uart.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #define XOFF (char)0x13
  32. #define XON (char)0x11
  33. static const char* UART_TAG = "uart";
  34. #define UART_CHECK(a, str, ret_val) \
  35. if (!(a)) { \
  36. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  37. return (ret_val); \
  38. }
  39. #define UART_EMPTY_THRESH_DEFAULT (10)
  40. #define UART_FULL_THRESH_DEFAULT (120)
  41. #define UART_TOUT_THRESH_DEFAULT (10)
  42. #define UART_TX_IDLE_NUM_DEFAULT (0)
  43. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  44. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  45. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  46. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  47. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  48. typedef struct {
  49. uart_event_type_t type; /*!< UART TX data type */
  50. struct {
  51. int brk_len;
  52. size_t size;
  53. uint8_t data[0];
  54. } tx_data;
  55. } uart_tx_data_t;
  56. typedef struct {
  57. int wr;
  58. int rd;
  59. int len;
  60. int* data;
  61. } uart_pat_rb_t;
  62. typedef struct {
  63. uart_port_t uart_num; /*!< UART port number*/
  64. int queue_size; /*!< UART event queue size*/
  65. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  66. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  67. //rx parameters
  68. int rx_buffered_len; /*!< UART cached data length */
  69. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  70. int rx_buf_size; /*!< RX ring buffer size */
  71. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  72. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  73. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  74. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  75. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  76. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  77. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  78. uart_pat_rb_t rx_pattern_pos;
  79. //tx parameters
  80. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  81. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  82. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  83. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  84. int tx_buf_size; /*!< TX ring buffer size */
  85. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  86. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  87. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  88. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  89. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  90. uint32_t tx_len_cur;
  91. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  92. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  93. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  94. } uart_obj_t;
  95. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  96. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  97. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  98. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  99. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  100. {
  101. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  102. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  103. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  104. UART[uart_num]->conf0.bit_num = data_bit;
  105. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  106. return ESP_OK;
  107. }
  108. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  109. {
  110. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  111. *(data_bit) = UART[uart_num]->conf0.bit_num;
  112. return ESP_OK;
  113. }
  114. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  115. {
  116. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  117. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  118. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  119. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  120. if (stop_bit == UART_STOP_BITS_2) {
  121. stop_bit = UART_STOP_BITS_1;
  122. UART[uart_num]->rs485_conf.dl1_en = 1;
  123. } else {
  124. UART[uart_num]->rs485_conf.dl1_en = 0;
  125. }
  126. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  127. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  128. return ESP_OK;
  129. }
  130. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  131. {
  132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  133. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  134. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  135. (*stop_bit) = UART_STOP_BITS_2;
  136. } else {
  137. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  138. }
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  145. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  146. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  147. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  148. return ESP_OK;
  149. }
  150. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  151. {
  152. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  153. int val = UART[uart_num]->conf0.val;
  154. if(val & UART_PARITY_EN_M) {
  155. if(val & UART_PARITY_M) {
  156. (*parity_mode) = UART_PARITY_ODD;
  157. } else {
  158. (*parity_mode) = UART_PARITY_EVEN;
  159. }
  160. } else {
  161. (*parity_mode) = UART_PARITY_DISABLE;
  162. }
  163. return ESP_OK;
  164. }
  165. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  166. {
  167. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  168. esp_err_t ret = ESP_OK;
  169. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  170. int uart_clk_freq;
  171. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  172. /* this UART has been configured to use REF_TICK */
  173. uart_clk_freq = REF_CLK_FREQ;
  174. } else {
  175. uart_clk_freq = esp_clk_apb_freq();
  176. }
  177. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  178. if (clk_div < 16) {
  179. /* baud rate is too high for this clock frequency */
  180. ret = ESP_ERR_INVALID_ARG;
  181. } else {
  182. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  183. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  184. }
  185. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  186. return ret;
  187. }
  188. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  189. {
