esp_timer_esp32.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406
  1. // Copyright 2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "esp_err.h"
  15. #include "esp_timer.h"
  16. #include "esp_system.h"
  17. #include "esp_task.h"
  18. #include "esp_attr.h"
  19. #include "esp_intr_alloc.h"
  20. #include "esp_log.h"
  21. #include "esp32/clk.h"
  22. #include "esp_private/esp_timer_impl.h"
  23. #include "soc/frc_timer_reg.h"
  24. #include "soc/rtc.h"
  25. #include "freertos/FreeRTOS.h"
  26. #include "freertos/task.h"
  27. #include "freertos/semphr.h"
  28. /**
  29. * @file esp_timer_esp32.c
  30. * @brief Implementation of chip-specific part of esp_timer
  31. *
  32. * This implementation uses FRC2 (legacy) timer of the ESP32. This timer is
  33. * a 32-bit up-counting timer, with a programmable compare value (called 'alarm'
  34. * hereafter). When the timer reaches compare value, interrupt is raised.
  35. * The timer can be configured to produce an edge or a level interrupt.
  36. *
  37. * In this implementation the timer is used for two purposes:
  38. * 1. To generate interrupts at certain moments — the upper layer of esp_timer
  39. * uses this to trigger callbacks of esp_timer objects.
  40. *
  41. * 2. To keep track of time relative to application start. This facility is
  42. * used both by the upper layer of esp_timer and by time functions, such as
  43. * gettimeofday.
  44. *
  45. * Whenever an esp_timer timer is armed (configured to fire once or
  46. * periodically), timer_insert function of the upper layer calls
  47. * esp_timer_impl_set_alarm to enable the interrupt at the required moment.
  48. * This implementation sets up the timer interrupt to fire at the earliest of
  49. * two moments:
  50. * a) the time requested by upper layer
  51. * b) the time when the timer count reaches 0xffffffff (i.e. is about to overflow)
  52. *
  53. * Whenever the interrupt fires and timer overflow is detected, interrupt hander
  54. * increments s_time_base_us variable, which is used for timekeeping.
  55. *
  56. * When the interrupt fires, the upper layer is notified, and it dispatches
  57. * the callbacks (if any timers have expired) and sets new alarm value (if any
  58. * timers are still active).
  59. *
  60. * At any point in time, esp_timer_impl_get_time will return the current timer
  61. * value (expressed in microseconds) plus s_time_base_us. To account for the
  62. * case when the timer counter has overflown, but the interrupt has not fired
  63. * yet (for example, because interupts are temporarily disabled),
  64. * esp_timer_impl_get_time will also check timer overflow flag, and will add
  65. * s_timer_us_per_overflow to the returned value.
  66. *
  67. */
  68. /* Timer is clocked from APB. To allow for integer scaling factor between ticks
  69. * and microseconds, divider 1 is used. 16 or 256 would not work for APB
  70. * frequencies such as 40 or 26 or 2 MHz.
  71. */
  72. #define TIMER_DIV 1
  73. #define TIMER_DIV_CFG FRC_TIMER_PRESCALER_1
  74. /* ALARM_OVERFLOW_VAL is used as timer alarm value when there are not timers
  75. * enabled which need to fire within the next timer overflow period. This alarm
  76. * is used to perform timekeeping (i.e. to track timer overflows).
  77. * Due to the 0xffffffff cannot recognize the real overflow or the scenario that
  78. * ISR happens follow set_alarm, so change the ALARM_OVERFLOW_VAL to resolve this problem.
  79. * Set it to 0xefffffffUL. The remain 0x10000000UL(about 3 second) is enough to handle ISR.
  80. */
  81. #define DEFAULT_ALARM_OVERFLOW_VAL 0xefffffffUL
  82. /* Provision to set lower overflow value for unit testing. Lowering the
  83. * overflow value helps check for race conditions which occur near overflow
  84. * moment.
  85. */
  86. #ifndef ESP_TIMER_DYNAMIC_OVERFLOW_VAL
  87. #define ALARM_OVERFLOW_VAL DEFAULT_ALARM_OVERFLOW_VAL
  88. #else
  89. static uint32_t s_alarm_overflow_val = DEFAULT_ALARM_OVERFLOW_VAL;
  90. #define ALARM_OVERFLOW_VAL (s_alarm_overflow_val)
  91. #endif
  92. static const char* TAG = "esp_timer_impl";
  93. // Interrupt handle returned by the interrupt allocator
  94. static intr_handle_t s_timer_interrupt_handle;
  95. // Function from the upper layer to be called when the interrupt happens.
  96. // Registered in esp_timer_impl_init.
