uart.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #define XOFF (char)0x13
  32. #define XON (char)0x11
  33. static const char* UART_TAG = "uart";
  34. #define UART_CHECK(a, str, ret_val) \
  35. if (!(a)) { \
  36. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  37. return (ret_val); \
  38. }
  39. #define UART_EMPTY_THRESH_DEFAULT (10)
  40. #define UART_FULL_THRESH_DEFAULT (120)
  41. #define UART_TOUT_THRESH_DEFAULT (10)
  42. #define UART_TX_IDLE_NUM_DEFAULT (0)
  43. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  44. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  45. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  46. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  47. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  48. typedef struct {
  49. uart_event_type_t type; /*!< UART TX data type */
  50. struct {
  51. int brk_len;
  52. size_t size;
  53. uint8_t data[0];
  54. } tx_data;
  55. } uart_tx_data_t;
  56. typedef struct {
  57. int wr;
  58. int rd;
  59. int len;
  60. int* data;
  61. } uart_pat_rb_t;
  62. typedef struct {
  63. uart_port_t uart_num; /*!< UART port number*/
  64. int queue_size; /*!< UART event queue size*/
  65. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  66. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  67. //rx parameters
  68. int rx_buffered_len; /*!< UART cached data length */
  69. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  70. int rx_buf_size; /*!< RX ring buffer size */
  71. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  72. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  73. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  74. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  75. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  76. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  77. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  78. uart_pat_rb_t rx_pattern_pos;
  79. //tx parameters
  80. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  81. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  82. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  83. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  84. int tx_buf_size; /*!< TX ring buffer size */
  85. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  86. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  87. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  88. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  89. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  90. uint32_t tx_len_cur;
  91. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  92. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  93. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  94. } uart_obj_t;
  95. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  96. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  97. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  98. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  99. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  100. {
  101. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  102. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  103. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  104. UART[uart_num]->conf0.bit_num = data_bit;
  105. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  106. return ESP_OK;
  107. }
  108. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  109. {
  110. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  111. *(data_bit) = UART[uart_num]->conf0.bit_num;
  112. return ESP_OK;
  113. }
  114. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  115. {
  116. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  117. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  118. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  119. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  120. if (stop_bit == UART_STOP_BITS_2) {
  121. stop_bit = UART_STOP_BITS_1;
  122. UART[uart_num]->rs485_conf.dl1_en = 1;
  123. } else {
  124. UART[uart_num]->rs485_conf.dl1_en = 0;
  125. }
  126. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  127. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  128. return ESP_OK;
  129. }
  130. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  131. {
  132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  133. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  134. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  135. (*stop_bit) = UART_STOP_BITS_2;
  136. } else {
  137. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  138. }
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  145. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  146. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  147. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  148. return ESP_OK;
  149. }
  150. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  151. {
  152. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  153. int val = UART[uart_num]->conf0.val;
  154. if(val & UART_PARITY_EN_M) {
  155. if(val & UART_PARITY_M) {
  156. (*parity_mode) = UART_PARITY_ODD;
  157. } else {
  158. (*parity_mode) = UART_PARITY_EVEN;
  159. }
  160. } else {
  161. (*parity_mode) = UART_PARITY_DISABLE;
  162. }
  163. return ESP_OK;
  164. }
  165. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  166. {
  167. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  168. esp_err_t ret = ESP_OK;
  169. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  170. int uart_clk_freq;
  171. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  172. /* this UART has been configured to use REF_TICK */
  173. uart_clk_freq = REF_CLK_FREQ;
  174. } else {
  175. uart_clk_freq = esp_clk_apb_freq();
  176. }
  177. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  178. if (clk_div < 16) {
  179. /* baud rate is too high for this clock frequency */
  180. ret = ESP_ERR_INVALID_ARG;
  181. } else {
  182. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  183. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  184. }
  185. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  186. return ret;
  187. }
  188. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  189. {