  190. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  191. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  192. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  193. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  194. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  195. return ESP_OK;
  196. }
  197. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  198. {
  199. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  200. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  201. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  202. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  203. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  204. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  205. return ESP_OK;
  206. }
  207. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  208. {
  209. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  210. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  211. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  212. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  213. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  214. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  215. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  216. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  217. UART[uart_num]->swfc_conf.xon_char = XON;
  218. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  219. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  220. return ESP_OK;
  221. }
  222. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  223. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  224. {
  225. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  226. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  227. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  228. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  229. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  230. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  231. UART[uart_num]->conf1.rx_flow_en = 1;
  232. } else {
  233. UART[uart_num]->conf1.rx_flow_en = 0;
  234. }
  235. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  236. UART[uart_num]->conf0.tx_flow_en = 1;
  237. } else {
  238. UART[uart_num]->conf0.tx_flow_en = 0;
  239. }
  240. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  241. return ESP_OK;
  242. }
  243. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  244. {
  245. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  246. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  247. if(UART[uart_num]->conf1.rx_flow_en) {
  248. val |= UART_HW_FLOWCTRL_RTS;
  249. }
  250. if(UART[uart_num]->conf0.tx_flow_en) {
  251. val |= UART_HW_FLOWCTRL_CTS;
  252. }
  253. (*flow_ctrl) = val;
  254. return ESP_OK;
  255. }
  256. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  257. {
  258. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  259. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  260. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  261. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  262. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  263. READ_PERI_REG(UART_FIFO_REG(uart_num));
  264. }
  265. return ESP_OK;
  266. }
  267. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  268. {
  269. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  270. //intr_clr register is write-only
  271. UART[uart_num]->int_clr.val = clr_mask;
  272. return ESP_OK;
  273. }
  274. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  275. {
  276. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  277. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  278. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  279. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  280. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  281. return ESP_OK;
  282. }
  283. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  284. {
  285. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  286. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  287. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  288. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  289. return ESP_OK;
  290. }
  291. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  292. {
  293. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  294. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  295. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  296. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  297. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  298. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  299. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  300. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  301. free(pdata);
  302. }
  303. return ESP_OK;
  304. }
  305. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  306. {
  307. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  308. esp_err_t ret = ESP_OK;
  309. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  310. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  311. int next = p_pos->wr + 1;
  312. if (next >= p_pos->len) {
  313. next = 0;
  314. }
  315. if (next == p_pos->rd) {
  316. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  317. ret = ESP_FAIL;
  318. } else {
  319. p_pos->data[p_pos->wr] = pos;
  320. p_pos->wr = next;
  321. ret = ESP_OK;
  322. }
  323. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  324. return ret;
  325. }
  326. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  327. {
  328. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  329. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  330. return ESP_ERR_INVALID_STATE;
  331. } else {
  332. esp_err_t ret = ESP_OK;
  333. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  334. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  335. if (p_pos->rd == p_pos->wr) {
  336. ret = ESP_FAIL;
  337. } else {
  338. p_pos->rd++;
  339. }
  340. if (p_pos->rd >= p_pos->len) {
  341. p_pos->rd = 0;
  342. }
  343. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  344. return ret;
  345. }
  346. }
  347. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  348. {
  349. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  350. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  351. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  352. int rd = p_pos->rd;
  353. while(rd != p_pos->wr) {
  354. p_pos->data[rd] -= diff_len;
