ledc.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "freertos/FreeRTOS.h"
  9. #include "freertos/semphr.h"
  10. #include "esp_log.h"
  11. #include "esp_check.h"
  12. #include "soc/gpio_periph.h"
  13. #include "soc/ledc_periph.h"
  14. #include "soc/rtc.h"
  15. #include "soc/soc_caps.h"
  16. #include "hal/ledc_hal.h"
  17. #include "hal/gpio_hal.h"
  18. #include "driver/ledc.h"
  19. #include "esp_rom_gpio.h"
  20. #include "esp_rom_sys.h"
  21. #include "soc/clk_ctrl_os.h"
  22. #include "esp_private/periph_ctrl.h"
  23. static const char *LEDC_TAG = "ledc";
  24. #define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str)
  25. #define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
  26. typedef struct {
  27. ledc_mode_t speed_mode;
  28. ledc_duty_direction_t direction;
  29. uint32_t target_duty;
  30. int cycle_num;
  31. int scale;
  32. ledc_fade_mode_t mode;
  33. xSemaphoreHandle ledc_fade_sem;
  34. xSemaphoreHandle ledc_fade_mux;
  35. #if CONFIG_SPIRAM_USE_MALLOC
  36. StaticQueue_t ledc_fade_sem_storage;
  37. #endif
  38. ledc_cb_t ledc_fade_callback;
  39. void *cb_user_arg;
  40. } ledc_fade_t;
  41. typedef struct {
  42. ledc_hal_context_t ledc_hal; /*!< LEDC hal context*/
  43. } ledc_obj_t;
  44. static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0};
  45. static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
  46. static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
  47. static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
  48. #define LEDC_VAL_NO_CHANGE (-1)
  49. #define LEDC_STEP_NUM_MAX (1023)
  50. #define LEDC_DUTY_DECIMAL_BIT_NUM (4)
  51. #define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF)
  52. #define LEDC_DUTY_NUM_MAX (LEDC_DUTY_NUM_LSCH0_V)
  53. #define LEDC_DUTY_CYCLE_MAX (LEDC_DUTY_CYCLE_LSCH0_V)
  54. #define LEDC_DUTY_SCALE_MAX (LEDC_DUTY_SCALE_LSCH0_V)
  55. #define LEDC_HPOINT_VAL_MAX (LEDC_HPOINT_LSCH1_V)
  56. #define DELAY_CLK8M_CLK_SWITCH (5)
  57. #define SLOW_CLK_CYC_CALIBRATE (13)
  58. #define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
  59. #define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
  60. #define DIM(array) (sizeof(array)/sizeof(*array))
  61. #define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX)
  62. static const char *LEDC_NOT_INIT = "LEDC is not initialized";
  63. static const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
  64. static const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
  65. //This value will be calibrated when in use.
  66. static uint32_t s_ledc_slow_clk_8M = 0;
  67. static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  68. {
  69. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  70. ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  71. }
  72. }
  73. static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel)
  74. {
  75. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  76. ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  77. }
  78. }
  79. //We know that CLK8M is about 8M, but don't know the actual value. So we need to do a calibration.