  190. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  191. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  192. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  193. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  194. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  195. return ESP_OK;
  196. }
  197. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  198. {
  199. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  200. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  201. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  202. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  203. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  204. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  205. return ESP_OK;
  206. }
  207. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  208. {
  209. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  210. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  211. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  212. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  213. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  214. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  215. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  216. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  217. UART[uart_num]->swfc_conf.xon_char = XON;
  218. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  219. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  220. return ESP_OK;
  221. }
  222. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  223. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  224. {
  225. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  226. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  227. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  228. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  229. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  230. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  231. UART[uart_num]->conf1.rx_flow_en = 1;
  232. } else {
  233. UART[uart_num]->conf1.rx_flow_en = 0;
  234. }
  235. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  236. UART[uart_num]->conf0.tx_flow_en = 1;
  237. } else {
  238. UART[uart_num]->conf0.tx_flow_en = 0;
  239. }
  240. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  241. return ESP_OK;
  242. }
  243. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  244. {
  245. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  246. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  247. if(UART[uart_num]->conf1.rx_flow_en) {
  248. val |= UART_HW_FLOWCTRL_RTS;
  249. }
  250. if(UART[uart_num]->conf0.tx_flow_en) {
  251. val |= UART_HW_FLOWCTRL_CTS;
  252. }
  253. (*flow_ctrl) = val;
  254. return ESP_OK;
  255. }
  256. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  257. {
  258. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  259. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  260. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  261. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  262. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  263. READ_PERI_REG(UART_FIFO_REG(uart_num));
  264. }
  265. return ESP_OK;
  266. }
  267. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  268. {
  269. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  270. //intr_clr register is write-only
  271. UART[uart_num]->int_clr.val = clr_mask;
  272. return ESP_OK;
  273. }
  274. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  275. {
  276. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  277. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  278. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  279. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  280. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  281. return ESP_OK;
  282. }
  283. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  284. {
  285. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  286. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  287. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  288. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  289. return ESP_OK;
  290. }
  291. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  292. {
  293. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  294. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  295. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  296. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  297. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  298. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  299. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  300. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  301. free(pdata);
  302. }
  303. return ESP_OK;
  304. }
  305. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  306. {
  307. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  308. esp_err_t ret = ESP_OK;
  309. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  310. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  311. int next = p_pos->wr + 1;
  312. if (next >= p_pos->len) {
  313. next = 0;
  314. }
  315. if (next == p_pos->rd) {
  316. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  317. ret = ESP_FAIL;
  318. } else {
  319. p_pos->data[p_pos->wr] = pos;
  320. p_pos->wr = next;
  321. ret = ESP_OK;
  322. }
  323. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  324. return ret;
  325. }
  326. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  327. {
  328. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  329. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  330. return ESP_ERR_INVALID_STATE;
  331. } else {
  332. esp_err_t ret = ESP_OK;
  333. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  334. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  335. if (p_pos->rd == p_pos->wr) {
  336. ret = ESP_FAIL;
  337. } else {
  338. p_pos->rd++;
  339. }
  340. if (p_pos->rd >= p_pos->len) {
  341. p_pos->rd = 0;
  342. }
  343. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  344. return ret;
  345. }
  346. }
  347. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  348. {
  349. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  350. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  351. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  352. int rd = p_pos->rd;