  355. int rd_rec = rd;
  356. rd ++;
  357. if (rd >= p_pos->len) {
  358. rd = 0;
  359. }
  360. if (p_pos->data[rd_rec] < 0) {
  361. p_pos->rd = rd;
  362. }
  363. }
  364. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  365. return ESP_OK;
  366. }
  367. int uart_pattern_pop_pos(uart_port_t uart_num)
  368. {
  369. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  370. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  371. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  372. int pos = -1;
  373. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  374. pos = pat_pos->data[pat_pos->rd];
  375. uart_pattern_dequeue(uart_num);
  376. }
  377. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  378. return pos;
  379. }
  380. int uart_pattern_get_pos(uart_port_t uart_num)
  381. {
  382. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  383. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  384. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  385. int pos = -1;
  386. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  387. pos = pat_pos->data[pat_pos->rd];
  388. }
  389. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  390. return pos;
  391. }
  392. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  393. {
  394. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  395. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  396. int* pdata = (int*) malloc(queue_length * sizeof(int));
  397. if(pdata == NULL) {
  398. return ESP_ERR_NO_MEM;
  399. }
  400. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  401. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  402. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  403. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  404. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  405. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  406. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  407. free(ptmp);
  408. return ESP_OK;
  409. }
  410. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  411. {
  412. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  413. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  414. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  415. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  416. UART[uart_num]->at_cmd_char.data = pattern_chr;
  417. UART[uart_num]->at_cmd_char.char_num = chr_num;
  418. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  419. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  420. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  421. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  422. }
  423. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  424. {
  425. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  426. }
  427. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  428. {
  429. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  430. }
  431. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  432. {
  433. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  434. }
  435. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  436. {
  437. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  438. }
  439. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  440. {
  441. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  442. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  443. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  444. UART[uart_num]->int_clr.txfifo_empty = 1;
  445. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  446. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  447. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  448. return ESP_OK;
  449. }
  450. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  451. {
  452. int ret;
  453. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  454. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  455. switch(uart_num) {
  456. case UART_NUM_1:
  457. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  458. break;
  459. case UART_NUM_2:
  460. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  461. break;
  462. case UART_NUM_0:
  463. default:
  464. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  465. break;
  466. }
  467. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  468. return ret;
  469. }
  470. esp_err_t uart_isr_free(uart_port_t uart_num)
  471. {
  472. esp_err_t ret;
  473. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  474. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  475. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  476. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  477. p_uart_obj[uart_num]->intr_handle=NULL;
  478. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  479. return ret;
  480. }
  481. //internal signal can be output to multiple GPIO pads
  482. //only one GPIO pad can connect with input signal
  483. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  484. {
  485. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  486. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  487. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  488. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  489. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  490. int tx_sig, rx_sig, rts_sig, cts_sig;
  491. switch(uart_num) {
  492. case UART_NUM_0:
  493. tx_sig = U0TXD_OUT_IDX;
  494. rx_sig = U0RXD_IN_IDX;
  495. rts_sig = U0RTS_OUT_IDX;
  496. cts_sig = U0CTS_IN_IDX;
  497. break;
  498. case UART_NUM_1:
  499. tx_sig = U1TXD_OUT_IDX;
  500. rx_sig = U1RXD_IN_IDX;
  501. rts_sig = U1RTS_OUT_IDX;
  502. cts_sig = U1CTS_IN_IDX;
  503. break;
  504. case UART_NUM_2:
  505. tx_sig = U2TXD_OUT_IDX;
  506. rx_sig = U2RXD_IN_IDX;
  507. rts_sig = U2RTS_OUT_IDX;
  508. cts_sig = U2CTS_IN_IDX;
  509. break;
  510. case UART_NUM_MAX:
  511. default:
  512. tx_sig = U0TXD_OUT_IDX;
  513. rx_sig = U0RXD_IN_IDX;
  514. rts_sig = U0RTS_OUT_IDX;
  515. cts_sig = U0CTS_IN_IDX;
  516. break;
  517. }
  518. if(tx_io_num >= 0) {
  519. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  520. gpio_set_level(tx_io_num, 1);
  521. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  522. }
  523. if(rx_io_num >= 0) {
  524. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  525. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  526. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  527. gpio_matrix_in(rx_io_num, rx_sig, 0);
