system_api.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. // Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "esp_system.h"
  16. #include "esp_attr.h"
  17. #include "esp_wifi.h"
  18. #include "esp_private/wifi.h"
  19. #include "esp_log.h"
  20. #include "sdkconfig.h"
  21. #include "esp32/rom/efuse.h"
  22. #include "esp32/rom/cache.h"
  23. #include "esp32/rom/uart.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/gpio_periph.h"
  26. #include "soc/efuse_periph.h"
  27. #include "soc/rtc_periph.h"
  28. #include "soc/timer_periph.h"
  29. #include "soc/cpu.h"
  30. #include "soc/rtc.h"
  31. #include "soc/rtc_wdt.h"
  32. #include "freertos/FreeRTOS.h"
  33. #include "freertos/task.h"
  34. #include "freertos/xtensa_api.h"
  35. #include "esp_heap_caps.h"
  36. #include "esp_private/system_internal.h"
  37. #include "esp_efuse.h"
  38. #include "esp_efuse_table.h"
  39. static const char* TAG = "system_api";
  40. static uint8_t base_mac_addr[6] = { 0 };
  41. #define SHUTDOWN_HANDLERS_NO 2
  42. static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
  43. void system_init(void)
  44. {
  45. }
  46. esp_err_t esp_base_mac_addr_set(uint8_t *mac)
  47. {
  48. if (mac == NULL) {
  49. ESP_LOGE(TAG, "Base MAC address is NULL");
  50. abort();
  51. }
  52. memcpy(base_mac_addr, mac, 6);
  53. return ESP_OK;
  54. }
  55. esp_err_t esp_base_mac_addr_get(uint8_t *mac)
  56. {
  57. uint8_t null_mac[6] = {0};
  58. if (memcmp(base_mac_addr, null_mac, 6) == 0) {
  59. ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
  60. return ESP_ERR_INVALID_MAC;
  61. }
  62. memcpy(mac, base_mac_addr, 6);
  63. return ESP_OK;
  64. }
  65. esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
  66. {
  67. uint8_t version;
  68. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_VER, &version, 8);
  69. if (version != 1) {
  70. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version);
  71. return ESP_ERR_INVALID_VERSION;
  72. }
  73. uint8_t efuse_crc;
  74. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM, mac, 48);
  75. esp_efuse_read_field_blob(ESP_EFUSE_MAC_CUSTOM_CRC, &efuse_crc, 8);
  76. uint8_t calc_crc = esp_crc8(mac, 6);
  77. if (efuse_crc != calc_crc) {
  78. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  79. return ESP_ERR_INVALID_CRC;
  80. }
  81. return ESP_OK;
  82. }
  83. esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
  84. {
  85. uint8_t efuse_crc;
  86. esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY, mac, 48);
  87. esp_efuse_read_field_blob(ESP_EFUSE_MAC_FACTORY_CRC, &efuse_crc, 8);
  88. uint8_t calc_crc = esp_crc8(mac, 6);
  89. if (efuse_crc != calc_crc) {
  90. // Small range of MAC addresses are accepted even if CRC is invalid.
  91. // These addresses are reserved for Espressif internal use.