  80. static bool ledc_slow_clk_calibrate(void)
  81. {
  82. if (periph_rtc_dig_clk8m_enable()) {
  83. s_ledc_slow_clk_8M = periph_rtc_dig_clk8m_get_freq();
  84. ESP_LOGD(LEDC_TAG, "Calibrate CLK8M_CLK : %d Hz", s_ledc_slow_clk_8M);
  85. return true;
  86. }
  87. ESP_LOGE(LEDC_TAG, "Calibrate CLK8M_CLK failed");
  88. return false;
  89. }
  90. static uint32_t ledc_get_src_clk_freq(ledc_clk_cfg_t clk_cfg)
  91. {
  92. uint32_t src_clk_freq = 0;
  93. if (clk_cfg == LEDC_USE_APB_CLK) {
  94. src_clk_freq = LEDC_APB_CLK_HZ;
  95. } else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  96. src_clk_freq = s_ledc_slow_clk_8M;
  97. #if SOC_LEDC_SUPPORT_REF_TICK
  98. } else if (clk_cfg == LEDC_USE_REF_TICK) {
  99. src_clk_freq = LEDC_REF_CLK_HZ;
  100. #endif
  101. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  102. } else if (clk_cfg == LEDC_USE_XTAL_CLK) {
  103. src_clk_freq = rtc_clk_xtal_freq_get() * 1000000;
  104. #endif
  105. }
  106. return src_clk_freq;
  107. }
  108. /* Retrieve the clock frequency for global clocks only */
  109. static uint32_t ledc_get_glb_clk_freq(ledc_slow_clk_sel_t clk_cfg)
  110. {
  111. uint32_t src_clk_freq = 0;
  112. switch (clk_cfg) {
  113. case LEDC_SLOW_CLK_APB:
  114. src_clk_freq = LEDC_APB_CLK_HZ;
  115. break;
  116. case LEDC_SLOW_CLK_RTC8M:
  117. src_clk_freq = s_ledc_slow_clk_8M;
  118. break;
  119. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  120. case LEDC_SLOW_CLK_XTAL:
  121. src_clk_freq = rtc_clk_xtal_freq_get() * 1000000;
  122. break;
  123. #endif
  124. }
  125. return src_clk_freq;
  126. }
  127. static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type)
  128. {
  129. portENTER_CRITICAL(&ledc_spinlock);
  130. if (type == LEDC_INTR_FADE_END) {
  131. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  132. } else {
  133. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  134. }
  135. portEXIT_CRITICAL(&ledc_spinlock);
  136. return ESP_OK;
  137. }
  138. static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
  139. {
  140. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  141. if (fade) {
  142. xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
  143. ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
  144. }
  145. }
  146. static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
  147. {
  148. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  149. if (fade) {
  150. xSemaphoreGive(fade->ledc_fade_sem);
  151. }
  152. }
  153. static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
  154. {
  155. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  156. if (fade) {
  157. xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
  158. }
  159. }
  160. static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
  161. {
  162. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  163. if (fade) {
  164. xSemaphoreGive(fade->ledc_fade_mux);
  165. }
  166. }
  167. static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  168. {
  169. // The arguments are checked before internally calling this function.
  170. uint32_t max_duty;
  171. ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &max_duty);
  172. return max_duty;
  173. }
  174. esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
  175. ledc_clk_src_t clk_src)
  176. {
  177. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  178. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  179. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  180. portENTER_CRITICAL(&ledc_spinlock);
  181. ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider);
  182. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  183. /* Clock source can only be configured on boards which support timer-specific
  184. * source clock. */
  185. ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src);
  186. #endif
  187. ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution);
  188. ledc_ls_timer_update(speed_mode, timer_sel);
  189. portEXIT_CRITICAL(&ledc_spinlock);
  190. return ESP_OK;
  191. }
  192. static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val, int duty_val,
  193. ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
  194. {
  195. portENTER_CRITICAL(&ledc_spinlock);
  196. if (hpoint_val >= 0) {
  197. ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val);
  198. }
  199. if (duty_val >= 0) {
  200. ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val);
  201. }
  202. ledc_hal_set_duty_direction(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_direction);
  203. ledc_hal_set_duty_num(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_num);
  204. ledc_hal_set_duty_cycle(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_cycle);
  205. ledc_hal_set_duty_scale(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_scale);
  206. ledc_ls_channel_update(speed_mode, channel);
  207. portEXIT_CRITICAL(&ledc_spinlock);
  208. return ESP_OK;
  209. }
  210. esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel)
  211. {
  212. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  213. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  214. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  215. portENTER_CRITICAL(&ledc_spinlock);
  216. ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel);
  217. ledc_ls_channel_update(speed_mode, channel);
  218. portEXIT_CRITICAL(&ledc_spinlock);
  219. return ESP_OK;
  220. }
  221. esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  222. {
  223. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  224. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  225. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  226. portENTER_CRITICAL(&ledc_spinlock);
  227. ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  228. ledc_ls_timer_update(speed_mode, timer_sel);
  229. portEXIT_CRITICAL(&ledc_spinlock);
  230. return ESP_OK;
  231. }
  232. esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  233. {
  234. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  235. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  236. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  237. portENTER_CRITICAL(&ledc_spinlock);
  238. ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  239. ledc_ls_timer_update(speed_mode, timer_sel);
  240. portEXIT_CRITICAL(&ledc_spinlock);
  241. return ESP_OK;
  242. }
  243. esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  244. {
  245. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  246. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  247. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  248. portENTER_CRITICAL(&ledc_spinlock);
  249. ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  250. ledc_ls_timer_update(speed_mode, timer_sel);
  251. portEXIT_CRITICAL(&ledc_spinlock);
  252. return ESP_OK;
  253. }
  254. esp_err_t ledc_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
  255. {
  256. esp_err_t ret;
  257. LEDC_ARG_CHECK(fn, "fn");
  258. portENTER_CRITICAL(&ledc_spinlock);
  259. ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  260. portEXIT_CRITICAL(&ledc_spinlock);
  261. return ret;
  262. }
  263. static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision)
  264. {
  265. /**
  266. * In order to find the right divisor, we need to divide the source clock
  267. * frequency by the desired frequency. However, two things to note here:
  268. * - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL
  269. * part. The higher bits represent the integer part, this is why we need
  270. * to right shift the source frequency.