  528. }
  529. if(rts_io_num >= 0) {
  530. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  531. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  532. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  533. }
  534. if(cts_io_num >= 0) {
  535. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  536. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  537. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  538. gpio_matrix_in(cts_io_num, cts_sig, 0);
  539. }
  540. return ESP_OK;
  541. }
  542. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  543. {
  544. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  545. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  546. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  547. UART[uart_num]->conf0.sw_rts = level & 0x1;
  548. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  549. return ESP_OK;
  550. }
  551. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  552. {
  553. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  554. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  555. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  556. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  557. return ESP_OK;
  558. }
  559. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  560. {
  561. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  562. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  563. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  564. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  565. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  566. return ESP_OK;
  567. }
  568. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  569. {
  570. esp_err_t r;
  571. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  572. UART_CHECK((uart_config), "param null", ESP_FAIL);
  573. if(uart_num == UART_NUM_0) {
  574. periph_module_enable(PERIPH_UART0_MODULE);
  575. } else if(uart_num == UART_NUM_1) {
  576. periph_module_enable(PERIPH_UART1_MODULE);
  577. } else if(uart_num == UART_NUM_2) {
  578. periph_module_enable(PERIPH_UART2_MODULE);
  579. }
  580. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  581. if (r != ESP_OK) return r;
  582. UART[uart_num]->conf0.val =
  583. (uart_config->parity << UART_PARITY_S)
  584. | (uart_config->data_bits << UART_BIT_NUM_S)
  585. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  586. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  587. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  588. if (r != ESP_OK) return r;
  589. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  590. if (r != ESP_OK) return r;
  591. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  592. return r;
  593. }
  594. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  595. {
  596. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  597. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  598. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  599. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  600. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  601. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  602. UART[uart_num]->conf1.rx_tout_en = 1;
  603. } else {
  604. UART[uart_num]->conf1.rx_tout_en = 0;
  605. }
  606. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  607. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  608. }
  609. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  610. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  611. }
  612. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  613. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  614. return ESP_OK;
  615. }
  616. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  617. {
  618. int cnt = 0;
  619. int len = length;
  620. while (len >= 0) {
  621. if (buf[len] == pat_chr) {
  622. cnt++;
  623. } else {
  624. cnt = 0;
  625. }
  626. if (cnt >= pat_num) {
  627. break;
  628. }
  629. len --;
  630. }
  631. return len;
  632. }
  633. //internal isr handler for default driver code.
  634. static void uart_rx_intr_handler_default(void *param)
  635. {
  636. uart_obj_t *p_uart = (uart_obj_t*) param;
  637. uint8_t uart_num = p_uart->uart_num;
  638. uart_dev_t* uart_reg = UART[uart_num];
  639. int rx_fifo_len = uart_reg->status.rxfifo_cnt;
  640. uint8_t buf_idx = 0;
  641. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  642. uart_event_t uart_event;
  643. portBASE_TYPE HPTaskAwoken = 0;
  644. static uint8_t pat_flg = 0;
  645. while(uart_intr_status != 0x0) {
  646. buf_idx = 0;
  647. uart_event.type = UART_EVENT_MAX;
  648. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  649. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  650. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  651. if(p_uart->tx_waiting_brk) {
  652. continue;
  653. }
  654. //TX semaphore will only be used when tx_buf_size is zero.
  655. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  656. p_uart->tx_waiting_fifo = false;
  657. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  658. if(HPTaskAwoken == pdTRUE) {
  659. portYIELD_FROM_ISR() ;
  660. }
  661. } else {
  662. //We don't use TX ring buffer, because the size is zero.
  663. if(p_uart->tx_buf_size == 0) {
  664. continue;
  665. }
  666. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  667. bool en_tx_flg = false;
  668. //We need to put a loop here, in case all the buffer items are very short.
  669. //That would cause a watch_dog reset because empty interrupt happens so often.
  670. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  671. while(tx_fifo_rem) {
  672. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  673. size_t size;
  674. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  675. if(p_uart->tx_head) {
  676. //The first item is the data description
  677. //Get the first item to get the data information
  678. if(p_uart->tx_len_tot == 0) {
  679. p_uart->tx_ptr = NULL;
  680. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  681. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  682. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  683. p_uart->tx_brk_flg = 1;
  684. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  685. }
  686. //We have saved the data description from the 1st item, return buffer.