  92. uint32_t mac_high = ((uint32_t)mac[0] << 8) | mac[1];
  93. if ((mac_high & 0xFFFF) == 0x18fe) {
  94. uint32_t mac_low = ((uint32_t)mac[2] << 24) | ((uint32_t)mac[3] << 16) | ((uint32_t)mac[4] << 8) | mac[5];
  95. if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
  96. return ESP_OK;
  97. }
  98. } else {
  99. ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  100. abort();
  101. }
  102. }
  103. return ESP_OK;
  104. }
  105. esp_err_t system_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  106. esp_err_t esp_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  107. esp_err_t esp_derive_local_mac(uint8_t* local_mac, const uint8_t* universal_mac)
  108. {
  109. uint8_t idx;
  110. if (local_mac == NULL || universal_mac == NULL) {
  111. ESP_LOGE(TAG, "mac address param is NULL");
  112. return ESP_ERR_INVALID_ARG;
  113. }
  114. memcpy(local_mac, universal_mac, 6);
  115. for (idx = 0; idx < 64; idx++) {
  116. local_mac[0] = universal_mac[0] | 0x02;
  117. local_mac[0] ^= idx << 2;
  118. if (memcmp(local_mac, universal_mac, 6)) {
  119. break;
  120. }
  121. }
  122. return ESP_OK;
  123. }
  124. esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
  125. {
  126. uint8_t efuse_mac[6];
  127. if (mac == NULL) {
  128. ESP_LOGE(TAG, "mac address param is NULL");
  129. return ESP_ERR_INVALID_ARG;
  130. }
  131. if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
  132. ESP_LOGE(TAG, "mac type is incorrect");
  133. return ESP_ERR_INVALID_ARG;
  134. }
  135. _Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
  136. || UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
  137. "incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
  138. if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
  139. esp_efuse_mac_get_default(efuse_mac);
  140. }
  141. switch (type) {
  142. case ESP_MAC_WIFI_STA:
  143. memcpy(mac, efuse_mac, 6);
  144. break;
  145. case ESP_MAC_WIFI_SOFTAP:
  146. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  147. memcpy(mac, efuse_mac, 6);
  148. mac[5] += 1;
  149. }
  150. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  151. esp_derive_local_mac(mac, efuse_mac);
  152. }
  153. break;
  154. case ESP_MAC_BT:
  155. memcpy(mac, efuse_mac, 6);
  156. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  157. mac[5] += 2;
  158. }
  159. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  160. mac[5] += 1;
  161. }
  162. break;
  163. case ESP_MAC_ETH:
  164. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  165. memcpy(mac, efuse_mac, 6);
  166. mac[5] += 3;
  167. }
  168. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  169. efuse_mac[5] += 1;
  170. esp_derive_local_mac(mac, efuse_mac);
  171. }
  172. break;
  173. default:
  174. ESP_LOGW(TAG, "incorrect mac type");
  175. break;
  176. }
  177. return ESP_OK;
  178. }
  179. esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
  180. {
  181. for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  182. if (shutdown_handlers[i] == handler) {
  183. return ESP_ERR_INVALID_STATE;
  184. } else if (shutdown_handlers[i] == NULL) {
  185. shutdown_handlers[i] = handler;
  186. return ESP_OK;
  187. }
  188. }
  189. return ESP_ERR_NO_MEM;
  190. }
  191. esp_err_t esp_unregister_shutdown_handler(shutdown_handler_t handler)
  192. {
  193. for (int i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  194. if (shutdown_handlers[i] == handler) {
  195. shutdown_handlers[i] = NULL;
  196. return ESP_OK;
  197. }
  198. }
  199. return ESP_ERR_INVALID_STATE;
  200. }
  201. void esp_restart_noos(void) __attribute__ ((noreturn));
  202. void IRAM_ATTR esp_restart(void)
  203. {
  204. int i;
  205. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  206. if (shutdown_handlers[i]) {
  207. shutdown_handlers[i]();
  208. }
  209. }
  210. // Disable scheduler on this core.
  211. vTaskSuspendAll();
  212. esp_restart_noos();
  213. }
  214. /* "inner" restart function for after RTOS, interrupts & anything else on this
  215. * core are already stopped. Stalls other core, resets hardware,
  216. * triggers restart.
  217. */
  218. void IRAM_ATTR esp_restart_noos(void)
  219. {
  220. // Disable interrupts
  221. xt_ints_off(0xFFFFFFFF);
  222. // Enable RTC watchdog for 1 second
  223. rtc_wdt_protect_off();
  224. rtc_wdt_disable();
  225. rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC);
  226. rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_RESET_SYSTEM);
  227. rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_200ns);
  228. rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_200ns);
  229. rtc_wdt_set_time(RTC_WDT_STAGE0, 1000);
  230. rtc_wdt_flashboot_mode_enable();
  231. // Reset and stall the other CPU.
  232. // CPU must be reset before stalling, in case it was running a s32c1i
  233. // instruction. This would cause memory pool to be locked by arbiter
  234. // to the stalled CPU, preventing current CPU from accessing this pool.
