;
  231. }
  232. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  233. {
  234. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  235. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  236. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  237. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  238. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  239. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  240. return ESP_OK;
  241. }
  242. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  243. {
  244. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  245. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  246. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  247. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  248. UART[uart_num]->flow_conf.sw_flow_con_en = enable ? 1 : 0;
  249. UART[uart_num]->flow_conf.xonoff_del = enable ? 1 : 0;
  250. #if CONFIG_IDF_TARGET_ESP32
  251. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  252. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  253. UART[uart_num]->swfc_conf.xon_char = XON;
  254. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  255. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  256. UART[uart_num]->swfc_conf1.xon_threshold = rx_thresh_xon;
  257. UART[uart_num]->swfc_conf0.xoff_threshold = rx_thresh_xoff;
  258. UART[uart_num]->swfc_conf1.xon_char = XON;
  259. UART[uart_num]->swfc_conf0.xoff_char = XOFF;
  260. #endif
  261. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  262. return ESP_OK;
  263. }
  264. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  265. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  266. {
  267. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  268. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  269. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  270. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  271. if (flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  272. #if CONFIG_IDF_TARGET_ESP32
  273. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  274. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  275. UART[uart_num]->mem_conf.rx_flow_thrhd = rx_thresh;
  276. #endif
  277. UART[uart_num]->conf1.rx_flow_en = 1;
  278. } else {
  279. UART[uart_num]->conf1.rx_flow_en = 0;
  280. }
  281. if (flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  282. UART[uart_num]->conf0.tx_flow_en = 1;
  283. } else {
  284. UART[uart_num]->conf0.tx_flow_en = 0;
  285. }
  286. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  287. return ESP_OK;
  288. }
  289. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
  290. {
  291. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  292. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  293. if (UART[uart_num]->conf1.rx_flow_en) {
  294. val |= UART_HW_FLOWCTRL_RTS;
  295. }
  296. if (UART[uart_num]->conf0.tx_flow_en) {
  297. val |= UART_HW_FLOWCTRL_CTS;
  298. }
  299. (*flow_ctrl) = val;
  300. return ESP_OK;
  301. }
  302. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  303. {
  304. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  305. #if CONFIG_IDF_TARGET_ESP32
  306. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  307. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  308. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  309. while (UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  310. READ_PERI_REG(UART_FIFO_REG(uart_num));
  311. }
  312. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  313. UART[uart_num]->conf0.rxfifo_rst = 1;
  314. UART[uart_num]->conf0.rxfifo_rst = 0;
  315. #endif
  316. return ESP_OK;
  317. }
  318. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  319. {
  320. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  321. //intr_clr register is write-only
  322. UART[uart_num]->int_clr.val = clr_mask;
  323. return ESP_OK;
  324. }
  325. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  326. {
  327. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  328. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  329. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  330. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  331. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  332. return ESP_OK;
  333. }
  334. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  335. {
  336. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  337. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  338. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  339. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  340. return ESP_OK;
  341. }
  342. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  343. {
  344. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  345. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  346. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  347. }
  348. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  349. {
  350. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  351. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  352. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  353. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  354. }
  355. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  356. {
  357. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  358. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  359. int *pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  360. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  361. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  362. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  363. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  364. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  365. free(pdata);
  366. }
  367. return ESP_OK;
  368. }
  369. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  370. {
  371. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  372. esp_err_t ret = ESP_OK;
  373. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  374. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  375. int next = p_pos->wr + 1;
  376. if (next >= p_pos->len) {
  377. next = 0;
  378. }
  379. if (next == p_pos->rd) {
  380. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  381. ret = ESP_FAIL;
  382. } else {
  383. p_pos->data[p_pos->wr] = pos;
  384. p_pos->wr = next;
  385. ret = ESP_OK;
  386. }
  387. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  388. return ret;
  389. }
  390. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  391. {
  392. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  393. if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  394. return ESP_ERR_INVALID_STATE;
  395. } else {
  396. esp_err_t ret = ESP_OK;
  397. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  398. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  399. if (p_pos->rd == p_pos->wr) {
  400. ret = ESP_FAIL;
  401. } else {
  402. p_pos->rd++;
  403. }
  404. if (p_pos->rd >= p_pos->len) {
  405. p_pos->rd = 0;
  406. }
  407. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  408. return ret;
  409. }
  410. }
  411. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  412. {
  413. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  414. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  415. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  416. int rd = p_pos->rd;
  417. while (rd != p_pos->wr) {
  418. p_pos->data[rd] -= diff_len;
  419. int rd_rec = rd;
  420. rd ++;
  421. if (rd >= p_pos->len) {
  422. rd = 0;
  423. }
  424. if (p_pos->data[rd_rec] < 0) {
  425. p_pos->rd = rd;
  426. }
  427. }
  428. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  429. return ESP_OK;
  430. }
  431. int uart_pattern_pop_pos(uart_port_t uart_num)
  432. {
  433. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  434. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  435. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  436. int pos = -1;
  437. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  438. pos = pat_pos->data[pat_pos->rd];
  439. uart_pattern_dequeue(uart_num);
  440. }
  441. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  442. return pos;
  443. }
  444. int uart_pattern_get_pos(uart_port_t uart_num)
  445. {
  446. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  447. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  448. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  449. int pos = -1;
  450. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  451. pos = pat_pos->data[pat_pos->rd];
  452. }
  453. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  454. return pos;
  455. }
  456. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  457. {
  458. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  459. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  460. int *pdata = (int *) malloc(queue_length * sizeof(int));
  461. if (pdata == NULL) {
  462. return ESP_ERR_NO_MEM;
  463. }
  464. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  465. int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  466. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  467. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  468. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  469. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  470. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  471. free(ptmp);
  472. return ESP_OK;
  473. }
  474. #if CONFIG_IDF_TARGET_ESP32
  475. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  476. {
  477. //This function is deprecated, please use uart_enable_pattern_det_baud_intr instead.