  271. * - The `precision` parameter represents the granularity of the clock. It
  272. * **must** be a power of 2. It means that the resulted divisor is
  273. * a multiplier of `precision`.
  274. *
  275. * Let's take a concrete example, we need to generate a 5KHz clock out of
  276. * a 80MHz clock (APB).
  277. * If the precision is 1024 (10 bits), the resulted multiplier is:
  278. * (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0)
  279. * Let's ignore the fractional part to simplify the explanation, so we get
  280. * a result of 15 (0xf).
  281. * This can be interpreted as: every 15 "precision" ticks, the resulted
  282. * clock will go high, where one precision tick is made out of 1024 source
  283. * clock ticks.
  284. * Thus, every `15 * 1024` source clock ticks, the resulted clock will go
  285. * high.
  286. *
  287. * NOTE: We are also going to round up the value when necessary, thanks to:
  288. * (freq_hz * precision) / 2
  289. */
  290. return ( ( (uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS ) + ((freq_hz * precision) / 2 ) )
  291. / (freq_hz * precision);
  292. }
  293. static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t* clk_target)
  294. {
  295. uint32_t div_param = 0;
  296. uint32_t i = 0;
  297. uint32_t clk_freq = 0;
  298. /* This function will go through all the following clock sources to look
  299. * for a valid divisor which generates the requested frequency. */
  300. const ledc_slow_clk_sel_t glb_clks[] = LEDC_LL_GLOBAL_CLOCKS;
  301. for (i = 0; i < DIM(glb_clks); i++) {
  302. /* Before calculating the divisor, we need to have the RTC frequency.
  303. * If it hasn't been mesured yet, try calibrating it now. */
  304. if (glb_clks[i] == LEDC_SLOW_CLK_RTC8M && s_ledc_slow_clk_8M == 0 && !ledc_slow_clk_calibrate()) {
  305. ESP_LOGD(LEDC_TAG, "Unable to retrieve RTC clock frequency, skipping it\n");
  306. continue;
  307. }
  308. clk_freq = ledc_get_glb_clk_freq(glb_clks[i]);
  309. div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
  310. /* If the divisor is valid, we can return this value. */
  311. if (!LEDC_IS_DIV_INVALID(div_param)) {
  312. *clk_target = glb_clks[i];
  313. break;
  314. }
  315. }
  316. return div_param;
  317. }
  318. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  319. static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  320. ledc_clk_src_t* clk_source)
  321. {
  322. uint32_t div_param = 0;
  323. uint32_t i = 0;
  324. /* Use an anonymous structure, only this function requires it.