  97. static intr_handler_t s_alarm_handler;
  98. // Time in microseconds from startup to the moment
  99. // when timer counter was last equal to 0. This variable is updated each time
  100. // when timer overflows, and when APB frequency switch is performed.
  101. static uint64_t s_time_base_us;
  102. // Number of timer ticks per microsecond. Calculated from APB frequency.
  103. static uint32_t s_timer_ticks_per_us;
  104. // Period between timer overflows, in microseconds.
  105. // Equal to 2^32 / s_timer_ticks_per_us.
  106. static uint32_t s_timer_us_per_overflow;
  107. // When frequency switch happens, timer counter is reset to 0, s_time_base_us
  108. // is updated, and alarm value is re-calculated based on the new APB frequency.
  109. // However because the frequency switch can happen before the final
  110. // interrupt handler is invoked, interrupt handler may see a different alarm
  111. // value than the one which caused an interrupt. This can cause interrupt handler
  112. // to consider that the interrupt has happened due to timer overflow, incrementing
  113. // s_time_base_us. To avoid this, frequency switch hook sets this flag if
  114. // it needs to set timer alarm value to ALARM_OVERFLOW_VAL. Interrupt handler
  115. // will not increment s_time_base_us if this flag is set.
  116. static bool s_mask_overflow;
  117. //The timer_overflow_happened read alarm register to tell if overflow happened.
  118. //However, there is a monent that overflow happens, and before ISR function called
  119. //alarm register is set to another value, then you call timer_overflow_happened,
  120. //it will return false.
  121. //So we store the overflow value when new alarm is to be set.
  122. static bool s_overflow_happened;
  123. #ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
  124. // If DFS is enabled, upon the first frequency change this value is set to the
  125. // difference between esp_timer value and RTC timer value. On every subsequent
  126. // frequency change, s_time_base_us is adjusted to maintain the same difference
  127. // between esp_timer and RTC timer. (All mentioned values are in microseconds.)
  128. static uint64_t s_rtc_time_diff = 0;
  129. #endif
  130. // Spinlock used to protect access to static variables above and to the hardware
  131. // registers.
  132. portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
  133. //Use FRC_TIMER_LOAD_VALUE(1) instead of UINT32_MAX, convenience to change FRC TIMER for future
  134. #define TIMER_IS_AFTER_OVERFLOW(a) (ALARM_OVERFLOW_VAL < (a) && (a) <= FRC_TIMER_LOAD_VALUE(1))
  135. // Check if timer overflow has happened (but was not handled by ISR yet)
  136. static inline bool IRAM_ATTR timer_overflow_happened(void)
  137. {
  138. if (s_overflow_happened) {
  139. return true;
  140. }
  141. return ((REG_READ(FRC_TIMER_CTRL_REG(1)) & FRC_TIMER_INT_STATUS) != 0 &&
  142. ((REG_READ(FRC_TIMER_ALARM_REG(1)) == ALARM_OVERFLOW_VAL && TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))) && !s_mask_overflow) ||
  143. (!TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_ALARM_REG(1))) && TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))))));
  144. }
  145. static inline void IRAM_ATTR timer_count_reload(void)
  146. {
  147. //this function should be only called the real overflow happened. And the count cannot be very approach to 0xffffffff.
  148. assert(TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))));
  149. /* Restart the timer count by current time count minus ALARM_OVERFLOW_VAL(0xefffffff), it may cause error, if current tick is near boundary.
  150. * But even if the error happen 100% per overflow(the distance of each real overflow is about 50 second),
  151. * the error is 0.0125us*N per 50s(the FRC time clock is 80MHz), the N is the ticks run by the line following,
  152. * Normally, N is less than 10, assume N is 10, so the error accumulation is only 6.48ms per month.
  153. * In fact, if the CPU frequency is large than 80MHz. The error accumulation will be more less than 6.48ms per month.
  154. * so It can be adopted.
  155. */
  156. REG_WRITE(FRC_TIMER_LOAD_REG(1), REG_READ(FRC_TIMER_COUNT_REG(1)) - ALARM_OVERFLOW_VAL);
  157. }
  158. void esp_timer_impl_lock(void)
  159. {
  160. portENTER_CRITICAL(&s_time_update_lock);
  161. }
  162. void esp_timer_impl_unlock(void)
  163. {
  164. portEXIT_CRITICAL(&s_time_update_lock);
  165. }
  166. uint64_t IRAM_ATTR esp_timer_impl_get_time(void)
  167. {
  168. uint32_t timer_val;
  169. uint64_t time_base;
  170. uint32_t ticks_per_us;
  171. bool overflow;
  172. do {
  173. /* Read all values needed to calculate current time */
  174. timer_val = REG_READ(FRC_TIMER_COUNT_REG(1));
  175. time_base = s_time_base_us;
  176. overflow = timer_overflow_happened();
  177. ticks_per_us = s_timer_ticks_per_us;
  178. /* Read them again and compare */
  179. /* In this function, do not call timer_count_reload() when overflow is true.