  478. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  479. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  480. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  481. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  482. UART[uart_num]->at_cmd_char.data = pattern_chr;
  483. UART[uart_num]->at_cmd_char.char_num = chr_num;
  484. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  485. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  486. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  487. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  488. }
  489. #endif
  490. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  491. {
  492. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  493. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  494. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  495. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  496. UART[uart_num]->at_cmd_char.data = pattern_chr;
  497. UART[uart_num]->at_cmd_char.char_num = chr_num;
  498. #if CONFIG_IDF_TARGET_ESP32
  499. int apb_clk_freq = 0;
  500. uint32_t uart_baud = 0;
  501. uint32_t uart_div = 0;
  502. uart_get_baudrate(uart_num, &uart_baud);
  503. apb_clk_freq = esp_clk_apb_freq();
  504. uart_div = apb_clk_freq / uart_baud;
  505. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout * uart_div;
  506. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle * uart_div;
  507. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle * uart_div;
  508. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  509. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  510. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  511. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  512. #endif
  513. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  514. }
  515. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  516. {
  517. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  518. }
  519. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  520. {
  521. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  522. }
  523. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  524. {
  525. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  526. }
  527. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  528. {
  529. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  530. }
  531. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  532. {
  533. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  534. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  535. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  536. UART[uart_num]->int_clr.txfifo_empty = 1;
  537. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  538. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  539. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  540. return ESP_OK;
  541. }
  542. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  543. {
  544. int ret;
  545. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  546. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  547. switch(uart_num) {
  548. case UART_NUM_1:
  549. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  550. break;
  551. #if UART_NUM > 2
  552. case UART_NUM_2:
  553. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  554. break;
  555. #endif
  556. case UART_NUM_0:
  557. default:
  558. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  559. break;
  560. }
  561. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  562. return ret;
  563. }
  564. esp_err_t uart_isr_free(uart_port_t uart_num)
  565. {
  566. esp_err_t ret;
  567. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  568. if (p_uart_obj[uart_num]->intr_handle == NULL) {
  569. return ESP_ERR_INVALID_ARG;
  570. }
  571. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  572. ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  573. p_uart_obj[uart_num]->intr_handle = NULL;
  574. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  575. return ret;
  576. }
  577. //internal signal can be output to multiple GPIO pads
  578. //only one GPIO pad can connect with input signal
  579. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  580. {
  581. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  582. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  583. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  584. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  585. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  586. int tx_sig, rx_sig, rts_sig, cts_sig;
  587. switch(uart_num) {
  588. case UART_NUM_0:
  589. tx_sig = U0TXD_OUT_IDX;
  590. rx_sig = U0RXD_IN_IDX;
  591. rts_sig = U0RTS_OUT_IDX;
  592. cts_sig = U0CTS_IN_IDX;
  593. break;
  594. case UART_NUM_1:
  595. tx_sig = U1TXD_OUT_IDX;
  596. rx_sig = U1RXD_IN_IDX;
  597. rts_sig = U1RTS_OUT_IDX;
  598. cts_sig = U1CTS_IN_IDX;
  599. break;
  600. #if UART_NUM > 2
  601. case UART_NUM_2:
  602. tx_sig = U2TXD_OUT_IDX;
  603. rx_sig = U2RXD_IN_IDX;
  604. rts_sig = U2RTS_OUT_IDX;
  605. cts_sig = U2CTS_IN_IDX;
  606. break;
  607. #endif
  608. case UART_NUM_MAX:
  609. default:
  610. tx_sig = U0TXD_OUT_IDX;
  611. rx_sig = U0RXD_IN_IDX;
  612. rts_sig = U0RTS_OUT_IDX;
  613. cts_sig = U0CTS_IN_IDX;
  614. break;
  615. }
  616. if (tx_io_num >= 0) {
  617. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  618. gpio_set_level(tx_io_num, 1);
  619. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  620. }
  621. if (rx_io_num >= 0) {
  622. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  623. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  624. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  625. gpio_matrix_in(rx_io_num, rx_sig, 0);
  626. }
  627. if (rts_io_num >= 0) {
  628. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  629. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  630. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  631. }
  632. if (cts_io_num >= 0) {