  353. while(rd != p_pos->wr) {
  354. p_pos->data[rd] -= diff_len;
  355. int rd_rec = rd;
  356. rd ++;
  357. if (rd >= p_pos->len) {
  358. rd = 0;
  359. }
  360. if (p_pos->data[rd_rec] < 0) {
  361. p_pos->rd = rd;
  362. }
  363. }
  364. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  365. return ESP_OK;
  366. }
  367. int uart_pattern_pop_pos(uart_port_t uart_num)
  368. {
  369. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  370. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  371. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  372. int pos = -1;
  373. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  374. pos = pat_pos->data[pat_pos->rd];
  375. uart_pattern_dequeue(uart_num);
  376. }
  377. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  378. return pos;
  379. }
  380. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  381. {
  382. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  383. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  384. int* pdata = (int*) malloc(queue_length * sizeof(int));
  385. if(pdata == NULL) {
  386. return ESP_ERR_NO_MEM;
  387. }
  388. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  389. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  390. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  391. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  392. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  393. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  394. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  395. free(ptmp);
  396. return ESP_OK;
  397. }
  398. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  399. {
  400. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  401. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  402. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  403. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  404. UART[uart_num]->at_cmd_char.data = pattern_chr;
  405. UART[uart_num]->at_cmd_char.char_num = chr_num;
  406. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  407. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  408. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  409. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  410. }
  411. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  412. {
  413. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  414. }
  415. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  416. {
  417. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  418. }
  419. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  420. {
  421. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  422. }
  423. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  424. {
  425. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  426. }
  427. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  428. {
  429. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  430. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  431. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  432. UART[uart_num]->int_clr.txfifo_empty = 1;
  433. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  434. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  435. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  436. return ESP_OK;
  437. }
  438. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  439. {
  440. int ret;
  441. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  442. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  443. switch(uart_num) {
  444. case UART_NUM_1:
  445. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  446. break;
  447. case UART_NUM_2:
  448. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  449. break;
  450. case UART_NUM_0:
  451. default:
  452. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  453. break;
  454. }
  455. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  456. return ret;
  457. }
  458. esp_err_t uart_isr_free(uart_port_t uart_num)
  459. {
  460. esp_err_t ret;
  461. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  462. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  463. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  464. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  465. p_uart_obj[uart_num]->intr_handle=NULL;
  466. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  467. return ret;
  468. }
  469. //internal signal can be output to multiple GPIO pads
  470. //only one GPIO pad can connect with input signal
  471. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  472. {
  473. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  474. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  475. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  476. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  477. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  478. int tx_sig, rx_sig, rts_sig, cts_sig;
  479. switch(uart_num) {
  480. case UART_NUM_0:
  481. tx_sig = U0TXD_OUT_IDX;
  482. rx_sig = U0RXD_IN_IDX;
  483. rts_sig = U0RTS_OUT_IDX;
  484. cts_sig = U0CTS_IN_IDX;
  485. break;
  486. case UART_NUM_1:
  487. tx_sig = U1TXD_OUT_IDX;
  488. rx_sig = U1RXD_IN_IDX;
  489. rts_sig = U1RTS_OUT_IDX;
  490. cts_sig = U1CTS_IN_IDX;
  491. break;
  492. case UART_NUM_2:
  493. tx_sig = U2TXD_OUT_IDX;
  494. rx_sig = U2RXD_IN_IDX;
  495. rts_sig = U2RTS_OUT_IDX;
  496. cts_sig = U2CTS_IN_IDX;
  497. break;
  498. case UART_NUM_MAX:
  499. default:
  500. tx_sig = U0TXD_OUT_IDX;
  501. rx_sig = U0RXD_IN_IDX;
  502. rts_sig = U0RTS_OUT_IDX;
  503. cts_sig = U0CTS_IN_IDX;
  504. break;
  505. }
  506. if(tx_io_num >= 0) {
  507. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  508. gpio_set_level(tx_io_num, 1);
  509. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  510. }
  511. if(rx_io_num >= 0) {
  512. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  513. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  514. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  515. gpio_matrix_in(rx_io_num, rx_sig, 0);
  516. }
  517. if(rts_io_num >= 0) {
  518. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  519. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  520. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  521. }
  522. if(cts_io_num >= 0) {