  325. * Get the list of the timer-specific clocks, try to find one for the reuested frequency. */
  326. const struct { ledc_clk_src_t clk; uint32_t freq; } specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS;
  327. for (i = 0; i < DIM(specific_clks); i++) {
  328. div_param = ledc_calculate_divisor(specific_clks[i].freq, freq_hz, precision);
  329. /* If the divisor is valid, we can return this value. */
  330. if (!LEDC_IS_DIV_INVALID(div_param)) {
  331. *clk_source = specific_clks[i].clk;
  332. break;
  333. }
  334. }
  335. #if SOC_LEDC_SUPPORT_HS_MODE
  336. /* On board that support LEDC high-speed mode, APB clock becomes a timer-
  337. * specific clock when in high speed mode. Check if it is necessary here
  338. * to test APB. */
  339. if (speed_mode == LEDC_HIGH_SPEED_MODE && i == DIM(specific_clks)) {
  340. /* No divider was found yet, try with APB! */
  341. div_param = ledc_calculate_divisor(LEDC_APB_CLK_HZ, freq_hz, precision);
  342. if (!LEDC_IS_DIV_INVALID(div_param)) {
  343. *clk_source = LEDC_APB_CLK;
  344. }
  345. }
  346. #endif
  347. return div_param;
  348. }
  349. #endif
  350. /**
  351. * @brief Try to find the clock with its divisor giving the frequency requested
  352. * by the caller.
  353. */
  354. static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  355. ledc_clk_src_t* clk_source, ledc_slow_clk_sel_t* clk_target)
  356. {
  357. uint32_t div_param = 0;
  358. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  359. /* If the SoC presents timer-specific clock(s), try to achieve the given frequency
  360. * thanks to it/them.
  361. * clk_source parameter will returned by this function. */
  362. div_param = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source);
  363. if (!LEDC_IS_DIV_INVALID(div_param)) {
  364. /* The dividor is valid, no need try any other clock, return directly. */
  365. return div_param;
  366. }
  367. #endif
  368. /* On ESP32, only low speed channel can use the global clocks. For other
  369. * chips, there are no high speed channels. */
  370. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  371. div_param = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target);
  372. }
  373. return div_param;
  374. }
  375. static ledc_slow_clk_sel_t ledc_clk_cfg_to_global_clk(const ledc_clk_cfg_t clk_cfg)
  376. {
  377. /* Initialization required for preventing a compiler warning */
  378. ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_APB;
  379. switch (clk_cfg) {
  380. case LEDC_USE_APB_CLK:
  381. glb_clk = LEDC_SLOW_CLK_APB;
  382. break;
  383. case LEDC_USE_RTC8M_CLK:
  384. glb_clk = LEDC_SLOW_CLK_RTC8M;
  385. break;
  386. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  387. case LEDC_USE_XTAL_CLK:
  388. glb_clk = LEDC_SLOW_CLK_XTAL;
  389. break;
  390. #endif
  391. #if SOC_LEDC_SUPPORT_REF_TICK
  392. case LEDC_USE_REF_TICK:
  393. #endif
  394. default:
  395. /* We should not get here, REF_TICK is NOT a global clock,
  396. * it is a timer-specific clock. */
  397. assert(false);
  398. }
  399. return glb_clk;
  400. }
  401. /**
  402. * @brief Function setting the LEDC timer divisor with the given source clock,
  403. * frequency and resolution. If the clock configuration passed is
  404. * LEDC_AUTO_CLK, the clock will be determined automatically (if possible).
  405. */
  406. static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
  407. {
  408. uint32_t div_param = 0;
  409. const uint32_t precision = ( 0x1 << duty_resolution );
  410. /* This variable represents the timer's mux value. It will be overwritten
  411. * if a timer-specific clock is used. */
  412. ledc_clk_src_t timer_clk_src = LEDC_SCLK;
  413. /* Store the global clock. */
  414. ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_APB;
  415. uint32_t src_clk_freq = 0;
  416. if (clk_cfg == LEDC_AUTO_CLK) {
  417. /* User hasn't specified the speed, we should try to guess it. */
  418. div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk);
  419. } else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  420. /* User specified source clock(RTC8M_CLK) for low speed channel.
  421. * Make sure the speed mode is correct. */
  422. ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RTC clock can only be used in low speed mode");
  423. /* Before calculating the divisor, we need to have the RTC frequency.