  633. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  634. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  635. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  636. gpio_matrix_in(cts_io_num, cts_sig, 0);
  637. }
  638. return ESP_OK;
  639. }
  640. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  641. {
  642. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  643. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  644. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  645. UART[uart_num]->conf0.sw_rts = level & 0x1;
  646. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  647. return ESP_OK;
  648. }
  649. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  650. {
  651. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  652. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  653. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  654. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  655. return ESP_OK;
  656. }
  657. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  658. {
  659. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  660. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  661. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  662. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  663. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  664. return ESP_OK;
  665. }
  666. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  667. {
  668. esp_err_t r;
  669. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  670. UART_CHECK((uart_config), "param null", ESP_FAIL);
  671. if (uart_num == UART_NUM_0) {
  672. periph_module_enable(PERIPH_UART0_MODULE);
  673. } else if (uart_num == UART_NUM_1) {
  674. periph_module_enable(PERIPH_UART1_MODULE);
  675. #if UART_NUM > 2
  676. } else if(uart_num == UART_NUM_2) {
  677. periph_module_enable(PERIPH_UART2_MODULE);
  678. #endif
  679. }
  680. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  681. if (r != ESP_OK) {
  682. return r;
  683. }
  684. UART[uart_num]->conf0.val =
  685. (uart_config->parity << UART_PARITY_S)
  686. | (uart_config->data_bits << UART_BIT_NUM_S)
  687. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  688. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  689. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  690. if (r != ESP_OK) {
  691. return r;
  692. }
  693. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  694. if (r != ESP_OK) {
  695. return r;
  696. }
  697. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  698. //A hardware reset does not reset the fifo,
  699. //so we need to reset the fifo manually.
  700. uart_reset_rx_fifo(uart_num);
  701. return r;
  702. }
  703. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  704. {
  705. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  706. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  707. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  708. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  709. if (intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  710. #if CONFIG_IDF_TARGET_ESP32
  711. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  712. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  713. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  714. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  715. } else {
  716. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  717. }
  718. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  719. UART[uart_num]->mem_conf.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  720. #endif
  721. UART[uart_num]->conf1.rx_tout_en = 1;
  722. } else {
  723. UART[uart_num]->conf1.rx_tout_en = 0;
  724. }
  725. if (intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  726. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  727. }
  728. if (intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  729. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  730. }
  731. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  732. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  733. return ESP_OK;
  734. }
  735. static int uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, int pat_num)
  736. {
  737. int cnt = 0;
  738. int len = length;
  739. while (len >= 0) {
  740. if (buf[len] == pat_chr) {
  741. cnt++;
  742. } else {
  743. cnt = 0;
  744. }
  745. if (cnt >= pat_num) {
  746. break;
  747. }
  748. len --;
  749. }
  750. return len;
  751. }
  752. //internal isr handler for default driver code.
  753. static void uart_rx_intr_handler_default(void *param)
  754. {
  755. uart_obj_t *p_uart = (uart_obj_t *) param;
  756. uint8_t uart_num = p_uart->uart_num;
  757. uart_dev_t *uart_reg = UART[uart_num];
  758. int rx_fifo_len = 0;
  759. uint8_t buf_idx = 0;
  760. uint32_t uart_intr_status = 0;
  761. uart_event_t uart_event;
  762. portBASE_TYPE HPTaskAwoken = 0;
  763. static uint8_t pat_flg = 0;
  764. while(1) {
  765. uart_intr_status = uart_reg->int_st.val;
  766. // The `continue statement` may cause the interrupt to loop infinitely
  767. // we exit the interrupt here
  768. if(uart_intr_status == 0) {
  769. break;
  770. }
  771. uart_event.type = UART_EVENT_MAX;
  772. if (uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  773. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  774. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  775. if (p_uart->tx_waiting_brk) {
  776. continue;
  777. }
  778. //TX semaphore will only be used when tx_buf_size is zero.
  779. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  780. p_uart->tx_waiting_fifo = false;
  781. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  782. } else {
  783. //We don't use TX ring buffer, because the size is zero.
  784. if (p_uart->tx_buf_size == 0) {
  785. continue;
  786. }
  787. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  788. bool en_tx_flg = false;
  789. //We need to put a loop here, in case all the buffer items are very short.