  687. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  688. if(HPTaskAwoken == pdTRUE) {
  689. portYIELD_FROM_ISR() ;
  690. }
  691. }else if(p_uart->tx_ptr == NULL) {
  692. //Update the TX item pointer, we will need this to return item to buffer.
  693. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  694. en_tx_flg = true;
  695. p_uart->tx_len_cur = size;
  696. }
  697. }
  698. else {
  699. //Can not get data from ring buffer, return;
  700. break;
  701. }
  702. }
  703. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  704. //To fill the TX FIFO.
  705. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  706. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  707. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  708. }
  709. p_uart->tx_len_tot -= send_len;
  710. p_uart->tx_len_cur -= send_len;
  711. tx_fifo_rem -= send_len;
  712. if (p_uart->tx_len_cur == 0) {
  713. //Return item to ring buffer.
  714. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  715. if(HPTaskAwoken == pdTRUE) {
  716. portYIELD_FROM_ISR() ;
  717. }
  718. p_uart->tx_head = NULL;
  719. p_uart->tx_ptr = NULL;
  720. //Sending item done, now we need to send break if there is a record.
  721. //Set TX break signal after FIFO is empty
  722. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  723. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  724. uart_reg->int_ena.tx_brk_done = 0;
  725. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  726. uart_reg->conf0.txd_brk = 1;
  727. uart_reg->int_clr.tx_brk_done = 1;
  728. uart_reg->int_ena.tx_brk_done = 1;
  729. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  730. p_uart->tx_waiting_brk = 1;
  731. } else {
  732. //enable TX empty interrupt
  733. en_tx_flg = true;
  734. }
  735. } else {
  736. //enable TX empty interrupt
  737. en_tx_flg = true;
  738. }
  739. }
  740. }
  741. if (en_tx_flg) {
  742. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  743. uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  744. }
  745. }
  746. }
  747. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  748. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  749. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  750. ) {
  751. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  752. if(pat_flg == 1) {
  753. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  754. pat_flg = 0;
  755. }
  756. if (p_uart->rx_buffer_full_flg == false) {
  757. //We have to read out all data in RX FIFO to clear the interrupt signal
  758. while (buf_idx < rx_fifo_len) {
  759. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  760. }
  761. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  762. int pat_num = uart_reg->at_cmd_char.char_num;
  763. int pat_idx = -1;
  764. //Get the buffer from the FIFO
  765. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  766. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  767. uart_event.type = UART_PATTERN_DET;
  768. uart_event.size = rx_fifo_len;
  769. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  770. } else {
  771. //After Copying the Data From FIFO ,Clear intr_status
  772. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  773. uart_event.type = UART_DATA;
  774. uart_event.size = rx_fifo_len;
  775. }
  776. p_uart->rx_stash_len = rx_fifo_len;
  777. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  778. //Mainly for applications that uses flow control or small ring buffer.
  779. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  780. uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  781. if (uart_event.type == UART_PATTERN_DET) {
  782. if (rx_fifo_len < pat_num) {
  783. //some of the characters are read out in last interrupt
  784. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  785. } else {
  786. uart_pattern_enqueue(uart_num,
  787. pat_idx <= -1 ?
  788. //can not find the pattern in buffer,
  789. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  790. // find the pattern in buffer
  791. p_uart->rx_buffered_len + pat_idx);
  792. }
  793. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  794. ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
  795. }
  796. }
  797. uart_event.type = UART_BUFFER_FULL;
  798. p_uart->rx_buffer_full_flg = true;
  799. } else {
  800. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  801. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  802. if (rx_fifo_len < pat_num) {
  803. //some of the characters are read out in last interrupt
  804. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  805. } else if(pat_idx >= 0) {
  806. // find pattern in statsh buffer.
  807. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  808. }
  809. }
  810. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  811. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  812. }
  813. if(HPTaskAwoken == pdTRUE) {
  814. portYIELD_FROM_ISR() ;
  815. }
  816. } else {
  817. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  818. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  819. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  820. uart_reg->int_clr.at_cmd_char_det = 1;
  821. uart_event.type = UART_PATTERN_DET;
  822. uart_event.size = rx_fifo_len;
  823. pat_flg = 1;
  824. }
  825. }
  826. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  827. // When fifo overflows, we reset the fifo.