  424. * If it hasn't been mesured yet, try calibrating it now. */
  425. if(s_ledc_slow_clk_8M == 0 && ledc_slow_clk_calibrate() == false) {
  426. goto error;
  427. }
  428. /* We have the RTC clock frequency now. */
  429. div_param = ledc_calculate_divisor(s_ledc_slow_clk_8M, freq_hz, precision);
  430. /* Set the global clock source */
  431. glb_clk = LEDC_SLOW_CLK_RTC8M;
  432. } else {
  433. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  434. if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) {
  435. /* Currently we can convert a timer-specific clock to a source clock that
  436. * easily because their values are identical in the enumerations (on purpose)
  437. * If we decide to change the values in the future, we should consider defining
  438. * a macro/function to convert timer-specific clock to clock source .*/
  439. timer_clk_src = (ledc_clk_src_t) clk_cfg;
  440. } else
  441. #endif
  442. {
  443. glb_clk = ledc_clk_cfg_to_global_clk(clk_cfg);
  444. }
  445. src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  446. div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision);
  447. }
  448. if (LEDC_IS_DIV_INVALID(div_param)) {
  449. goto error;
  450. }
  451. /* The following debug message makes more sense for AUTO mode. */
  452. ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%x\n",
  453. timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param);
  454. /* The following block configures the global clock.
  455. * Thus, in theory, this only makes sense when the source clock is LEDC_SCLK
  456. * and in LOW_SPEED_MODE (as FAST_SPEED_MODE doesn't present any global clock)
  457. *
  458. * However, in practice, on modules that support high-speed mode, no matter
  459. * whether the source clock is a timer-specific one (e.g. REF_TICK) or not,
  460. * the global clock MUST be configured when in low speed mode.
  461. * When using high-speed mode, this is not necessary.
  462. */
  463. #if SOC_LEDC_SUPPORT_HS_MODE
  464. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  465. #else
  466. if (timer_clk_src == LEDC_SCLK) {
  467. #endif
  468. ESP_LOGD(LEDC_TAG, "In slow speed mode, using clock %d", glb_clk);
  469. portENTER_CRITICAL(&ledc_spinlock);
  470. ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk);
  471. portEXIT_CRITICAL(&ledc_spinlock);
  472. }
  473. /* The divisor is correct, we can write in the hardware. */
  474. ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
  475. /* Reset the timer. */
  476. ledc_timer_rst(speed_mode, timer_num);
  477. return ESP_OK;
  478. error:
  479. ESP_LOGE(LEDC_TAG, "requested frequency and duty resolution can not be achieved, try reducing freq_hz or duty_resolution. div_param=%d",
  480. (uint32_t ) div_param);
  481. return ESP_FAIL;
  482. }
  483. esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf)
  484. {
  485. LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
  486. uint32_t freq_hz = timer_conf->freq_hz;
  487. uint32_t duty_resolution = timer_conf->duty_resolution;
  488. uint32_t timer_num = timer_conf->timer_num;
  489. uint32_t speed_mode = timer_conf->speed_mode;
  490. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  491. LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RTC8M_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RTC8M_CLK");
  492. periph_module_enable(PERIPH_LEDC_MODULE);
  493. if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
  494. ESP_LOGE(LEDC_TAG, "freq_hz=%u duty_resolution=%u", freq_hz, duty_resolution);
  495. return ESP_ERR_INVALID_ARG;
  496. }
  497. if (timer_num > LEDC_TIMER_3) {
  498. ESP_LOGE(LEDC_TAG, "invalid timer #%u", timer_num);
  499. return ESP_ERR_INVALID_ARG;
  500. }
  501. if (p_ledc_obj[speed_mode] == NULL) {
  502. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  503. if (p_ledc_obj[speed_mode] == NULL) {
  504. return ESP_ERR_NO_MEM;
  505. }
  506. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  507. }
  508. return ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
  509. }
  510. esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
  511. {
  512. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  513. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  514. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  515. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  516. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  517. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0);
  518. return ESP_OK;
  519. }
  520. esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf)
  521. {
  522. LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
  523. uint32_t speed_mode = ledc_conf->speed_mode;
  524. uint32_t gpio_num = ledc_conf->gpio_num;
  525. uint32_t ledc_channel = ledc_conf->channel;
  526. uint32_t timer_select = ledc_conf->timer_sel;
  527. uint32_t intr_type = ledc_conf->intr_type;
  528. uint32_t duty = ledc_conf->duty;
  529. uint32_t hpoint = ledc_conf->hpoint;
  530. bool output_invert = ledc_conf->flags.output_invert;
  531. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  532. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  533. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  534. LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