  180. * Because there's remain count enough to allow FRC_TIMER_COUNT_REG grow
  181. */
  182. if (REG_READ(FRC_TIMER_COUNT_REG(1)) > timer_val &&
  183. time_base == *((volatile uint64_t*) &s_time_base_us) &&
  184. ticks_per_us == *((volatile uint32_t*) &s_timer_ticks_per_us) &&
  185. overflow == timer_overflow_happened()) {
  186. break;
  187. }
  188. /* If any value has changed (other than the counter increasing), read again */
  189. } while(true);
  190. uint64_t result = time_base
  191. + timer_val / ticks_per_us;
  192. return result;
  193. }
  194. void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
  195. {
  196. portENTER_CRITICAL(&s_time_update_lock);
  197. // Alarm time relative to the moment when counter was 0
  198. uint64_t time_after_timebase_us = timestamp - s_time_base_us;
  199. // Adjust current time if overflow has happened
  200. bool overflow = timer_overflow_happened();
  201. uint64_t cur_count = REG_READ(FRC_TIMER_COUNT_REG(1));
  202. if (overflow) {
  203. assert(time_after_timebase_us > s_timer_us_per_overflow);
  204. time_after_timebase_us -= s_timer_us_per_overflow;
  205. s_overflow_happened = true;
  206. }
  207. // Calculate desired timer compare value (may exceed 2^32-1)
  208. uint64_t compare_val = time_after_timebase_us * s_timer_ticks_per_us;
  209. uint32_t alarm_reg_val = ALARM_OVERFLOW_VAL;
  210. // Use calculated alarm value if it is less than ALARM_OVERFLOW_VAL.
  211. // Note that if by the time we update ALARM_REG, COUNT_REG value is higher,
  212. // interrupt will not happen for another ALARM_OVERFLOW_VAL timer ticks,
  213. // so need to check if alarm value is too close in the future (e.g. <2 us away).
  214. const uint32_t offset = s_timer_ticks_per_us * 2;
  215. if (compare_val < ALARM_OVERFLOW_VAL) {
  216. if (compare_val < cur_count + offset) {
  217. compare_val = cur_count + offset;
  218. if (compare_val > ALARM_OVERFLOW_VAL) {
  219. compare_val = ALARM_OVERFLOW_VAL;
  220. }
  221. }
  222. alarm_reg_val = (uint32_t) compare_val;
  223. }
  224. REG_WRITE(FRC_TIMER_ALARM_REG(1), alarm_reg_val);
  225. portEXIT_CRITICAL(&s_time_update_lock);
  226. }
  227. static void IRAM_ATTR timer_alarm_isr(void *arg)
  228. {
  229. portENTER_CRITICAL_ISR(&s_time_update_lock);
  230. // Timekeeping: adjust s_time_base_us if counter has passed ALARM_OVERFLOW_VAL
  231. if (timer_overflow_happened()) {
  232. timer_count_reload();
  233. s_time_base_us += s_timer_us_per_overflow;
  234. s_overflow_happened = false;
  235. }
  236. s_mask_overflow = false;
  237. // Clear interrupt status
  238. REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
  239. // Set alarm to the next overflow moment. Later, upper layer function may
  240. // call esp_timer_impl_set_alarm to change this to an earlier value.
  241. REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
  242. portEXIT_CRITICAL_ISR(&s_time_update_lock);
  243. // Call the upper layer handler
  244. (*s_alarm_handler)(arg);
  245. }
  246. void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
  247. {
  248. portENTER_CRITICAL_ISR(&s_time_update_lock);
  249. /* Bail out if the timer is not initialized yet */
  250. if (s_timer_interrupt_handle == NULL) {
  251. portEXIT_CRITICAL_ISR(&s_time_update_lock);
  252. return;
  253. }
  254. uint32_t new_ticks_per_us = apb_ticks_per_us / TIMER_DIV;
  255. uint32_t alarm = REG_READ(FRC_TIMER_ALARM_REG(1));
  256. uint32_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
  257. uint64_t ticks_to_alarm = alarm - count;
  258. uint64_t new_ticks = (ticks_to_alarm * new_ticks_per_us) / s_timer_ticks_per_us;
  259. uint32_t new_alarm_val;
  260. if (alarm > count && new_ticks <= ALARM_OVERFLOW_VAL) {
  261. new_alarm_val = new_ticks;
  262. } else {
  263. new_alarm_val = ALARM_OVERFLOW_VAL;
  264. if (alarm != ALARM_OVERFLOW_VAL) {
  265. s_mask_overflow = true;
  266. }
  267. }
  268. REG_WRITE(FRC_TIMER_ALARM_REG(1), new_alarm_val);
  269. REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
  270. s_time_base_us += count / s_timer_ticks_per_us;
  271. #ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
  272. // Due to the extra time required to read RTC time, don't attempt this
  273. // adjustment when switching to a higher frequency (which usually
  274. // happens in an interrupt).
