bt.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #if CONFIG_BT_ENABLED
  46. /* Macro definition
  47. ************************************************************************
  48. */
  49. #define BTDM_LOG_TAG "BTDM_INIT"
  50. #define BTDM_INIT_PERIOD (5000) /* ms */
  51. /* Bluetooth system and controller config */
  52. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  53. #define BTDM_CFG_HCI_UART (1<<1)
  54. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  55. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  56. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  57. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  58. /* Sleep mode */
  59. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  60. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  61. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  62. /* Low Power Clock Selection */
  63. #define BTDM_LPCLK_SEL_XTAL (0)
  64. #define BTDM_LPCLK_SEL_XTAL32K (1)
  65. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  66. #define BTDM_LPCLK_SEL_8M (3)
  67. /* Sleep and wakeup interval control */
  68. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  69. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  70. #define BT_DEBUG(...)
  71. #define BT_API_CALL_CHECK(info, api_call, ret) \
  72. do{\
  73. esp_err_t __err = (api_call);\
  74. if ((ret) != __err) {\
  75. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  76. return __err;\
  77. }\
  78. } while(0)
  79. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  80. #define OSI_VERSION 0x00010001
  81. #define OSI_MAGIC_VALUE 0xFADEBEAD
  82. /* SPIRAM Configuration */
  83. #if CONFIG_SPIRAM_USE_MALLOC
  84. #define BTDM_MAX_QUEUE_NUM (5)
  85. #endif
  86. /* Types definition
  87. ************************************************************************
  88. */
  89. /* VHCI function interface */
  90. typedef struct vhci_host_callback {
  91. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  92. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  93. } vhci_host_callback_t;
  94. /* Dram region */
  95. typedef struct {
  96. esp_bt_mode_t mode;
  97. intptr_t start;
  98. intptr_t end;
  99. } btdm_dram_available_region_t;
  100. /* PSRAM configuration */
  101. #if CONFIG_SPIRAM_USE_MALLOC
  102. typedef struct {
  103. QueueHandle_t handle;
  104. void *storage;
  105. void *buffer;
  106. } btdm_queue_item_t;
  107. #endif
  108. /* OSI function */
  109. struct osi_funcs_t {
  110. uint32_t _version;
  111. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  112. void (*_ints_on)(unsigned int mask);
  113. void (*_interrupt_disable)(void);
  114. void (*_interrupt_restore)(void);
  115. void (*_task_yield)(void);
  116. void (*_task_yield_from_isr)(void);
  117. void *(*_semphr_create)(uint32_t max, uint32_t init);
  118. void (*_semphr_delete)(void *semphr);
  119. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  120. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  121. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  122. int32_t (*_semphr_give)(void *semphr);
  123. void *(*_mutex_create)(void);
  124. void (*_mutex_delete)(void *mutex);
  125. int32_t (*_mutex_lock)(void *mutex);
  126. int32_t (*_mutex_unlock)(void *mutex);
  127. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  128. void (* _queue_delete)(void *queue);
  129. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  130. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  131. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  132. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  133. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  134. void (* _task_delete)(void *task_handle);
  135. bool (* _is_in_isr)(void);
  136. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  137. void *(* _malloc)(uint32_t size);
  138. void *(* _malloc_internal)(uint32_t size);
  139. void (* _free)(void *p);
  140. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  141. void (* _srand)(unsigned int seed);
  142. int (* _rand)(void);
  143. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  144. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  145. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  146. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  147. void (* _btdm_sleep_enter_phase2)(void);
  148. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  149. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  150. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  151. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  152. int (* _coex_bt_release)(uint32_t event);
  153. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  154. uint32_t (* _coex_bb_reset_lock)(void);
  155. void (* _coex_bb_reset_unlock)(uint32_t restore);
  156. uint32_t _magic;
  157. };
  158. /* External functions or values
  159. ************************************************************************
  160. */
  161. /* not for user call, so don't put to include file */
  162. /* OSI */
  163. extern int btdm_osi_funcs_register(void *osi_funcs);
  164. /* Initialise and De-initialise */
  165. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  166. extern void btdm_controller_deinit(void);
  167. extern int btdm_controller_enable(esp_bt_mode_t mode);
  168. extern void btdm_controller_disable(void);
  169. extern uint8_t btdm_controller_get_mode(void);
  170. extern const char *btdm_controller_get_compile_version(void);
  171. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  172. /* Sleep */
  173. extern void btdm_controller_enable_sleep(bool enable);
  174. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  175. extern uint8_t btdm_controller_get_sleep_mode(void);
  176. extern bool btdm_power_state_active(void);
  177. extern void btdm_wakeup_request(bool request_lock);
  178. extern void btdm_wakeup_request_end(void);
  179. /* Low Power Clock */
  180. extern bool btdm_lpclk_select_src(uint32_t sel);