  535. LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type");
  536. periph_module_enable(PERIPH_LEDC_MODULE);
  537. esp_err_t ret = ESP_OK;
  538. if (p_ledc_obj[speed_mode] == NULL) {
  539. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  540. if (p_ledc_obj[speed_mode] == NULL) {
  541. return ESP_ERR_NO_MEM;
  542. }
  543. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  544. }
  545. /*set channel parameters*/
  546. /* channel parameters decide how the waveform looks like in one period*/
  547. /* set channel duty and hpoint value, duty range is (0 ~ ((2 ** duty_resolution) - 1)), max hpoint value is 0xfffff*/
  548. ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
  549. /*update duty settings*/
  550. ledc_update_duty(speed_mode, ledc_channel);
  551. /*bind the channel with the timer*/
  552. ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
  553. /*set interrupt type*/
  554. ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
  555. ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %1u|GPIO %02u|Duty %04u|Time %01u",
  556. ledc_channel, gpio_num, duty, timer_select
  557. );
  558. /*set LEDC signal in gpio matrix*/
  559. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  560. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  561. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0);
  562. return ret;
  563. }
  564. esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  565. {
  566. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  567. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  568. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  569. portENTER_CRITICAL(&ledc_spinlock);
  570. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  571. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  572. ledc_ls_channel_update(speed_mode, channel);
  573. portEXIT_CRITICAL(&ledc_spinlock);
  574. return ESP_OK;
  575. }
  576. esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
  577. {
  578. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  579. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  580. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  581. portENTER_CRITICAL(&ledc_spinlock);
  582. ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level);
  583. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  584. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  585. ledc_ls_channel_update(speed_mode, channel);
  586. portEXIT_CRITICAL(&ledc_spinlock);
  587. return ESP_OK;
  588. }
  589. esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
  590. uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
  591. {
  592. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  593. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  594. LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
  595. LEDC_ARG_CHECK(step_num <= LEDC_DUTY_NUM_MAX, "step_num");
  596. LEDC_ARG_CHECK(duty_cyle_num <= LEDC_DUTY_CYCLE_MAX, "duty_cycle_num");
  597. LEDC_ARG_CHECK(duty_scale <= LEDC_DUTY_SCALE_MAX, "duty_scale");
  598. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  599. _ledc_fade_hw_acquire(speed_mode, channel);
  600. ledc_duty_config(speed_mode,
  601. channel, //uint32_t chan_num,
  602. LEDC_VAL_NO_CHANGE,
  603. duty, //uint32_t duty_val,
  604. fade_direction, //uint32_t increase,
  605. step_num, //uint32_t duty_num,
  606. duty_cyle_num, //uint32_t duty_cycle,
  607. duty_scale //uint32_t duty_scale
  608. );
  609. _ledc_fade_hw_release(speed_mode, channel);
  610. return ESP_OK;
  611. }
  612. esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  613. {
  614. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  615. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  616. LEDC_ARG_CHECK(hpoint <= LEDC_HPOINT_VAL_MAX, "hpoint");
  617. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  618. /* The channel configuration should not be changed before the fade operation is done. */
  619. _ledc_fade_hw_acquire(speed_mode, channel);
  620. ledc_duty_config(speed_mode,
  621. channel, //uint32_t chan_num,
  622. hpoint, //uint32_t hpoint_val,
  623. duty, //uint32_t duty_val,
  624. 1, //uint32_t increase,
  625. 1, //uint32_t duty_num,
  626. 1, //uint32_t duty_cycle,
  627. 0 //uint32_t duty_scale
  628. );
  629. _ledc_fade_hw_release(speed_mode, channel);
  630. return ESP_OK;
  631. }
  632. esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
  633. {
  634. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  635. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  636. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  637. /* The channel configuration should not be changed before the fade operation is done. */
  638. _ledc_fade_hw_acquire(speed_mode, channel);
  639. ledc_duty_config(speed_mode,
  640. channel, //uint32_t chan_num,
  641. LEDC_VAL_NO_CHANGE,
  642. duty, //uint32_t duty_val,
  643. 1, //uint32_t increase,
  644. 1, //uint32_t duty_num,
  645. 1, //uint32_t duty_cycle,
  646. 0 //uint32_t duty_scale
  647. );
  648. _ledc_fade_hw_release(speed_mode, channel);
  649. return ESP_OK;
  650. }
  651. uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  652. {