  790. //That would cause a watch_dog reset because empty interrupt happens so often.
  791. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  792. while (tx_fifo_rem) {
  793. if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  794. size_t size;
  795. p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  796. if (p_uart->tx_head) {
  797. //The first item is the data description
  798. //Get the first item to get the data information
  799. if (p_uart->tx_len_tot == 0) {
  800. p_uart->tx_ptr = NULL;
  801. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  802. if (p_uart->tx_head->type == UART_DATA_BREAK) {
  803. p_uart->tx_brk_flg = 1;
  804. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  805. }
  806. //We have saved the data description from the 1st item, return buffer.
  807. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  808. }else if(p_uart->tx_ptr == NULL) {
  809. //Update the TX item pointer, we will need this to return item to buffer.
  810. p_uart->tx_ptr = (uint8_t *) p_uart->tx_head;
  811. en_tx_flg = true;
  812. p_uart->tx_len_cur = size;
  813. }
  814. } else {
  815. //Can not get data from ring buffer, return;
  816. break;
  817. }
  818. }
  819. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  820. //To fill the TX FIFO.
  821. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  822. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  823. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  824. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  825. uart_reg->conf0.sw_rts = 0;
  826. uart_reg->int_ena.tx_done = 1;
  827. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  828. }
  829. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  830. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  831. *(p_uart->tx_ptr++) & 0xff);
  832. }
  833. p_uart->tx_len_tot -= send_len;
  834. p_uart->tx_len_cur -= send_len;
  835. tx_fifo_rem -= send_len;
  836. if (p_uart->tx_len_cur == 0) {
  837. //Return item to ring buffer.
  838. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  839. p_uart->tx_head = NULL;
  840. p_uart->tx_ptr = NULL;
  841. //Sending item done, now we need to send break if there is a record.
  842. //Set TX break signal after FIFO is empty
  843. if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  844. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  845. uart_reg->int_ena.tx_brk_done = 0;
  846. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  847. uart_reg->conf0.txd_brk = 1;
  848. uart_reg->int_clr.tx_brk_done = 1;
  849. uart_reg->int_ena.tx_brk_done = 1;
  850. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  851. p_uart->tx_waiting_brk = 1;
  852. //do not enable TX empty interrupt
  853. en_tx_flg = false;
  854. } else {
  855. //enable TX empty interrupt
  856. en_tx_flg = true;
  857. }
  858. } else {
  859. //enable TX empty interrupt
  860. en_tx_flg = true;
  861. }
  862. }
  863. }
  864. if (en_tx_flg) {
  865. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  866. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  867. }
  868. }
  869. } else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  870. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  871. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  872. ) {
  873. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  874. if (pat_flg == 1) {
  875. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  876. pat_flg = 0;
  877. }
  878. if (p_uart->rx_buffer_full_flg == false) {
  879. //We have to read out all data in RX FIFO to clear the interrupt signal
  880. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  881. #if CONFIG_IDF_TARGET_ESP32
  882. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  883. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  884. p_uart->rx_data_buf[buf_idx++] = READ_PERI_REG(UART_FIFO_AHB_REG(uart_num));
  885. #endif
  886. }
  887. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  888. int pat_num = uart_reg->at_cmd_char.char_num;
  889. int pat_idx = -1;
  890. //Get the buffer from the FIFO
  891. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  892. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  893. uart_event.type = UART_PATTERN_DET;
  894. uart_event.size = rx_fifo_len;
  895. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  896. } else {
  897. //After Copying the Data From FIFO ,Clear intr_status
  898. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  899. uart_event.type = UART_DATA;
  900. uart_event.size = rx_fifo_len;
  901. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  902. if (p_uart->uart_select_notif_callback) {
  903. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  904. }
  905. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  906. }
  907. p_uart->rx_stash_len = rx_fifo_len;
  908. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  909. //Mainly for applications that uses flow control or small ring buffer.
  910. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  911. p_uart->rx_buffer_full_flg = true;
  912. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  913. if (uart_event.type == UART_PATTERN_DET) {
  914. if (rx_fifo_len < pat_num) {
  915. //some of the characters are read out in last interrupt
  916. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  917. } else {
  918. uart_pattern_enqueue(uart_num,
  919. pat_idx <= -1 ?
  920. //can not find the pattern in buffer,
  921. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  922. // find the pattern in buffer
  923. p_uart->rx_buffered_len + pat_idx);
  924. }
  925. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  926. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  927. }
  928. }
  929. uart_event.type = UART_BUFFER_FULL;
  930. } else {
  931. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  932. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  933. if (rx_fifo_len < pat_num) {
  934. //some of the characters are read out in last interrupt
  935. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  936. } else if (pat_idx >= 0) {
  937. // find pattern in statsh buffer.