  181. extern bool btdm_lpclk_set_div(uint32_t div);
  182. /* VHCI */
  183. extern bool API_vhci_host_check_send_available(void);
  184. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  185. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  186. /* TX power */
  187. extern int ble_txpwr_set(int power_type, int power_level);
  188. extern int ble_txpwr_get(int power_type);
  189. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  190. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  191. extern void bredr_sco_datapath_set(uint8_t data_path);
  192. extern void btdm_controller_scan_duplicate_list_clear(void);
  193. /* Coexistence */
  194. extern int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  195. extern int coex_bt_release_wrapper(uint32_t event);
  196. extern int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  197. extern uint32_t coex_bb_reset_lock_wrapper(void);
  198. extern void coex_bb_reset_unlock_wrapper(uint32_t restore);
  199. extern void coex_ble_adv_priority_high_set(bool high);
  200. extern char _bss_start_btdm;
  201. extern char _bss_end_btdm;
  202. extern char _data_start_btdm;
  203. extern char _data_end_btdm;
  204. extern uint32_t _data_start_btdm_rom;
  205. extern uint32_t _data_end_btdm_rom;
  206. extern uint32_t _bt_bss_start;
  207. extern uint32_t _bt_bss_end;
  208. extern uint32_t _nimble_bss_start;
  209. extern uint32_t _nimble_bss_end;
  210. extern uint32_t _btdm_bss_start;
  211. extern uint32_t _btdm_bss_end;
  212. extern uint32_t _bt_data_start;
  213. extern uint32_t _bt_data_end;
  214. extern uint32_t _nimble_data_start;
  215. extern uint32_t _nimble_data_end;
  216. extern uint32_t _btdm_data_start;
  217. extern uint32_t _btdm_data_end;
  218. /* Local Function Declare
  219. *********************************************************************
  220. */
  221. #if CONFIG_SPIRAM_USE_MALLOC
  222. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  223. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  224. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  225. static void IRAM_ATTR interrupt_disable(void);
  226. static void IRAM_ATTR interrupt_restore(void);
  227. static void IRAM_ATTR task_yield_from_isr(void);
  228. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  229. static void semphr_delete_wrapper(void *semphr);
  230. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  231. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  232. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  233. static int32_t semphr_give_wrapper(void *semphr);
  234. static void *mutex_create_wrapper(void);
  235. static void mutex_delete_wrapper(void *mutex);
  236. static int32_t mutex_lock_wrapper(void *mutex);
  237. static int32_t mutex_unlock_wrapper(void *mutex);
  238. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  239. static void queue_delete_wrapper(void *queue);
  240. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  241. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  242. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  243. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  244. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  245. static void task_delete_wrapper(void *task_handle);
  246. static bool IRAM_ATTR is_in_isr_wrapper(void);
  247. static void IRAM_ATTR cause_sw_intr(void *arg);
  248. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  249. static void *malloc_internal_wrapper(size_t size);
  250. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  251. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  252. static int IRAM_ATTR rand_wrapper(void);
  253. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  254. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  255. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  256. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  257. static void btdm_sleep_enter_phase2_wrapper(void);
  258. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void);
  259. static void btdm_sleep_exit_phase3_wrapper(void);
  260. /* Local variable definition
  261. ***************************************************************************
  262. */
  263. /* OSI funcs */
  264. static const struct osi_funcs_t osi_funcs_ro = {
  265. ._version = OSI_VERSION,
  266. ._set_isr = xt_set_interrupt_handler,
  267. ._ints_on = xt_ints_on,
  268. ._interrupt_disable = interrupt_disable,
  269. ._interrupt_restore = interrupt_restore,
  270. ._task_yield = vPortYield,
  271. ._task_yield_from_isr = task_yield_from_isr,
  272. ._semphr_create = semphr_create_wrapper,
  273. ._semphr_delete = semphr_delete_wrapper,
  274. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  275. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  276. ._semphr_take = semphr_take_wrapper,
  277. ._semphr_give = semphr_give_wrapper,
  278. ._mutex_create = mutex_create_wrapper,
  279. ._mutex_delete = mutex_delete_wrapper,
  280. ._mutex_lock = mutex_lock_wrapper,
  281. ._mutex_unlock = mutex_unlock_wrapper,
  282. ._queue_create = queue_create_wrapper,
  283. ._queue_delete = queue_delete_wrapper,
  284. ._queue_send = queue_send_wrapper,
  285. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  286. ._queue_recv = queue_recv_wrapper,
  287. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  288. ._task_create = task_create_wrapper,
  289. ._task_delete = task_delete_wrapper,
  290. ._is_in_isr = is_in_isr_wrapper,
  291. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  292. ._malloc = malloc,
  293. ._malloc_internal = malloc_internal_wrapper,
  294. ._free = free,
  295. ._read_efuse_mac = read_mac_wrapper,
  296. ._srand = srand_wrapper,
  297. ._rand = rand_wrapper,
  298. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  299. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  300. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  301. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  302. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  303. ._btdm_sleep_exit_phase1 = btdm_sleep_exit_phase1_wrapper,