  653. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  654. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  655. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  656. uint32_t duty = 0;
  657. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty);
  658. return duty;
  659. }
  660. int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
  661. {
  662. LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
  663. LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
  664. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  665. uint32_t hpoint = 0;
  666. ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint);
  667. return hpoint;
  668. }
  669. esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
  670. {
  671. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  672. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  673. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  674. ledc_clk_cfg_t clk_cfg = LEDC_USE_APB_CLK;
  675. uint32_t duty_resolution = 0;
  676. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  677. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  678. return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution);
  679. }
  680. uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
  681. {
  682. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  683. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  684. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  685. portENTER_CRITICAL(&ledc_spinlock);
  686. uint32_t clock_divider = 0;
  687. uint32_t duty_resolution = 0;
  688. ledc_clk_cfg_t clk_cfg = LEDC_USE_APB_CLK;
  689. ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider);
  690. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  691. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  692. uint32_t precision = (0x1 << duty_resolution);
  693. uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  694. portEXIT_CRITICAL(&ledc_spinlock);
  695. return ((uint64_t) src_clk_freq << 8) / precision / clock_divider;
  696. }
  697. static inline void ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel)
  698. {
  699. uint32_t i = __builtin_ffs((*fade_end_status)) - 1;
  700. (*fade_end_status) &= ~(1 << i);
  701. *channel = i;
  702. }
  703. void IRAM_ATTR ledc_fade_isr(void *arg)
  704. {
  705. bool cb_yield = false;
  706. portBASE_TYPE HPTaskAwoken = pdFALSE;
  707. uint32_t speed_mode = 0;
  708. uint32_t channel = 0;
  709. uint32_t intr_status = 0;
  710. for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) {
  711. if (p_ledc_obj[speed_mode] == NULL) {
  712. continue;
  713. }
  714. ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status);
  715. while (intr_status) {
  716. ledc_calc_fade_end_channel(&intr_status, &channel);
  717. // clear interrupt
  718. portENTER_CRITICAL(&ledc_spinlock);
  719. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  720. portEXIT_CRITICAL(&ledc_spinlock);
  721. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  722. //fade object not initialized yet.
  723. continue;
  724. }
  725. uint32_t duty_cur = 0;
  726. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  727. uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
  728. int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
  729. if (duty_cur == duty_tar || scale == 0) {
  730. xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
  731. ledc_cb_param_t param = {
  732. .event = LEDC_FADE_END_EVT,
  733. .speed_mode = speed_mode,
  734. .channel = channel,
  735. .duty = duty_cur
  736. };
  737. ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback;
  738. if (fade_cb) {
  739. cb_yield |= fade_cb(&param, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg);
  740. }
  741. continue;
  742. }
  743. int cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
  744. int delta = s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE ? duty_cur - duty_tar : duty_tar - duty_cur;
  745. int step = delta / scale > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : delta / scale;
  746. if (delta > scale) {
  747. ledc_duty_config(
  748. speed_mode,
  749. channel,
  750. LEDC_VAL_NO_CHANGE,
  751. duty_cur,
  752. s_ledc_fade_rec[speed_mode][channel]->direction,
  753. step,
  754. cycle,
  755. scale);
  756. } else {
  757. ledc_duty_config(
  758. speed_mode,
  759. channel,
  760. LEDC_VAL_NO_CHANGE,
  761. duty_tar,
  762. s_ledc_fade_rec[speed_mode][channel]->direction,
  763. 1,
  764. 1,
  765. 0);
  766. }
  767. portENTER_CRITICAL(&ledc_spinlock);
  768. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  769. portEXIT_CRITICAL(&ledc_spinlock);
  770. }
  771. }
  772. if (HPTaskAwoken == pdTRUE || cb_yield) {
  773. portYIELD_FROM_ISR();
  774. }
  775. }
  776. static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
  777. {
  778. if (s_ledc_fade_rec[speed_mode][channel]) {
  779. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
  780. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
  781. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
  782. }
  783. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  784. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  785. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