  235. const uint32_t core_id = xPortGetCoreID();
  236. const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
  237. esp_cpu_reset(other_core_id);
  238. esp_cpu_stall(other_core_id);
  239. // Other core is now stalled, can access DPORT registers directly
  240. esp_dport_access_int_abort();
  241. // Disable TG0/TG1 watchdogs
  242. TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  243. TIMERG0.wdt_config0.en = 0;
  244. TIMERG0.wdt_wprotect=0;
  245. TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  246. TIMERG1.wdt_config0.en = 0;
  247. TIMERG1.wdt_wprotect=0;
  248. // Flush any data left in UART FIFOs
  249. uart_tx_wait_idle(0);
  250. uart_tx_wait_idle(1);
  251. uart_tx_wait_idle(2);
  252. // Disable cache
  253. Cache_Read_Disable(0);
  254. Cache_Read_Disable(1);
  255. // 2nd stage bootloader reconfigures SPI flash signals.
  256. // Reset them to the defaults expected by ROM.
  257. WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
  258. WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
  259. WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
  260. WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
  261. WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
  262. WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
  263. // Reset wifi/bluetooth/ethernet/sdio (bb/mac)
  264. DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
  265. DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
  266. DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
  267. DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
  268. DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
  269. DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
  270. // Reset timer/spi/uart
  271. DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
  272. DPORT_TIMERS_RST | DPORT_SPI01_RST | DPORT_UART_RST | DPORT_UART1_RST | DPORT_UART2_RST);
  273. DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
  274. // Set CPU back to XTAL source, no PLL, same as hard reset
  275. rtc_clk_cpu_freq_set_xtal();
  276. // Clear entry point for APP CPU
  277. DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
  278. // Reset CPUs
  279. if (core_id == 0) {
  280. // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
  281. esp_cpu_reset(1);
  282. esp_cpu_reset(0);
  283. } else {
  284. // Running on APP CPU: need to reset PRO CPU and unstall it,
  285. // then reset APP CPU
  286. esp_cpu_reset(0);
  287. esp_cpu_unstall(0);
  288. esp_cpu_reset(1);
  289. }
  290. while(true) {
  291. ;
  292. }
  293. }
  294. void system_restart(void) __attribute__((alias("esp_restart")));
  295. uint32_t esp_get_free_heap_size( void )
  296. {
  297. return heap_caps_get_free_size( MALLOC_CAP_DEFAULT );
  298. }
  299. uint32_t esp_get_minimum_free_heap_size( void )
  300. {
  301. return heap_caps_get_minimum_free_size( MALLOC_CAP_DEFAULT );
  302. }
  303. uint32_t system_get_free_heap_size(void) __attribute__((alias("esp_get_free_heap_size")));
  304. const char* system_get_sdk_version(void)
  305. {
  306. return "master";
  307. }
  308. const char* esp_get_idf_version(void)
  309. {
  310. return IDF_VER;
  311. }
  312. static void get_chip_info_esp32(esp_chip_info_t* out_info)
  313. {
  314. uint32_t reg = REG_READ(EFUSE_BLK0_RDATA3_REG);
  315. memset(out_info, 0, sizeof(*out_info));
  316. out_info->model = CHIP_ESP32;
  317. if ((reg & EFUSE_RD_CHIP_VER_REV1_M) != 0) {
  318. out_info->revision = 1;
  319. }
  320. if ((reg & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
  321. out_info->cores = 2;
  322. } else {
  323. out_info->cores = 1;
  324. }
  325. out_info->features = CHIP_FEATURE_WIFI_BGN;
  326. if ((reg & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
  327. out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
  328. }
  329. int package = (reg & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S;
  330. if (package == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5 ||
  331. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2 ||
  332. package == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
  333. out_info->features |= CHIP_FEATURE_EMB_FLASH;
  334. }
  335. }
  336. void esp_chip_info(esp_chip_info_t* out_info)
  337. {
  338. // Only ESP32 is supported now, in the future call one of the
  339. // chip-specific functions based on sdkconfig choice
  340. return get_chip_info_esp32(out_info);
  341. }