  304. ._btdm_sleep_exit_phase2 = NULL,
  305. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  306. ._coex_bt_request = coex_bt_request_wrapper,
  307. ._coex_bt_release = coex_bt_release_wrapper,
  308. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  309. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  310. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  311. ._magic = OSI_MAGIC_VALUE,
  312. };
  313. /* the mode column will be modified by release function to indicate the available region */
  314. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  315. //following is .data
  316. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  317. //following is memory which HW will use
  318. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  319. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  320. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  321. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  322. //following is .bss
  323. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  324. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  325. };
  326. /* Reserve the full memory region used by Bluetooth Controller,
  327. * some may be released later at runtime. */
  328. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  329. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  330. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  331. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  332. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  333. #if CONFIG_SPIRAM_USE_MALLOC
  334. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  335. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  336. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  337. /* Static variable declare */
  338. // timestamp when PHY/RF was switched on
  339. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  340. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  341. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  342. // measured average low power clock period in micro seconds
  343. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  344. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  345. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  346. // used low power clock
  347. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  348. #endif /* #ifdef CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG */
  349. #ifdef CONFIG_PM_ENABLE
  350. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  351. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  352. static DRAM_ATTR QueueHandle_t s_pm_lock_sem = NULL;
  353. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  354. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  355. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  356. static void btdm_slp_tmr_callback(void *arg);
  357. #endif /* #ifdef CONFIG_PM_ENABLE */
  358. static inline void btdm_check_and_init_bb(void)
  359. {
  360. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  361. int64_t latest_ts = esp_phy_rf_get_on_ts();
  362. if (latest_ts != s_time_phy_rf_just_enabled ||
  363. s_time_phy_rf_just_enabled == 0) {
  364. btdm_rf_bb_init_phase2();
  365. s_time_phy_rf_just_enabled = latest_ts;
  366. }
  367. }
  368. #if CONFIG_SPIRAM_USE_MALLOC
  369. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  370. {
  371. if (!btdm_queue_table_mux || !queue) {
  372. return NULL;
  373. }
  374. bool ret = false;
  375. btdm_queue_item_t *item;
  376. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  377. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  378. item = &btdm_queue_table[i];
  379. if (item->handle == NULL) {
  380. memcpy(item, queue, sizeof(btdm_queue_item_t));
  381. ret = true;
  382. break;
  383. }
  384. }
  385. xSemaphoreGive(btdm_queue_table_mux);
  386. return ret;
  387. }
  388. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  389. {
  390. if (!btdm_queue_table_mux || !queue) {
  391. return false;
  392. }
  393. bool ret = false;
  394. btdm_queue_item_t *item;
  395. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  396. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  397. item = &btdm_queue_table[i];
  398. if (item->handle == queue->handle) {
  399. memcpy(queue, item, sizeof(btdm_queue_item_t));
  400. memset(item, 0, sizeof(btdm_queue_item_t));
  401. ret = true;
  402. break;
  403. }
  404. }
  405. xSemaphoreGive(btdm_queue_table_mux);
  406. return ret;
  407. }
  408. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  409. static void IRAM_ATTR interrupt_disable(void)
  410. {
  411. if (xPortInIsrContext()) {
  412. portENTER_CRITICAL_ISR(&global_int_mux);
  413. } else {
  414. portENTER_CRITICAL(&global_int_mux);
  415. }
  416. }
  417. static void IRAM_ATTR interrupt_restore(void)
  418. {
  419. if (xPortInIsrContext()) {
  420. portEXIT_CRITICAL_ISR(&global_int_mux);
  421. } else {
  422. portEXIT_CRITICAL(&global_int_mux);
  423. }
  424. }
  425. static void IRAM_ATTR task_yield_from_isr(void)
  426. {
  427. portYIELD_FROM_ISR();
  428. }
  429. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  430. {
  431. #if !CONFIG_SPIRAM_USE_MALLOC
  432. return (void *)xSemaphoreCreateCounting(max, init);
  433. #else
  434. StaticQueue_t *queue_buffer = NULL;
  435. QueueHandle_t handle = NULL;
  436. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  437. if (!queue_buffer) {
  438. goto error;
  439. }
  440. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  441. if (!handle) {
  442. goto error;
  443. }
  444. btdm_queue_item_t item = {
  445. .handle = handle,
  446. .storage = NULL,
  447. .buffer = queue_buffer,
  448. };
  449. if (!btdm_queue_generic_register(&item)) {
  450. goto error;
  451. }
  452. return handle;
  453. error:
  454. if (handle) {
  455. vSemaphoreDelete(handle);
  456. }
  457. if (queue_buffer) {
  458. free(queue_buffer);
  459. }
  460. return NULL;
  461. #endif
  462. }
  463. static void semphr_delete_wrapper(void *semphr)
  464. {
  465. #if !CONFIG_SPIRAM_USE_MALLOC
  466. vSemaphoreDelete(semphr);
  467. #else
  468. btdm_queue_item_t item = {
  469. .handle = semphr,
  470. .storage = NULL,
  471. .buffer = NULL,
  472. };
  473. if (btdm_queue_generic_deregister(&item)) {
  474. vSemaphoreDelete(item.handle);
  475. free(item.buffer);
  476. }
  477. return;
  478. #endif
  479. }
  480. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  481. {
  482. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  483. }
  484. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  485. {
  486. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  487. }
  488. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  489. {
  490. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  491. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  492. } else {
  493. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  494. }
  495. }
  496. static int32_t semphr_give_wrapper(void *semphr)
  497. {
  498. return (int32_t)xSemaphoreGive(semphr);
  499. }
  500. static void *mutex_create_wrapper(void)
  501. {
  502. #if CONFIG_SPIRAM_USE_MALLOC
  503. StaticQueue_t *queue_buffer = NULL;
  504. QueueHandle_t handle = NULL;
  505. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  506. if (!queue_buffer) {
  507. goto error;
  508. }
  509. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  510. if (!handle) {
  511. goto error;
  512. }
  513. btdm_queue_item_t item = {
  514. .handle = handle,
  515. .storage = NULL,
  516. .buffer = queue_buffer,
  517. };
  518. if (!btdm_queue_generic_register(&item)) {
  519. goto error;
  520. }
  521. return handle;
  522. error:
  523. if (handle) {
  524. vSemaphoreDelete(handle);
  525. }
  526. if (queue_buffer) {
  527. free(queue_buffer);
  528. }
  529. return NULL;
  530. #else
  531. return (void *)xSemaphoreCreateMutex();
  532. #endif
  533. }
  534. static void mutex_delete_wrapper(void *mutex)
  535. {
  536. #if !CONFIG_SPIRAM_USE_MALLOC
  537. vSemaphoreDelete(mutex);
  538. #else
  539. btdm_queue_item_t item = {
  540. .handle = mutex,
  541. .storage = NULL,
  542. .buffer = NULL,
  543. };
  544. if (btdm_queue_generic_deregister(&item)) {
  545. vSemaphoreDelete(item.handle);
  546. free(item.buffer);
  547. }
  548. return;
  549. #endif
  550. }
  551. static int32_t mutex_lock_wrapper(void *mutex)
  552. {
  553. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  554. }
  555. static int32_t mutex_unlock_wrapper(void *mutex)
  556. {
  557. return (int32_t)xSemaphoreGive(mutex);
  558. }
  559. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  560. {
  561. #if CONFIG_SPIRAM_USE_MALLOC
  562. StaticQueue_t *queue_buffer = NULL;
  563. uint8_t *queue_storage = NULL;
  564. QueueHandle_t handle = NULL;
  565. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  566. if (!queue_buffer) {
  567. goto error;
  568. }
  569. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  570. if (!queue_storage ) {
  571. goto error;
  572. }
  573. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  574. if (!handle) {
  575. goto error;
  576. }
  577. btdm_queue_item_t item = {
  578. .handle = handle,
  579. .storage = queue_storage,
  580. .buffer = queue_buffer,
  581. };
  582. if (!btdm_queue_generic_register(&item)) {
  583. goto error;
  584. }
  585. return handle;
  586. error:
  587. if (handle) {
  588. vQueueDelete(handle);
  589. }
  590. if (queue_storage) {
  591. free(queue_storage);
  592. }
  593. if (queue_buffer) {
  594. free(queue_buffer);
  595. }
  596. return NULL;
  597. #else
  598. return (void *)xQueueCreate(queue_len, item_size);
  599. #endif
  600. }
  601. static void queue_delete_wrapper(void *queue)
  602. {
  603. #if !CONFIG_SPIRAM_USE_MALLOC
  604. vQueueDelete(queue);
  605. #else
  606. btdm_queue_item_t item = {
  607. .handle = queue,
  608. .storage = NULL,
  609. .buffer = NULL,
  610. };
  611. if (btdm_queue_generic_deregister(&item)) {
  612. vQueueDelete(item.handle);
  613. free(item.storage);
  614. free(item.buffer);
  615. }
  616. return;
  617. #endif
  618. }
  619. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  620. {
  621. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  622. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  623. } else {
  624. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  625. }
  626. }
  627. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  628. {
  629. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  630. }
  631. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  632. {
  633. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  634. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  635. } else {
  636. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  637. }
  638. }
  639. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  640. {
  641. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  642. }
  643. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  644. {
  645. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  646. }
  647. static void task_delete_wrapper(void *task_handle)
  648. {
  649. vTaskDelete(task_handle);
  650. }
  651. static bool IRAM_ATTR is_in_isr_wrapper(void)
  652. {
  653. return !xPortCanYield();
  654. }
  655. static void IRAM_ATTR cause_sw_intr(void *arg)
  656. {
  657. /* just convert void * to int, because the width is the same */
  658. uint32_t intr_no = (uint32_t)arg;
  659. XTHAL_SET_INTSET((1<<intr_no));
  660. }
  661. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  662. {
  663. esp_err_t err = ESP_OK;
  664. #if CONFIG_FREERTOS_UNICORE
  665. cause_sw_intr((void *)intr_no);
  666. #else /* CONFIG_FREERTOS_UNICORE */