  523. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  524. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  525. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  526. gpio_matrix_in(cts_io_num, cts_sig, 0);
  527. }
  528. return ESP_OK;
  529. }
  530. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  531. {
  532. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  533. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  534. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  535. UART[uart_num]->conf0.sw_rts = level & 0x1;
  536. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  537. return ESP_OK;
  538. }
  539. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  540. {
  541. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  542. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  543. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  544. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  545. return ESP_OK;
  546. }
  547. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  548. {
  549. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  550. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  551. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  552. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  553. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  554. return ESP_OK;
  555. }
  556. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  557. {
  558. esp_err_t r;
  559. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  560. UART_CHECK((uart_config), "param null", ESP_FAIL);
  561. if(uart_num == UART_NUM_0) {
  562. periph_module_enable(PERIPH_UART0_MODULE);
  563. } else if(uart_num == UART_NUM_1) {
  564. periph_module_enable(PERIPH_UART1_MODULE);
  565. } else if(uart_num == UART_NUM_2) {
  566. periph_module_enable(PERIPH_UART2_MODULE);
  567. }
  568. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  569. if (r != ESP_OK) return r;
  570. UART[uart_num]->conf0.val =
  571. (uart_config->parity << UART_PARITY_S)
  572. | (uart_config->data_bits << UART_BIT_NUM_S)
  573. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  574. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  575. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  576. if (r != ESP_OK) return r;
  577. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  578. if (r != ESP_OK) return r;
  579. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  580. return r;
  581. }
  582. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  583. {
  584. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  585. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  586. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  587. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  588. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  589. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  590. UART[uart_num]->conf1.rx_tout_en = 1;
  591. } else {
  592. UART[uart_num]->conf1.rx_tout_en = 0;
  593. }
  594. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  595. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  596. }
  597. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  598. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  599. }
  600. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  601. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  602. return ESP_OK;
  603. }
  604. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  605. {
  606. int cnt = 0;
  607. int len = length;
  608. while (len >= 0) {
  609. if (buf[len] == pat_chr) {
  610. cnt++;
  611. } else {
  612. cnt = 0;
  613. }
  614. if (cnt >= pat_num) {
  615. break;
  616. }
  617. len --;
  618. }
  619. return len;
  620. }
  621. //internal isr handler for default driver code.
  622. static void uart_rx_intr_handler_default(void *param)
  623. {
  624. uart_obj_t *p_uart = (uart_obj_t*) param;
  625. uint8_t uart_num = p_uart->uart_num;
  626. uart_dev_t* uart_reg = UART[uart_num];
  627. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  628. uint8_t buf_idx = 0;
  629. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  630. uart_event_t uart_event;
  631. portBASE_TYPE HPTaskAwoken = 0;
  632. static uint8_t pat_flg = 0;
  633. while(uart_intr_status != 0x0) {
  634. buf_idx = 0;
  635. uart_event.type = UART_EVENT_MAX;
  636. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  637. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  638. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  639. if(p_uart->tx_waiting_brk) {
  640. continue;
  641. }
  642. //TX semaphore will only be used when tx_buf_size is zero.
  643. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  644. p_uart->tx_waiting_fifo = false;
  645. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  646. if(HPTaskAwoken == pdTRUE) {
  647. portYIELD_FROM_ISR() ;
  648. }
  649. } else {
  650. //We don't use TX ring buffer, because the size is zero.
  651. if(p_uart->tx_buf_size == 0) {
  652. continue;
  653. }
  654. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  655. bool en_tx_flg = false;
  656. //We need to put a loop here, in case all the buffer items are very short.
  657. //That would cause a watch_dog reset because empty interrupt happens so often.
  658. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  659. while(tx_fifo_rem) {
  660. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  661. size_t size;
  662. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  663. if(p_uart->tx_head) {
  664. //The first item is the data description
  665. //Get the first item to get the data information
  666. if(p_uart->tx_len_tot == 0) {
  667. p_uart->tx_ptr = NULL;
  668. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  669. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  670. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  671. p_uart->tx_brk_flg = 1;
  672. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  673. }
  674. //We have saved the data description from the 1st item, return buffer.
  675. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  676. if(HPTaskAwoken == pdTRUE) {
  677. portYIELD_FROM_ISR() ;
  678. }
  679. }else if(p_uart->tx_ptr == NULL) {
  680. //Update the TX item pointer, we will need this to return item to buffer.