  938. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  939. }
  940. }
  941. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  942. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  943. }
  944. } else {
  945. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  946. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  947. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  948. uart_reg->int_clr.at_cmd_char_det = 1;
  949. uart_event.type = UART_PATTERN_DET;
  950. uart_event.size = rx_fifo_len;
  951. pat_flg = 1;
  952. }
  953. }
  954. } else if (uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  955. // When fifo overflows, we reset the fifo.
  956. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  957. uart_reset_rx_fifo(uart_num);
  958. uart_reg->int_clr.rxfifo_ovf = 1;
  959. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  960. uart_event.type = UART_FIFO_OVF;
  961. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  962. if (p_uart->uart_select_notif_callback) {
  963. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  964. }
  965. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  966. } else if (uart_intr_status & UART_BRK_DET_INT_ST_M) {
  967. uart_reg->int_clr.brk_det = 1;
  968. uart_event.type = UART_BREAK;
  969. } else if (uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  970. uart_reg->int_clr.frm_err = 1;
  971. uart_event.type = UART_FRAME_ERR;
  972. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  973. if (p_uart->uart_select_notif_callback) {
  974. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  975. }
  976. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  977. } else if (uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  978. uart_reg->int_clr.parity_err = 1;
  979. uart_event.type = UART_PARITY_ERR;
  980. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  981. if (p_uart->uart_select_notif_callback) {
  982. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  983. }
  984. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  985. } else if (uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  986. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  987. uart_reg->conf0.txd_brk = 0;
  988. uart_reg->int_ena.tx_brk_done = 0;
  989. uart_reg->int_clr.tx_brk_done = 1;
  990. if (p_uart->tx_brk_flg == 1) {
  991. uart_reg->int_ena.txfifo_empty = 1;
  992. }
  993. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  994. if (p_uart->tx_brk_flg == 1) {
  995. p_uart->tx_brk_flg = 0;
  996. p_uart->tx_waiting_brk = 0;
  997. } else {
  998. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  999. }
  1000. } else if (uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  1001. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  1002. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  1003. } else if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  1004. uart_reg->int_clr.at_cmd_char_det = 1;
  1005. uart_event.type = UART_PATTERN_DET;
  1006. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  1007. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  1008. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  1009. // RS485 collision or frame error interrupt triggered
  1010. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  1011. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1012. uart_reset_rx_fifo(uart_num);
  1013. // Set collision detection flag
  1014. p_uart_obj[uart_num]->coll_det_flg = true;
  1015. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1016. uart_event.type = UART_EVENT_MAX;
  1017. } else if (uart_intr_status & UART_TX_DONE_INT_ST_M) {
  1018. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  1019. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  1020. // If RS485 half duplex mode is enable then reset FIFO and
  1021. // reset RTS pin to start receiver driver
  1022. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1023. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1024. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  1025. uart_reg->conf0.sw_rts = 1;
  1026. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1027. }
  1028. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  1029. } else {
  1030. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  1031. uart_event.type = UART_EVENT_MAX;
  1032. }
  1033. if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  1034. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  1035. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  1036. }
  1037. }
  1038. }
  1039. if(HPTaskAwoken == pdTRUE) {
  1040. portYIELD_FROM_ISR();
  1041. }
  1042. }
  1043. /**************************************************************/
  1044. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1045. {
  1046. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1047. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1048. BaseType_t res;
  1049. portTickType ticks_start = xTaskGetTickCount();
  1050. //Take tx_mux
  1051. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1052. if (res == pdFALSE) {
  1053. return ESP_ERR_TIMEOUT;
  1054. }
  1055. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1056. typeof(UART0.status) status = UART[uart_num]->status;
  1057. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  1058. #ifdef CONFIG_IDF_TARGET_ESP32
  1059. if (status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  1060. #else /* TODO: check transmitter state machine on ESP32S2Beta */
  1061. if (status.txfifo_cnt == 0) {
  1062. #endif
  1063. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1064. return ESP_OK;
  1065. }
  1066. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1067. TickType_t ticks_end = xTaskGetTickCount();
  1068. if (ticks_end - ticks_start > ticks_to_wait) {
  1069. ticks_to_wait = 0;
  1070. } else {
  1071. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1072. }
  1073. //take 2nd tx_done_sem, wait given from ISR
  1074. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1075. if (res == pdFALSE) {
  1076. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1077. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1078. return ESP_ERR_TIMEOUT;
  1079. }
  1080. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1081. return ESP_OK;
  1082. }
  1083. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1084. {
  1085. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1086. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1087. UART[uart_num]->conf0.txd_brk = 1;
  1088. UART[uart_num]->int_clr.tx_brk_done = 1;
  1089. UART[uart_num]->int_ena.tx_brk_done = 1;
  1090. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1091. return ESP_OK;
  1092. }
  1093. //Fill UART tx_fifo and return a number,
  1094. //This function by itself is not thread-safe, always call from within a muxed section.