  667. if (xPortGetCoreID() == core_id) {
  668. cause_sw_intr((void *)intr_no);
  669. } else {
  670. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  671. }
  672. #endif /* !CONFIG_FREERTOS_UNICORE */
  673. return err;
  674. }
  675. static void *malloc_internal_wrapper(size_t size)
  676. {
  677. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  678. }
  679. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  680. {
  681. return esp_read_mac(mac, ESP_MAC_BT);
  682. }
  683. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  684. {
  685. /* empty function */
  686. }
  687. static int IRAM_ATTR rand_wrapper(void)
  688. {
  689. return (int)esp_random();
  690. }
  691. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  692. {
  693. // The number of lp cycles should not lead to overflow. Thrs: 100s
  694. // clock measurement is conducted
  695. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  696. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  697. return (uint32_t)us;
  698. }
  699. /*
  700. * @brief Converts a duration in slots into a number of low power clock cycles.
  701. */
  702. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  703. {
  704. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  705. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  706. // clock measurement is conducted
  707. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  708. return (uint32_t)cycles;
  709. }
  710. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  711. {
  712. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  713. return false;
  714. }
  715. /* wake up in advance considering the delay in enabling PHY/RF */
  716. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  717. return true;
  718. }
  719. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  720. {
  721. #ifdef CONFIG_PM_ENABLE
  722. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  723. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  724. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  725. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  726. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  727. // and set the timer in advance
  728. uint32_t uncertainty = (us_to_sleep >> 11);
  729. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  730. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  731. }
  732. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  733. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  734. }
  735. #endif
  736. }
  737. static void btdm_sleep_enter_phase2_wrapper(void)
  738. {
  739. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  740. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  741. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  742. #ifdef CONFIG_PM_ENABLE
  743. esp_pm_lock_release(s_pm_lock);
  744. semphr_give_wrapper(s_pm_lock_sem);
  745. #endif
  746. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  747. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  748. // pause bluetooth baseband
  749. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  750. }
  751. }
  752. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void)
  753. {
  754. #ifdef CONFIG_PM_ENABLE
  755. if (semphr_take_from_isr_wrapper(s_pm_lock_sem, NULL) == pdTRUE) {
  756. esp_pm_lock_acquire(s_pm_lock);
  757. }
  758. #endif
  759. }
  760. static void btdm_sleep_exit_phase3_wrapper(void)
  761. {
  762. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  763. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  764. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  765. btdm_check_and_init_bb();
  766. #ifdef CONFIG_PM_ENABLE
  767. esp_timer_stop(s_btdm_slp_tmr);
  768. #endif
  769. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  770. // resume bluetooth baseband
  771. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  772. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  773. }
  774. }
  775. #ifdef CONFIG_PM_ENABLE
  776. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  777. {
  778. if (semphr_take_wrapper(s_pm_lock_sem, 0) == pdTRUE) {
  779. esp_pm_lock_acquire(s_pm_lock);
  780. }
  781. }
  782. #endif
  783. bool esp_vhci_host_check_send_available(void)
  784. {
  785. return API_vhci_host_check_send_available();
  786. }
  787. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  788. {
  789. bool do_wakeup_request = false;
  790. if (!btdm_power_state_active()) {
  791. #if CONFIG_PM_ENABLE
  792. if (semphr_take_wrapper(s_pm_lock_sem, 0)) {
  793. esp_pm_lock_acquire(s_pm_lock);
  794. }
  795. esp_timer_stop(s_btdm_slp_tmr);
  796. #endif
  797. do_wakeup_request = true;
  798. btdm_wakeup_request(true);
  799. }
  800. API_vhci_host_send_packet(data, len);
  801. if (do_wakeup_request) {
  802. btdm_wakeup_request_end();
  803. }
  804. }
  805. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  806. {
  807. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  808. }
  809. static uint32_t btdm_config_mask_load(void)
  810. {
  811. uint32_t mask = 0x0;
  812. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  813. mask |= BTDM_CFG_HCI_UART;
  814. #endif
  815. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  816. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  817. #endif
  818. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  819. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  820. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  821. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  822. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  823. return mask;
  824. }
  825. static void btdm_controller_mem_init(void)
  826. {
  827. /* initialise .data section */
  828. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  829. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  830. //initial em, .bss section