  681. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  682. en_tx_flg = true;
  683. p_uart->tx_len_cur = size;
  684. }
  685. }
  686. else {
  687. //Can not get data from ring buffer, return;
  688. break;
  689. }
  690. }
  691. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  692. //To fill the TX FIFO.
  693. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  694. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  695. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  696. }
  697. p_uart->tx_len_tot -= send_len;
  698. p_uart->tx_len_cur -= send_len;
  699. tx_fifo_rem -= send_len;
  700. if (p_uart->tx_len_cur == 0) {
  701. //Return item to ring buffer.
  702. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  703. if(HPTaskAwoken == pdTRUE) {
  704. portYIELD_FROM_ISR() ;
  705. }
  706. p_uart->tx_head = NULL;
  707. p_uart->tx_ptr = NULL;
  708. //Sending item done, now we need to send break if there is a record.
  709. //Set TX break signal after FIFO is empty
  710. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  711. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  712. uart_reg->int_ena.tx_brk_done = 0;
  713. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  714. uart_reg->conf0.txd_brk = 1;
  715. uart_reg->int_clr.tx_brk_done = 1;
  716. uart_reg->int_ena.tx_brk_done = 1;
  717. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  718. p_uart->tx_waiting_brk = 1;
  719. } else {
  720. //enable TX empty interrupt
  721. en_tx_flg = true;
  722. }
  723. } else {
  724. //enable TX empty interrupt
  725. en_tx_flg = true;
  726. }
  727. }
  728. }
  729. if (en_tx_flg) {
  730. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  731. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  732. }
  733. }
  734. }
  735. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  736. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  737. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  738. ) {
  739. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  740. if(pat_flg == 1) {
  741. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  742. pat_flg = 0;
  743. }
  744. if (p_uart->rx_buffer_full_flg == false) {
  745. //We have to read out all data in RX FIFO to clear the interrupt signal
  746. while (buf_idx < rx_fifo_len) {
  747. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  748. }
  749. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  750. int pat_num = uart_reg->at_cmd_char.char_num;
  751. int pat_idx = -1;
  752. //Get the buffer from the FIFO
  753. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  754. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  755. uart_event.type = UART_PATTERN_DET;
  756. uart_event.size = rx_fifo_len;
  757. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  758. } else {
  759. //After Copying the Data From FIFO ,Clear intr_status
  760. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  761. uart_event.type = UART_DATA;
  762. uart_event.size = rx_fifo_len;
  763. }
  764. p_uart->rx_stash_len = rx_fifo_len;
  765. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  766. //Mainly for applications that uses flow control or small ring buffer.
  767. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  768. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  769. if (uart_event.type == UART_PATTERN_DET) {
  770. if (rx_fifo_len < pat_num) {
  771. //some of the characters are read out in last interrupt
  772. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  773. } else {
  774. uart_pattern_enqueue(uart_num,
  775. pat_idx <= -1 ?
  776. //can not find the pattern in buffer,
  777. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  778. // find the pattern in buffer
  779. p_uart->rx_buffered_len + pat_idx);
  780. }
  781. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  782. ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
  783. }
  784. }
  785. uart_event.type = UART_BUFFER_FULL;
  786. p_uart->rx_buffer_full_flg = true;
  787. } else {
  788. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  789. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  790. if (rx_fifo_len < pat_num) {
  791. //some of the characters are read out in last interrupt
  792. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  793. } else if(pat_idx >= 0) {
  794. // find pattern in statsh buffer.
  795. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  796. }
  797. }
  798. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  799. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  800. }
  801. if(HPTaskAwoken == pdTRUE) {
  802. portYIELD_FROM_ISR() ;
  803. }
  804. } else {
  805. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  806. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  807. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  808. uart_reg->int_clr.at_cmd_char_det = 1;
  809. uart_event.type = UART_PATTERN_DET;
  810. uart_event.size = rx_fifo_len;
  811. pat_flg = 1;
  812. }
  813. }
  814. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  815. // When fifo overflows, we reset the fifo.