  1095. static int uart_fill_fifo(uart_port_t uart_num, const char *buffer, uint32_t len)
  1096. {
  1097. uint8_t i = 0;
  1098. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1099. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1100. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1101. // Set the RTS pin if RS485 mode is enabled
  1102. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1103. UART[uart_num]->conf0.sw_rts = 0;
  1104. UART[uart_num]->int_ena.tx_done = 1;
  1105. }
  1106. for (i = 0; i < copy_cnt; i++) {
  1107. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1108. }
  1109. return copy_cnt;
  1110. }
  1111. int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
  1112. {
  1113. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1114. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1115. UART_CHECK(buffer, "buffer null", (-1));
  1116. if (len == 0) {
  1117. return 0;
  1118. }
  1119. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1120. int tx_len = uart_fill_fifo(uart_num, (const char *) buffer, len);
  1121. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1122. return tx_len;
  1123. }
  1124. static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
  1125. {
  1126. if (size == 0) {
  1127. return 0;
  1128. }
  1129. size_t original_size = size;
  1130. //lock for uart_tx
  1131. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1132. p_uart_obj[uart_num]->coll_det_flg = false;
  1133. if (p_uart_obj[uart_num]->tx_buf_size > 0) {
  1134. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1135. int offset = 0;
  1136. uart_tx_data_t evt;
  1137. evt.tx_data.size = size;
  1138. evt.tx_data.brk_len = brk_len;
  1139. if (brk_en) {
  1140. evt.type = UART_DATA_BREAK;
  1141. } else {
  1142. evt.type = UART_DATA;
  1143. }
  1144. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1145. while (size > 0) {
  1146. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1147. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
  1148. size -= send_size;
  1149. offset += send_size;
  1150. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1151. }
  1152. } else {
  1153. while (size) {
  1154. //semaphore for tx_fifo available
  1155. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1156. size_t sent = uart_fill_fifo(uart_num, (char *) src, size);
  1157. if (sent < size) {
  1158. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1159. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1160. }
  1161. size -= sent;
  1162. src += sent;
  1163. }
  1164. }
  1165. if (brk_en) {
  1166. uart_set_break(uart_num, brk_len);
  1167. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1168. }
  1169. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1170. }
  1171. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1172. return original_size;
  1173. }
  1174. int uart_write_bytes(uart_port_t uart_num, const char *src, size_t size)
  1175. {
  1176. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1177. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1178. UART_CHECK(src, "buffer null", (-1));
  1179. return uart_tx_all(uart_num, src, size, 0, 0);
  1180. }
  1181. int uart_write_bytes_with_break(uart_port_t uart_num, const char *src, size_t size, int brk_len)
  1182. {
  1183. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1184. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1185. UART_CHECK((size > 0), "uart size error", (-1));
  1186. UART_CHECK((src), "uart data null", (-1));
  1187. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1188. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1189. }
  1190. static bool uart_check_buf_full(uart_port_t uart_num)
  1191. {
  1192. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1193. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1194. if (res == pdTRUE) {
  1195. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1196. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1197. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1198. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1199. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1200. return true;
  1201. }
  1202. }
  1203. return false;
  1204. }
  1205. int uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait)
  1206. {
  1207. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1208. UART_CHECK((buf), "uart data null", (-1));
  1209. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1210. uint8_t *data = NULL;
  1211. size_t size;
  1212. size_t copy_len = 0;
  1213. int len_tmp;
  1214. if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
  1215. return -1;
  1216. }
  1217. while (length) {
  1218. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1219. data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1220. if (data) {
  1221. p_uart_obj[uart_num]->rx_head_ptr = data;
  1222. p_uart_obj[uart_num]->rx_ptr = data;
  1223. p_uart_obj[uart_num]->rx_cur_remain = size;
  1224. } else {
  1225. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1226. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1227. //to solve the possible asynchronous issues.