  831. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  832. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  833. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  834. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  835. }
  836. }
  837. }
  838. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  839. {
  840. int ret = heap_caps_add_region(start, end);
  841. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  842. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  843. * we replace it by ESP_OK
  844. */
  845. if (ret == ESP_ERR_INVALID_SIZE) {
  846. return ESP_OK;
  847. }
  848. return ret;
  849. }
  850. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  851. {
  852. bool update = true;
  853. intptr_t mem_start, mem_end;
  854. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  855. return ESP_ERR_INVALID_STATE;
  856. }
  857. //already released
  858. if (!(mode & btdm_dram_available_region[0].mode)) {
  859. return ESP_ERR_INVALID_STATE;
  860. }
  861. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  862. //skip the share mode, idle mode and other mode
  863. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  864. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  865. //clear the bit of the mode which will be released
  866. btdm_dram_available_region[i].mode &= ~mode;
  867. continue;
  868. } else {
  869. //clear the bit of the mode which will be released
  870. btdm_dram_available_region[i].mode &= ~mode;
  871. }
  872. if (update) {
  873. mem_start = btdm_dram_available_region[i].start;
  874. mem_end = btdm_dram_available_region[i].end;
  875. update = false;
  876. }
  877. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  878. mem_end = btdm_dram_available_region[i].end;
  879. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  880. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  881. && mem_end == btdm_dram_available_region[i+1].start) {
  882. continue;
  883. } else {
  884. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  885. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  886. update = true;
  887. }
  888. } else {
  889. mem_end = btdm_dram_available_region[i].end;
  890. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  891. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  892. update = true;
  893. }
  894. }
  895. if (mode == ESP_BT_MODE_BTDM) {
  896. mem_start = (intptr_t)&_btdm_bss_start;
  897. mem_end = (intptr_t)&_btdm_bss_end;
  898. if (mem_start != mem_end) {
  899. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  900. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  901. }
  902. mem_start = (intptr_t)&_btdm_data_start;
  903. mem_end = (intptr_t)&_btdm_data_end;
  904. if (mem_start != mem_end) {
  905. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  906. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  907. }
  908. }
  909. return ESP_OK;
  910. }
  911. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  912. {
  913. int ret;
  914. intptr_t mem_start, mem_end;
  915. ret = esp_bt_controller_mem_release(mode);
  916. if (ret != ESP_OK) {
  917. return ret;
  918. }
  919. if (mode == ESP_BT_MODE_BTDM) {
  920. mem_start = (intptr_t)&_bt_bss_start;
  921. mem_end = (intptr_t)&_bt_bss_end;
  922. if (mem_start != mem_end) {
  923. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  924. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  925. }
  926. mem_start = (intptr_t)&_bt_data_start;
  927. mem_end = (intptr_t)&_bt_data_end;
  928. if (mem_start != mem_end) {
  929. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  930. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  931. }
  932. mem_start = (intptr_t)&_nimble_bss_start;
  933. mem_end = (intptr_t)&_nimble_bss_end;
  934. if (mem_start != mem_end) {
  935. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  936. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  937. }
  938. mem_start = (intptr_t)&_nimble_data_start;
  939. mem_end = (intptr_t)&_nimble_data_end;
  940. if (mem_start != mem_end) {
  941. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  942. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  943. }
  944. }
  945. return ESP_OK;
  946. }
  947. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  948. {
  949. esp_err_t err;
  950. uint32_t btdm_cfg_mask = 0;
  951. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  952. if (osi_funcs_p == NULL) {
  953. return ESP_ERR_NO_MEM;
  954. }
  955. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  956. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  957. return ESP_ERR_INVALID_ARG;
  958. }
  959. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  960. return ESP_ERR_INVALID_STATE;
  961. }
  962. //if all the bt available memory was already released, cannot initialize bluetooth controller
  963. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  964. return ESP_ERR_INVALID_STATE;
  965. }
  966. if (cfg == NULL) {
  967. return ESP_ERR_INVALID_ARG;
  968. }
  969. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  970. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  971. return ESP_ERR_INVALID_ARG;
  972. }
  973. //overwrite some parameters
  974. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  975. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  976. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  977. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  978. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  979. return ESP_ERR_INVALID_ARG;
  980. }
  981. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  982. #if CONFIG_SPIRAM_USE_MALLOC
  983. btdm_queue_table_mux = xSemaphoreCreateMutex();
  984. if (btdm_queue_table_mux == NULL) {
  985. return ESP_ERR_NO_MEM;
  986. }
  987. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  988. #endif
  989. btdm_controller_mem_init();
  990. periph_module_enable(PERIPH_BT_MODULE);
  991. #ifdef CONFIG_PM_ENABLE
  992. s_btdm_allow_light_sleep = false;