  275. if (new_ticks_per_us < s_timer_ticks_per_us) {
  276. uint64_t rtc_time = esp_clk_rtc_time();
  277. uint64_t new_rtc_time_diff = s_time_base_us - rtc_time;
  278. if (s_rtc_time_diff != 0) {
  279. uint64_t correction = new_rtc_time_diff - s_rtc_time_diff;
  280. s_time_base_us -= correction;
  281. } else {
  282. s_rtc_time_diff = new_rtc_time_diff;
  283. }
  284. }
  285. #endif // CONFIG_PM_DFS_USE_RTC_TIMER_REF
  286. s_timer_ticks_per_us = new_ticks_per_us;
  287. s_timer_us_per_overflow = ALARM_OVERFLOW_VAL / new_ticks_per_us;
  288. portEXIT_CRITICAL_ISR(&s_time_update_lock);
  289. }
  290. void esp_timer_impl_advance(int64_t time_us)
  291. {
  292. assert(time_us > 0 && "negative adjustments not supported yet");
  293. portENTER_CRITICAL(&s_time_update_lock);
  294. uint64_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
  295. /* Trigger an ISR to handle past alarms and set new one.
  296. * ISR handler will run once we exit the critical section.
  297. */
  298. REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
  299. REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
  300. s_time_base_us += count / s_timer_ticks_per_us + time_us;
  301. s_overflow_happened = false;
  302. portEXIT_CRITICAL(&s_time_update_lock);
  303. }
  304. esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
  305. {
  306. s_alarm_handler = alarm_handler;
  307. esp_err_t err = esp_intr_alloc(ETS_TIMER2_INTR_SOURCE,
  308. ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM,
  309. &timer_alarm_isr, NULL, &s_timer_interrupt_handle);
  310. if (err != ESP_OK) {
  311. ESP_EARLY_LOGE(TAG, "esp_intr_alloc failed (0x%0x)", err);
  312. return err;
  313. }
  314. uint32_t apb_freq = rtc_clk_apb_freq_get();
  315. s_timer_ticks_per_us = apb_freq / 1000000 / TIMER_DIV;
  316. assert(s_timer_ticks_per_us > 0
  317. && apb_freq % TIMER_DIV == 0
  318. && "APB frequency does not result in a valid ticks_per_us value");
  319. s_timer_us_per_overflow = ALARM_OVERFLOW_VAL / s_timer_ticks_per_us;
  320. s_time_base_us = 0;
  321. REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
  322. REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
  323. REG_WRITE(FRC_TIMER_CTRL_REG(1),
  324. TIMER_DIV_CFG | FRC_TIMER_ENABLE | FRC_TIMER_LEVEL_INT);
  325. REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
  326. ESP_ERROR_CHECK( esp_intr_enable(s_timer_interrupt_handle) );
  327. return ESP_OK;
  328. }
  329. void esp_timer_impl_deinit(void)
  330. {
  331. esp_intr_disable(s_timer_interrupt_handle);
  332. REG_WRITE(FRC_TIMER_CTRL_REG(1), 0);
  333. REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
  334. REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
  335. esp_intr_free(s_timer_interrupt_handle);
  336. s_timer_interrupt_handle = NULL;
  337. }
  338. // FIXME: This value is safe for 80MHz APB frequency.
  339. // Should be modified to depend on clock frequency.
  340. uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us(void)
  341. {
  342. return 50;
  343. }
  344. #ifdef ESP_TIMER_DYNAMIC_OVERFLOW_VAL
  345. uint32_t esp_timer_impl_get_overflow_val(void)
  346. {
  347. return s_alarm_overflow_val;
  348. }
  349. void esp_timer_impl_set_overflow_val(uint32_t overflow_val)
  350. {
  351. s_alarm_overflow_val = overflow_val;
  352. /* update alarm value */
  353. esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
  354. }
  355. #endif // ESP_TIMER_DYNAMIC_OVERFLOW_VAL