  828. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  829. uart_reset_rx_fifo(uart_num);
  830. uart_reg->int_clr.rxfifo_ovf = 1;
  831. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  832. uart_event.type = UART_FIFO_OVF;
  833. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  834. uart_reg->int_clr.brk_det = 1;
  835. uart_event.type = UART_BREAK;
  836. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  837. uart_reg->int_clr.frm_err = 1;
  838. uart_event.type = UART_FRAME_ERR;
  839. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  840. uart_reg->int_clr.parity_err = 1;
  841. uart_event.type = UART_PARITY_ERR;
  842. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  843. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  844. uart_reg->conf0.txd_brk = 0;
  845. uart_reg->int_ena.tx_brk_done = 0;
  846. uart_reg->int_clr.tx_brk_done = 1;
  847. if(p_uart->tx_brk_flg == 1) {
  848. uart_reg->int_ena.txfifo_empty = 1;
  849. }
  850. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  851. if(p_uart->tx_brk_flg == 1) {
  852. p_uart->tx_brk_flg = 0;
  853. p_uart->tx_waiting_brk = 0;
  854. } else {
  855. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  856. if(HPTaskAwoken == pdTRUE) {
  857. portYIELD_FROM_ISR() ;
  858. }
  859. }
  860. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  861. uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  862. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  863. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  864. uart_reg->int_clr.at_cmd_char_det = 1;
  865. uart_event.type = UART_PATTERN_DET;
  866. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  867. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  868. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  869. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  870. if(HPTaskAwoken == pdTRUE) {
  871. portYIELD_FROM_ISR() ;
  872. }
  873. } else {
  874. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  875. uart_event.type = UART_EVENT_MAX;
  876. }
  877. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  878. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  879. ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
  880. }
  881. if(HPTaskAwoken == pdTRUE) {
  882. portYIELD_FROM_ISR() ;
  883. }
  884. }
  885. uart_intr_status = uart_reg->int_st.val;
  886. }
  887. }
  888. /**************************************************************/
  889. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  890. {
  891. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  892. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  893. BaseType_t res;
  894. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  895. //Take tx_mux
  896. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  897. if(res == pdFALSE) {
  898. return ESP_ERR_TIMEOUT;
  899. }
  900. ticks_to_wait = ticks_end - xTaskGetTickCount();
  901. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  902. ticks_to_wait = ticks_end - xTaskGetTickCount();
  903. if(UART[uart_num]->status.txfifo_cnt == 0) {
  904. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  905. return ESP_OK;
  906. }
  907. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  908. //take 2nd tx_done_sem, wait given from ISR
  909. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  910. if(res == pdFALSE) {
  911. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  912. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  913. return ESP_ERR_TIMEOUT;
  914. }
  915. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  916. return ESP_OK;
  917. }
  918. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  919. {
  920. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  921. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  922. UART[uart_num]->conf0.txd_brk = 1;
  923. UART[uart_num]->int_clr.tx_brk_done = 1;
  924. UART[uart_num]->int_ena.tx_brk_done = 1;
  925. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  926. return ESP_OK;
  927. }
  928. //Fill UART tx_fifo and return a number,
  929. //This function by itself is not thread-safe, always call from within a muxed section.