  993. #endif
  994. // set default sleep clock cycle and its fractional bits
  995. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  996. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  997. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  998. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  999. #if CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  1000. // check whether or not EXT_CRYS is working
  1001. if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
  1002. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value
  1003. #ifdef CONFIG_PM_ENABLE
  1004. s_btdm_allow_light_sleep = true;
  1005. #endif
  1006. } else {
  1007. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1008. "light sleep mode will not be able to apply when bluetooth is enabled");
  1009. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1010. }
  1011. #else
  1012. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1013. #endif
  1014. bool select_src_ret, set_div_ret;
  1015. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1016. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1017. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1018. assert(select_src_ret && set_div_ret);
  1019. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1020. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1021. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1022. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1023. set_div_ret = btdm_lpclk_set_div(0);
  1024. assert(select_src_ret && set_div_ret);
  1025. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1026. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1027. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1028. assert(btdm_lpcycle_us != 0);
  1029. }
  1030. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1031. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  1032. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1033. #else
  1034. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1035. #endif
  1036. #ifdef CONFIG_PM_ENABLE
  1037. if (!s_btdm_allow_light_sleep) {
  1038. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1039. goto error;
  1040. }
  1041. }
  1042. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1043. goto error;
  1044. }
  1045. esp_timer_create_args_t create_args = {
  1046. .callback = btdm_slp_tmr_callback,
  1047. .arg = NULL,
  1048. .name = "btSlp"
  1049. };
  1050. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1051. goto error;
  1052. }
  1053. s_pm_lock_sem = semphr_create_wrapper(1, 0);
  1054. if (s_pm_lock_sem == NULL) {
  1055. err = ESP_ERR_NO_MEM;
  1056. goto error;
  1057. }
  1058. #endif
  1059. btdm_cfg_mask = btdm_config_mask_load();
  1060. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1061. err = ESP_ERR_NO_MEM;
  1062. goto error;
  1063. }
  1064. #ifdef CONFIG_BTDM_COEX_BLE_ADV_HIGH_PRIORITY
  1065. coex_ble_adv_priority_high_set(true);
  1066. #else
  1067. coex_ble_adv_priority_high_set(false);
  1068. #endif
  1069. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1070. return ESP_OK;
  1071. error:
  1072. #ifdef CONFIG_PM_ENABLE
  1073. if (!s_btdm_allow_light_sleep) {
  1074. if (s_light_sleep_pm_lock != NULL) {
  1075. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1076. s_light_sleep_pm_lock = NULL;
  1077. }
  1078. }
  1079. if (s_pm_lock != NULL) {
  1080. esp_pm_lock_delete(s_pm_lock);
  1081. s_pm_lock = NULL;
  1082. }
  1083. if (s_btdm_slp_tmr != NULL) {
  1084. esp_timer_delete(s_btdm_slp_tmr);
  1085. s_btdm_slp_tmr = NULL;
  1086. }
  1087. if (s_pm_lock_sem) {
  1088. semphr_delete_wrapper(s_pm_lock_sem);
  1089. s_pm_lock_sem = NULL;
  1090. }
  1091. #endif
  1092. return err;
  1093. }
  1094. esp_err_t esp_bt_controller_deinit(void)
  1095. {
  1096. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1097. return ESP_ERR_INVALID_STATE;
  1098. }
  1099. btdm_controller_deinit();
  1100. periph_module_disable(PERIPH_BT_MODULE);
  1101. #ifdef CONFIG_PM_ENABLE
  1102. if (!s_btdm_allow_light_sleep) {
  1103. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1104. s_light_sleep_pm_lock = NULL;
  1105. }
  1106. esp_pm_lock_delete(s_pm_lock);
  1107. s_pm_lock = NULL;
  1108. esp_timer_stop(s_btdm_slp_tmr);
  1109. esp_timer_delete(s_btdm_slp_tmr);
  1110. s_btdm_slp_tmr = NULL;
  1111. semphr_delete_wrapper(s_pm_lock_sem);
  1112. s_pm_lock_sem = NULL;
  1113. #endif
  1114. #if CONFIG_SPIRAM_USE_MALLOC
  1115. vSemaphoreDelete(btdm_queue_table_mux);
  1116. btdm_queue_table_mux = NULL;
  1117. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1118. #endif
  1119. free(osi_funcs_p);
  1120. osi_funcs_p = NULL;
  1121. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1122. btdm_lpcycle_us = 0;
  1123. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1124. return ESP_OK;
  1125. }
  1126. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1127. {
  1128. int ret;
  1129. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1130. return ESP_ERR_INVALID_STATE;
  1131. }
  1132. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1133. if (mode != btdm_controller_get_mode()) {
  1134. return ESP_ERR_INVALID_ARG;
  1135. }
  1136. #ifdef CONFIG_PM_ENABLE
  1137. if (!s_btdm_allow_light_sleep) {
  1138. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1139. }
  1140. esp_pm_lock_acquire(s_pm_lock);
  1141. #endif
  1142. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1143. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1144. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1145. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1146. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1147. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1148. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1149. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1150. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1151. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1152. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1153. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1154. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1155. }