  816. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  817. uart_reset_rx_fifo(uart_num);
  818. uart_reg->int_clr.rxfifo_ovf = 1;
  819. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  820. uart_event.type = UART_FIFO_OVF;
  821. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  822. uart_reg->int_clr.brk_det = 1;
  823. uart_event.type = UART_BREAK;
  824. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  825. uart_reg->int_clr.frm_err = 1;
  826. uart_event.type = UART_FRAME_ERR;
  827. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  828. uart_reg->int_clr.parity_err = 1;
  829. uart_event.type = UART_PARITY_ERR;
  830. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  831. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  832. uart_reg->conf0.txd_brk = 0;
  833. uart_reg->int_ena.tx_brk_done = 0;
  834. uart_reg->int_clr.tx_brk_done = 1;
  835. if(p_uart->tx_brk_flg == 1) {
  836. uart_reg->int_ena.txfifo_empty = 1;
  837. }
  838. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  839. if(p_uart->tx_brk_flg == 1) {
  840. p_uart->tx_brk_flg = 0;
  841. p_uart->tx_waiting_brk = 0;
  842. } else {
  843. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  844. if(HPTaskAwoken == pdTRUE) {
  845. portYIELD_FROM_ISR() ;
  846. }
  847. }
  848. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  849. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  850. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  851. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  852. uart_reg->int_clr.at_cmd_char_det = 1;
  853. uart_event.type = UART_PATTERN_DET;
  854. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  855. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  856. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  857. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  858. if(HPTaskAwoken == pdTRUE) {
  859. portYIELD_FROM_ISR() ;
  860. }
  861. } else {
  862. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  863. uart_event.type = UART_EVENT_MAX;
  864. }
  865. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  866. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  867. ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
  868. }
  869. if(HPTaskAwoken == pdTRUE) {
  870. portYIELD_FROM_ISR() ;
  871. }
  872. }
  873. uart_intr_status = uart_reg->int_st.val;
  874. }
  875. }
  876. /**************************************************************/
  877. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  878. {
  879. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  880. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  881. BaseType_t res;
  882. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  883. //Take tx_mux
  884. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  885. if(res == pdFALSE) {
  886. return ESP_ERR_TIMEOUT;
  887. }
  888. ticks_to_wait = ticks_end - xTaskGetTickCount();
  889. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  890. ticks_to_wait = ticks_end - xTaskGetTickCount();
  891. if(UART[uart_num]->status.txfifo_cnt == 0) {
  892. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  893. return ESP_OK;
  894. }
  895. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  896. //take 2nd tx_done_sem, wait given from ISR
  897. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  898. if(res == pdFALSE) {
  899. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  900. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  901. return ESP_ERR_TIMEOUT;
  902. }
  903. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  904. return ESP_OK;
  905. }
  906. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  907. {
  908. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  909. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  910. UART[uart_num]->conf0.txd_brk = 1;
  911. UART[uart_num]->int_clr.tx_brk_done = 1;
  912. UART[uart_num]->int_ena.tx_brk_done = 1;
  913. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  914. return ESP_OK;
  915. }
  916. //Fill UART tx_fifo and return a number,
  917. //This function by itself is not thread-safe, always call from within a muxed section.