  930. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  931. {
  932. uint8_t i = 0;
  933. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  934. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  935. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  936. for(i = 0; i < copy_cnt; i++) {
  937. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  938. }
  939. return copy_cnt;
  940. }
  941. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  942. {
  943. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  944. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  945. UART_CHECK(buffer, "buffer null", (-1));
  946. if(len == 0) {
  947. return 0;
  948. }
  949. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  950. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  951. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  952. return tx_len;
  953. }
  954. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  955. {
  956. if(size == 0) {
  957. return 0;
  958. }
  959. size_t original_size = size;
  960. //lock for uart_tx
  961. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  962. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  963. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  964. int offset = 0;
  965. uart_tx_data_t evt;
  966. evt.tx_data.size = size;
  967. evt.tx_data.brk_len = brk_len;
  968. if(brk_en) {
  969. evt.type = UART_DATA_BREAK;
  970. } else {
  971. evt.type = UART_DATA;
  972. }
  973. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  974. while(size > 0) {
  975. int send_size = size > max_size / 2 ? max_size / 2 : size;
  976. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  977. size -= send_size;
  978. offset += send_size;
  979. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  980. }
  981. } else {
  982. while(size) {
  983. //semaphore for tx_fifo available
  984. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  985. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  986. if(sent < size) {
  987. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  988. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  989. }
  990. size -= sent;
  991. src += sent;
  992. }
  993. }
  994. if(brk_en) {
  995. uart_set_break(uart_num, brk_len);
  996. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  997. }
  998. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  999. }
  1000. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1001. return original_size;
  1002. }
  1003. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1004. {
  1005. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1006. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1007. UART_CHECK(src, "buffer null", (-1));
  1008. return uart_tx_all(uart_num, src, size, 0, 0);
  1009. }
  1010. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1011. {
  1012. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1013. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1014. UART_CHECK((size > 0), "uart size error", (-1));
  1015. UART_CHECK((src), "uart data null", (-1));
  1016. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1017. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1018. }
  1019. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1020. {
  1021. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1022. UART_CHECK((buf), "uart data null", (-1));
  1023. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1024. uint8_t* data = NULL;
  1025. size_t size;
  1026. size_t copy_len = 0;
  1027. int len_tmp;
  1028. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1029. return -1;
  1030. }
  1031. while(length) {
  1032. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1033. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1034. if(data) {
  1035. p_uart_obj[uart_num]->rx_head_ptr = data;
  1036. p_uart_obj[uart_num]->rx_ptr = data;
  1037. p_uart_obj[uart_num]->rx_cur_remain = size;
  1038. } else {
  1039. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1040. return copy_len;
  1041. }
  1042. }
  1043. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1044. len_tmp = length;
  1045. } else {
  1046. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1047. }
  1048. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1049. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1050. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1051. uart_pattern_queue_update(uart_num, len_tmp);
  1052. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1053. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1054. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1055. copy_len += len_tmp;
  1056. length -= len_tmp;
  1057. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1058. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1059. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1060. p_uart_obj[uart_num]->rx_ptr = NULL;
  1061. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1062. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1063. if(res == pdTRUE) {
  1064. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1065. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1066. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1067. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1068. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1069. }
  1070. }
  1071. }
  1072. }
  1073. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1074. return copy_len;
  1075. }
  1076. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1077. {
  1078. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1079. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1080. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1081. return ESP_OK;
  1082. }
  1083. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1084. esp_err_t uart_flush_input(uart_port_t uart_num)
  1085. {
  1086. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1087. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1088. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1089. uint8_t* data;
  1090. size_t size;
  1091. //rx sem protect the ring buffer read related functions
  1092. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1093. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1094. while(true) {
  1095. if(p_uart->rx_head_ptr) {
  1096. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1097. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1098. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1099. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1100. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1101. p_uart->rx_ptr = NULL;