  1228. if (uart_check_buf_full(uart_num)) {
  1229. //This condition will never be true if `uart_read_bytes`
  1230. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1231. continue;
  1232. } else {
  1233. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1234. return copy_len;
  1235. }
  1236. }
  1237. }
  1238. if (p_uart_obj[uart_num]->rx_cur_remain > length) {
  1239. len_tmp = length;
  1240. } else {
  1241. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1242. }
  1243. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1244. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1245. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1246. uart_pattern_queue_update(uart_num, len_tmp);
  1247. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1248. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1249. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1250. copy_len += len_tmp;
  1251. length -= len_tmp;
  1252. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1253. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1254. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1255. p_uart_obj[uart_num]->rx_ptr = NULL;
  1256. uart_check_buf_full(uart_num);
  1257. }
  1258. }
  1259. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1260. return copy_len;
  1261. }
  1262. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
  1263. {
  1264. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1265. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1266. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1267. return ESP_OK;
  1268. }
  1269. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1270. esp_err_t uart_flush_input(uart_port_t uart_num)
  1271. {
  1272. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1273. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1274. uart_obj_t *p_uart = p_uart_obj[uart_num];
  1275. uint8_t *data;
  1276. size_t size;
  1277. //rx sem protect the ring buffer read related functions
  1278. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1279. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1280. while (true) {
  1281. if (p_uart->rx_head_ptr) {
  1282. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1283. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1284. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1285. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1286. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1287. p_uart->rx_ptr = NULL;
  1288. p_uart->rx_cur_remain = 0;
  1289. p_uart->rx_head_ptr = NULL;
  1290. }
  1291. data = (uint8_t *) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1292. if (data == NULL) {
  1293. if ( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1294. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1295. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1296. }
  1297. //We also need to clear the `rx_buffer_full_flg` here.
  1298. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1299. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1300. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1301. break;
  1302. }
  1303. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1304. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1305. uart_pattern_queue_update(uart_num, size);
  1306. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1307. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1308. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1309. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1310. if (res == pdTRUE) {
  1311. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1312. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1313. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1314. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1315. }
  1316. }
  1317. }
  1318. p_uart->rx_ptr = NULL;
  1319. p_uart->rx_cur_remain = 0;
  1320. p_uart->rx_head_ptr = NULL;
  1321. uart_reset_rx_fifo(uart_num);
  1322. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1323. xSemaphoreGive(p_uart->rx_mux);
  1324. return ESP_OK;
  1325. }
  1326. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1327. {
  1328. esp_err_t r;
  1329. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1330. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1331. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1332. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1333. if (p_uart_obj[uart_num] == NULL) {
  1334. p_uart_obj[uart_num] = (uart_obj_t *) calloc(1, sizeof(uart_obj_t));
  1335. if (p_uart_obj[uart_num] == NULL) {
  1336. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1337. return ESP_FAIL;
  1338. }
  1339. p_uart_obj[uart_num]->uart_num = uart_num;
  1340. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1341. p_uart_obj[uart_num]->coll_det_flg = false;
  1342. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1343. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1344. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1345. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1346. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1347. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1348. p_uart_obj[uart_num]->queue_size = queue_size;
  1349. p_uart_obj[uart_num]->tx_ptr = NULL;
  1350. p_uart_obj[uart_num]->tx_head = NULL;
  1351. p_uart_obj[uart_num]->tx_len_tot = 0;
  1352. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1353. p_uart_obj[uart_num]->tx_brk_len = 0;
  1354. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1355. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1356. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1357. if (uart_queue) {
  1358. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1359. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1360. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1361. } else {
  1362. p_uart_obj[uart_num]->xQueueUart = NULL;
  1363. }
  1364. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1365. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1366. p_uart_obj[uart_num]->rx_ptr = NULL;
  1367. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1368. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1369. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1370. if (tx_buffer_size > 0) {
  1371. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1372. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1373. } else {
  1374. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1375. p_uart_obj[uart_num]->tx_buf_size = 0;
  1376. }
  1377. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1378. } else {
  1379. ESP_LOGE(UART_TAG, "UART driver already installed");
  1380. return ESP_FAIL;
  1381. }
  1382. r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1383. if (r != ESP_OK) {
  1384. goto err;
  1385. }
  1386. uart_intr_config_t uart_intr = {
  1387. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1388. | UART_RXFIFO_TOUT_INT_ENA_M
  1389. | UART_FRM_ERR_INT_ENA_M
  1390. | UART_RXFIFO_OVF_INT_ENA_M
  1391. | UART_BRK_DET_INT_ENA_M
  1392. | UART_PARITY_ERR_INT_ENA_M,
  1393. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1394. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1395. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1396. };
  1397. r = uart_intr_config(uart_num, &uart_intr);
  1398. if (r != ESP_OK) {
  1399. goto err;
  1400. }
  1401. return r;
  1402. err:
  1403. uart_driver_delete(uart_num);
  1404. return r;