  1156. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1157. btdm_controller_enable_sleep(true);
  1158. }
  1159. // inititalize bluetooth baseband
  1160. btdm_check_and_init_bb();
  1161. ret = btdm_controller_enable(mode);
  1162. if (ret) {
  1163. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1164. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1165. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1166. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1167. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1168. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1169. }
  1170. esp_phy_rf_deinit(PHY_BT_MODULE);
  1171. #ifdef CONFIG_PM_ENABLE
  1172. if (!s_btdm_allow_light_sleep) {
  1173. esp_pm_lock_release(s_light_sleep_pm_lock);
  1174. }
  1175. esp_pm_lock_release(s_pm_lock);
  1176. #endif
  1177. return ESP_ERR_INVALID_STATE;
  1178. }
  1179. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1180. return ESP_OK;
  1181. }
  1182. esp_err_t esp_bt_controller_disable(void)
  1183. {
  1184. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1185. return ESP_ERR_INVALID_STATE;
  1186. }
  1187. // disable modem sleep and wake up from sleep mode
  1188. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1189. btdm_controller_enable_sleep(false);
  1190. if (!btdm_power_state_active()) {
  1191. btdm_wakeup_request(false);
  1192. }
  1193. while (!btdm_power_state_active()) {
  1194. ets_delay_us(1000);
  1195. }
  1196. }
  1197. btdm_controller_disable();
  1198. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1199. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1200. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1201. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1202. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1203. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1204. }
  1205. esp_phy_rf_deinit(PHY_BT_MODULE);
  1206. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1207. #ifdef CONFIG_PM_ENABLE
  1208. if (!s_btdm_allow_light_sleep) {
  1209. esp_pm_lock_release(s_light_sleep_pm_lock);
  1210. }
  1211. esp_pm_lock_release(s_pm_lock);
  1212. #endif
  1213. return ESP_OK;
  1214. }
  1215. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1216. {
  1217. return btdm_controller_status;
  1218. }
  1219. /* extra functions */
  1220. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1221. {
  1222. if (ble_txpwr_set(power_type, power_level) != 0) {
  1223. return ESP_ERR_INVALID_ARG;
  1224. }
  1225. return ESP_OK;
  1226. }
  1227. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1228. {
  1229. return (esp_power_level_t)ble_txpwr_get(power_type);
  1230. }
  1231. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1232. {
  1233. esp_err_t err;
  1234. int ret;
  1235. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1236. if (ret == 0) {
  1237. err = ESP_OK;
  1238. } else if (ret == -1) {
  1239. err = ESP_ERR_INVALID_ARG;
  1240. } else {
  1241. err = ESP_ERR_INVALID_STATE;
  1242. }
  1243. return err;
  1244. }
  1245. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1246. {
  1247. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1248. return ESP_ERR_INVALID_ARG;
  1249. }
  1250. return ESP_OK;
  1251. }
  1252. esp_err_t esp_bt_sleep_enable (void)
  1253. {
  1254. esp_err_t status;
  1255. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1256. return ESP_ERR_INVALID_STATE;
  1257. }
  1258. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1259. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1260. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1261. btdm_controller_enable_sleep (true);
  1262. status = ESP_OK;
  1263. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1264. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1265. btdm_controller_enable_sleep (true);
  1266. status = ESP_OK;
  1267. } else {
  1268. status = ESP_ERR_NOT_SUPPORTED;
  1269. }
  1270. return status;
  1271. }
  1272. esp_err_t esp_bt_sleep_disable (void)
  1273. {
  1274. esp_err_t status;
  1275. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1276. return ESP_ERR_INVALID_STATE;
  1277. }
  1278. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1279. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1280. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1281. btdm_controller_enable_sleep (false);
  1282. status = ESP_OK;
  1283. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1284. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1285. btdm_controller_enable_sleep (false);
  1286. status = ESP_OK;
  1287. } else {
  1288. status = ESP_ERR_NOT_SUPPORTED;
  1289. }
  1290. return status;
  1291. }
  1292. bool esp_bt_controller_is_sleeping(void)
  1293. {
  1294. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1295. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1296. return false;
  1297. }
  1298. return !btdm_power_state_active();
  1299. }
  1300. void esp_bt_controller_wakeup_request(void)
  1301. {
  1302. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1303. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1304. return;
  1305. }
  1306. btdm_wakeup_request(false);
  1307. }
  1308. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1309. {
  1310. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1311. return ESP_ERR_INVALID_STATE;
  1312. }
  1313. bredr_sco_datapath_set(data_path);
  1314. return ESP_OK;
  1315. }
  1316. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1317. {
  1318. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1319. return ESP_ERR_INVALID_STATE;
  1320. }
  1321. btdm_controller_scan_duplicate_list_clear();
  1322. return ESP_OK;
  1323. }
  1324. #endif /* CONFIG_BT_ENABLED */