  1102. p_uart->rx_cur_remain = 0;
  1103. p_uart->rx_head_ptr = NULL;
  1104. }
  1105. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1106. if(data == NULL) {
  1107. break;
  1108. }
  1109. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1110. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1111. uart_pattern_queue_update(uart_num, size);
  1112. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1113. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1114. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1115. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1116. if(res == pdTRUE) {
  1117. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1118. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1119. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1120. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1121. }
  1122. }
  1123. }
  1124. p_uart->rx_ptr = NULL;
  1125. p_uart->rx_cur_remain = 0;
  1126. p_uart->rx_head_ptr = NULL;
  1127. uart_reset_rx_fifo(uart_num);
  1128. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1129. xSemaphoreGive(p_uart->rx_mux);
  1130. return ESP_OK;
  1131. }
  1132. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1133. {
  1134. esp_err_t r;
  1135. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1136. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1137. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1138. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1139. if(p_uart_obj[uart_num] == NULL) {
  1140. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1141. if(p_uart_obj[uart_num] == NULL) {
  1142. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1143. return ESP_FAIL;
  1144. }
  1145. p_uart_obj[uart_num]->uart_num = uart_num;
  1146. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1147. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1148. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1149. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1150. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1151. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1152. p_uart_obj[uart_num]->queue_size = queue_size;
  1153. p_uart_obj[uart_num]->tx_ptr = NULL;
  1154. p_uart_obj[uart_num]->tx_head = NULL;
  1155. p_uart_obj[uart_num]->tx_len_tot = 0;
  1156. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1157. p_uart_obj[uart_num]->tx_brk_len = 0;
  1158. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1159. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1160. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1161. if(uart_queue) {
  1162. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1163. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1164. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1165. } else {
  1166. p_uart_obj[uart_num]->xQueueUart = NULL;
  1167. }
  1168. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1169. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1170. p_uart_obj[uart_num]->rx_ptr = NULL;
  1171. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1172. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1173. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1174. if(tx_buffer_size > 0) {
  1175. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1176. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1177. } else {
  1178. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1179. p_uart_obj[uart_num]->tx_buf_size = 0;
  1180. }
  1181. } else {
  1182. ESP_LOGE(UART_TAG, "UART driver already installed");
  1183. return ESP_FAIL;
  1184. }
  1185. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1186. if (r!=ESP_OK) goto err;
  1187. uart_intr_config_t uart_intr = {
  1188. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1189. | UART_RXFIFO_TOUT_INT_ENA_M
  1190. | UART_FRM_ERR_INT_ENA_M
  1191. | UART_RXFIFO_OVF_INT_ENA_M
  1192. | UART_BRK_DET_INT_ENA_M
  1193. | UART_PARITY_ERR_INT_ENA_M,
  1194. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1195. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1196. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1197. };
  1198. r=uart_intr_config(uart_num, &uart_intr);
  1199. if (r!=ESP_OK) goto err;
  1200. return r;
  1201. err:
  1202. uart_driver_delete(uart_num);
  1203. return r;
  1204. }
  1205. //Make sure no other tasks are still using UART before you call this function
  1206. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1207. {
  1208. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1209. if(p_uart_obj[uart_num] == NULL) {
  1210. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1211. return ESP_OK;
  1212. }
  1213. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1214. uart_disable_rx_intr(uart_num);
  1215. uart_disable_tx_intr(uart_num);
  1216. uart_pattern_link_free(uart_num);
  1217. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1218. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1219. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1220. }
  1221. if(p_uart_obj[uart_num]->tx_done_sem) {
  1222. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1223. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1224. }
  1225. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1226. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1227. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1228. }
  1229. if(p_uart_obj[uart_num]->tx_mux) {
  1230. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1231. p_uart_obj[uart_num]->tx_mux = NULL;
  1232. }
  1233. if(p_uart_obj[uart_num]->rx_mux) {
  1234. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1235. p_uart_obj[uart_num]->rx_mux = NULL;
  1236. }
  1237. if(p_uart_obj[uart_num]->xQueueUart) {
  1238. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1239. p_uart_obj[uart_num]->xQueueUart = NULL;
  1240. }
  1241. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1242. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1243. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1244. }
  1245. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1246. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1247. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1248. }
  1249. free(p_uart_obj[uart_num]);
  1250. p_uart_obj[uart_num] = NULL;
  1251. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1252. if(uart_num == UART_NUM_0) {
  1253. periph_module_disable(PERIPH_UART0_MODULE);
  1254. } else if(uart_num == UART_NUM_1) {
  1255. periph_module_disable(PERIPH_UART1_MODULE);
  1256. } else if(uart_num == UART_NUM_2) {
  1257. periph_module_disable(PERIPH_UART2_MODULE);
  1258. }
  1259. }
  1260. return ESP_OK;
  1261. }