  1405. }
  1406. //Make sure no other tasks are still using UART before you call this function
  1407. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1408. {
  1409. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1410. if (p_uart_obj[uart_num] == NULL) {
  1411. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1412. return ESP_OK;
  1413. }
  1414. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1415. uart_disable_rx_intr(uart_num);
  1416. uart_disable_tx_intr(uart_num);
  1417. uart_pattern_link_free(uart_num);
  1418. if (p_uart_obj[uart_num]->tx_fifo_sem) {
  1419. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1420. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1421. }
  1422. if (p_uart_obj[uart_num]->tx_done_sem) {
  1423. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1424. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1425. }
  1426. if (p_uart_obj[uart_num]->tx_brk_sem) {
  1427. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1428. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1429. }
  1430. if (p_uart_obj[uart_num]->tx_mux) {
  1431. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1432. p_uart_obj[uart_num]->tx_mux = NULL;
  1433. }
  1434. if (p_uart_obj[uart_num]->rx_mux) {
  1435. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1436. p_uart_obj[uart_num]->rx_mux = NULL;
  1437. }
  1438. if (p_uart_obj[uart_num]->xQueueUart) {
  1439. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1440. p_uart_obj[uart_num]->xQueueUart = NULL;
  1441. }
  1442. if (p_uart_obj[uart_num]->rx_ring_buf) {
  1443. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1444. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1445. }
  1446. if (p_uart_obj[uart_num]->tx_ring_buf) {
  1447. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1448. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1449. }
  1450. free(p_uart_obj[uart_num]);
  1451. p_uart_obj[uart_num] = NULL;
  1452. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  1453. if(uart_num == UART_NUM_0) {
  1454. periph_module_disable(PERIPH_UART0_MODULE);
  1455. } else if(uart_num == UART_NUM_1) {
  1456. periph_module_disable(PERIPH_UART1_MODULE);
  1457. #if UART_NUM > 2
  1458. } else if(uart_num == UART_NUM_2) {
  1459. periph_module_disable(PERIPH_UART2_MODULE);
  1460. #endif
  1461. }
  1462. }
  1463. return ESP_OK;
  1464. }
  1465. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1466. {
  1467. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1468. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1469. }
  1470. }
  1471. portMUX_TYPE *uart_get_selectlock(void)
  1472. {
  1473. return &uart_selectlock;
  1474. }
  1475. // Set UART mode
  1476. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1477. {
  1478. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1479. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1480. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1481. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1482. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1483. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1484. }
  1485. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1486. UART[uart_num]->rs485_conf.en = 0;
  1487. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1488. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1489. UART[uart_num]->conf0.irda_en = 0;
  1490. UART[uart_num]->conf0.sw_rts = 0;
  1491. switch (mode) {
  1492. case UART_MODE_UART:
  1493. break;
  1494. case UART_MODE_RS485_COLLISION_DETECT:
  1495. // This mode allows read while transmitting that allows collision detection
  1496. p_uart_obj[uart_num]->coll_det_flg = false;
  1497. // Transmitter’s output signal loop back to the receiver’s input signal
  1498. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1499. // Transmitter should send data when its receiver is busy
  1500. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1501. UART[uart_num]->rs485_conf.en = 1;
  1502. // Enable collision detection interrupts
  1503. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1504. | UART_RXFIFO_FULL_INT_ENA
  1505. | UART_RS485_CLASH_INT_ENA
  1506. | UART_RS485_FRM_ERR_INT_ENA
  1507. | UART_RS485_PARITY_ERR_INT_ENA);
  1508. break;
  1509. case UART_MODE_RS485_APP_CTRL:
  1510. // Application software control, remove echo
  1511. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1512. UART[uart_num]->rs485_conf.en = 1;
  1513. break;
  1514. case UART_MODE_RS485_HALF_DUPLEX:
  1515. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1516. UART[uart_num]->conf0.sw_rts = 1;
  1517. UART[uart_num]->rs485_conf.en = 1;
  1518. // Must be set to 0 to automatically remove echo
  1519. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1520. // This is to void collision
  1521. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1522. break;
  1523. case UART_MODE_IRDA:
  1524. UART[uart_num]->conf0.irda_en = 1;
  1525. break;
  1526. default:
  1527. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1528. break;
  1529. }
  1530. p_uart_obj[uart_num]->uart_mode = mode;
  1531. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1532. return ESP_OK;
  1533. }
  1534. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1535. {
  1536. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1537. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1538. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1539. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1540. // transmission time of one symbol (~11 bit) on current baudrate
  1541. if (tout_thresh > 0) {
  1542. #if CONFIG_IDF_TARGET_ESP32
  1543. //ESP32 hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1544. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1545. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1546. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  1547. } else {
  1548. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1549. }
  1550. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  1551. UART[uart_num]->mem_conf.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1552. #endif
  1553. UART[uart_num]->conf1.rx_tout_en = 1;
  1554. } else {
  1555. UART[uart_num]->conf1.rx_tout_en = 0;
  1556. }
  1557. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1558. return ESP_OK;
  1559. }
  1560. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
  1561. {
  1562. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1563. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1564. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1565. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1566. "wrong mode", ESP_ERR_INVALID_ARG);
  1567. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1568. return ESP_OK;
  1569. }
  1570. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1571. {
  1572. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1573. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1574. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1575. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1576. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1577. return ESP_OK;
  1578. }
  1579. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
  1580. {
  1581. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1582. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1583. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1584. return ESP_OK;
  1585. }