  918. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  919. {
  920. uint8_t i = 0;
  921. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  922. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  923. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  924. for(i = 0; i < copy_cnt; i++) {
  925. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  926. }
  927. return copy_cnt;
  928. }
  929. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  930. {
  931. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  932. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  933. UART_CHECK(buffer, "buffer null", (-1));
  934. if(len == 0) {
  935. return 0;
  936. }
  937. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  938. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  939. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  940. return tx_len;
  941. }
  942. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  943. {
  944. if(size == 0) {
  945. return 0;
  946. }
  947. size_t original_size = size;
  948. //lock for uart_tx
  949. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  950. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  951. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  952. int offset = 0;
  953. uart_tx_data_t evt;
  954. evt.tx_data.size = size;
  955. evt.tx_data.brk_len = brk_len;
  956. if(brk_en) {
  957. evt.type = UART_DATA_BREAK;
  958. } else {
  959. evt.type = UART_DATA;
  960. }
  961. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  962. while(size > 0) {
  963. int send_size = size > max_size / 2 ? max_size / 2 : size;
  964. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  965. size -= send_size;
  966. offset += send_size;
  967. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  968. }
  969. } else {
  970. while(size) {
  971. //semaphore for tx_fifo available
  972. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  973. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  974. if(sent < size) {
  975. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  976. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  977. }
  978. size -= sent;
  979. src += sent;
  980. }
  981. }
  982. if(brk_en) {
  983. uart_set_break(uart_num, brk_len);
  984. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  985. }
  986. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  987. }
  988. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  989. return original_size;
  990. }
  991. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  992. {
  993. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  994. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  995. UART_CHECK(src, "buffer null", (-1));
  996. return uart_tx_all(uart_num, src, size, 0, 0);
  997. }
  998. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  999. {
  1000. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1001. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1002. UART_CHECK((size > 0), "uart size error", (-1));
  1003. UART_CHECK((src), "uart data null", (-1));
  1004. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1005. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1006. }
  1007. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1008. {
  1009. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1010. UART_CHECK((buf), "uart data null", (-1));
  1011. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1012. uint8_t* data = NULL;
  1013. size_t size;
  1014. size_t copy_len = 0;
  1015. int len_tmp;
  1016. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1017. return -1;
  1018. }
  1019. while(length) {
  1020. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1021. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1022. if(data) {
  1023. p_uart_obj[uart_num]->rx_head_ptr = data;
  1024. p_uart_obj[uart_num]->rx_ptr = data;
  1025. p_uart_obj[uart_num]->rx_cur_remain = size;
  1026. } else {
  1027. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1028. return copy_len;
  1029. }
  1030. }
  1031. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1032. len_tmp = length;
  1033. } else {
  1034. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1035. }
  1036. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1037. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1038. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1039. uart_pattern_queue_update(uart_num, len_tmp);
  1040. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1041. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1042. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1043. copy_len += len_tmp;
  1044. length -= len_tmp;
  1045. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1046. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1047. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1048. p_uart_obj[uart_num]->rx_ptr = NULL;
  1049. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1050. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1051. if(res == pdTRUE) {
  1052. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1053. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1054. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1055. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1056. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1057. }
  1058. }
  1059. }
  1060. }
  1061. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1062. return copy_len;
  1063. }
  1064. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1065. {
  1066. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1067. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1068. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1069. return ESP_OK;
  1070. }
  1071. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1072. esp_err_t uart_flush_input(uart_port_t uart_num)
  1073. {
  1074. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1075. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1076. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1077. uint8_t* data;
  1078. size_t size;
  1079. //rx sem protect the ring buffer read related functions
  1080. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1081. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1082. while(true) {
  1083. if(p_uart->rx_head_ptr) {
  1084. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1085. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1086. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1087. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1088. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1089. p_uart->rx_ptr = NULL;
  1090. p_uart->rx_cur_remain = 0;
  1091. p_uart->rx_head_ptr = NULL;
  1092. }
  1093. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1094. if(data == NULL) {
  1095. break;
  1096. }
  1097. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1098. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1099. uart_pattern_queue_update(uart_num, size);
  1100. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1101. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1102. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1103. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1104. if(res == pdTRUE) {
  1105. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1106. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1107. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1108. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1109. }
  1110. }
  1111. }
  1112. p_uart->rx_ptr = NULL;
  1113. p_uart->rx_cur_remain = 0;
  1114. p_uart->rx_head_ptr = NULL;
  1115. uart_reset_rx_fifo(uart_num);
  1116. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1117. xSemaphoreGive(p_uart->rx_mux);
  1118. return ESP_OK;
  1119. }
  1120. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1121. {
  1122. esp_err_t r;
  1123. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1124. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1125. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1126. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1127. if(p_uart_obj[uart_num] == NULL) {
  1128. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1129. if(p_uart_obj[uart_num] == NULL) {
  1130. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1131. return ESP_FAIL;
  1132. }
  1133. p_uart_obj[uart_num]->uart_num = uart_num;
  1134. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1135. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1136. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1137. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1138. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1139. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1140. p_uart_obj[uart_num]->queue_size = queue_size;
  1141. p_uart_obj[uart_num]->tx_ptr = NULL;
  1142. p_uart_obj[uart_num]->tx_head = NULL;
  1143. p_uart_obj[uart_num]->tx_len_tot = 0;
  1144. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1145. p_uart_obj[uart_num]->tx_brk_len = 0;
  1146. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1147. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1148. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1149. if(uart_queue) {
  1150. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1151. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1152. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1153. } else {
  1154. p_uart_obj[uart_num]->xQueueUart = NULL;
  1155. }
  1156. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1157. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1158. p_uart_obj[uart_num]->rx_ptr = NULL;
  1159. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1160. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1161. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1162. if(tx_buffer_size > 0) {
  1163. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1164. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1165. } else {
  1166. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1167. p_uart_obj[uart_num]->tx_buf_size = 0;
  1168. }
  1169. } else {
  1170. ESP_LOGE(UART_TAG, "UART driver already installed");
  1171. return ESP_FAIL;
  1172. }
  1173. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1174. if (r!=ESP_OK) goto err;
  1175. uart_intr_config_t uart_intr = {
  1176. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1177. | UART_RXFIFO_TOUT_INT_ENA_M
  1178. | UART_FRM_ERR_INT_ENA_M
  1179. | UART_RXFIFO_OVF_INT_ENA_M
  1180. | UART_BRK_DET_INT_ENA_M
  1181. | UART_PARITY_ERR_INT_ENA_M,
  1182. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1183. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1184. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1185. };
  1186. r=uart_intr_config(uart_num, &uart_intr);
  1187. if (r!=ESP_OK) goto err;
  1188. return r;
  1189. err:
  1190. uart_driver_delete(uart_num);
  1191. return r;
  1192. }
  1193. //Make sure no other tasks are still using UART before you call this function
  1194. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1195. {
  1196. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1197. if(p_uart_obj[uart_num] == NULL) {
  1198. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1199. return ESP_OK;
  1200. }
  1201. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1202. uart_disable_rx_intr(uart_num);
  1203. uart_disable_tx_intr(uart_num);
  1204. uart_pattern_link_free(uart_num);
  1205. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1206. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1207. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1208. }
  1209. if(p_uart_obj[uart_num]->tx_done_sem) {
  1210. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1211. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1212. }
  1213. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1214. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1215. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1216. }
  1217. if(p_uart_obj[uart_num]->tx_mux) {
  1218. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1219. p_uart_obj[uart_num]->tx_mux = NULL;
  1220. }
  1221. if(p_uart_obj[uart_num]->rx_mux) {
  1222. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1223. p_uart_obj[uart_num]->rx_mux = NULL;
  1224. }
  1225. if(p_uart_obj[uart_num]->xQueueUart) {
  1226. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1227. p_uart_obj[uart_num]->xQueueUart = NULL;
  1228. }
  1229. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1230. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1231. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1232. }
  1233. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1234. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1235. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1236. }
  1237. free(p_uart_obj[uart_num]);
  1238. p_uart_obj[uart_num] = NULL;
  1239. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1240. if(uart_num == UART_NUM_0) {
  1241. periph_module_disable(PERIPH_UART0_MODULE);
  1242. } else if(uart_num == UART_NUM_1) {
  1243. periph_module_disable(PERIPH_UART1_MODULE);
  1244. } else if(uart_num == UART_NUM_2) {
  1245. periph_module_disable(PERIPH_UART2_MODULE);
  1246. }
  1247. }
  1248. return ESP_OK;
  1249. }