  786. }
  787. free(s_ledc_fade_rec[speed_mode][channel]);
  788. s_ledc_fade_rec[speed_mode][channel] = NULL;
  789. }
  790. return ESP_OK;
  791. }
  792. static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
  793. {
  794. if (s_ledc_fade_isr_handle == NULL) {
  795. ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
  796. return ESP_FAIL;
  797. }
  798. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  799. #if CONFIG_SPIRAM_USE_MALLOC
  800. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  801. if (!s_ledc_fade_rec[speed_mode][channel]) {
  802. ledc_fade_channel_deinit(speed_mode, channel);
  803. return ESP_FAIL;
  804. }
  805. memset(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage, 0, sizeof(StaticQueue_t));
  806. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryStatic(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage);
  807. #else
  808. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) calloc(1, sizeof(ledc_fade_t));
  809. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinary();
  810. #endif
  811. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
  812. xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  813. }
  814. if (s_ledc_fade_rec[speed_mode][channel]
  815. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
  816. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  817. return ESP_OK;
  818. } else {
  819. ledc_fade_channel_deinit(speed_mode, channel);
  820. return ESP_FAIL;
  821. }
  822. }
  823. static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
  824. {
  825. portENTER_CRITICAL(&ledc_spinlock);
  826. uint32_t duty_cur = 0;
  827. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  828. // When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
  829. if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
  830. duty_cur -= 1;
  831. }
  832. s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
  833. s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
  834. s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
  835. s_ledc_fade_rec[speed_mode][channel]->scale = scale;
  836. int step_num = 0;
  837. int dir = LEDC_DUTY_DIR_DECREASE;
  838. if (scale > 0) {
  839. if (duty_cur > target_duty) {
  840. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
  841. step_num = (duty_cur - target_duty) / scale;
  842. step_num = step_num > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : step_num;
  843. } else {
  844. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
  845. dir = LEDC_DUTY_DIR_INCREASE;
  846. step_num = (target_duty - duty_cur) / scale;
  847. step_num = step_num > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : step_num;
  848. }
  849. }
  850. portEXIT_CRITICAL(&ledc_spinlock);
  851. if (scale > 0 && step_num > 0) {
  852. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale);
  853. ESP_LOGD(LEDC_TAG, "cur duty: %d; target: %d, step: %d, cycle: %d; scale: %d; dir: %d\n",
  854. duty_cur, target_duty, step_num, cycle_num, scale, dir);
  855. } else {
  856. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, dir, 0, 1, 0);
  857. ESP_LOGD(LEDC_TAG, "Set to target duty: %d", target_duty);
  858. }
  859. return ESP_OK;
  860. }
  861. static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  862. {
  863. ledc_timer_t timer_sel;
  864. uint32_t duty_cur = 0;
  865. ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
  866. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  867. uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
  868. uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
  869. if (duty_delta == 0) {
  870. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  871. }
  872. uint32_t total_cycles = max_fade_time_ms * freq / 1000;
  873. if (total_cycles == 0) {
  874. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  875. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  876. }
  877. int scale, cycle_num;
  878. if (total_cycles > duty_delta) {
  879. scale = 1;
  880. cycle_num = total_cycles / duty_delta;
  881. if (cycle_num > LEDC_DUTY_NUM_MAX) {
  882. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
  883. cycle_num = LEDC_DUTY_NUM_MAX;
  884. }
  885. } else {
  886. cycle_num = 1;
  887. scale = duty_delta / total_cycles;
  888. if (scale > LEDC_DUTY_SCALE_MAX) {
  889. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  890. scale = LEDC_DUTY_SCALE_MAX;
  891. }
  892. }
  893. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  894. }
  895. static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  896. {
  897. s_ledc_fade_rec[speed_mode][channel]->mode = fade_mode;
  898. // Clear interrupt status of channel
  899. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  900. // Enable interrupt for channel
  901. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
  902. ledc_update_duty(speed_mode, channel);
  903. if (fade_mode == LEDC_FADE_WAIT_DONE) {
  904. xSemaphoreTake(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, portMAX_DELAY);
  905. }
  906. }
  907. esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  908. {
  909. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  910. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  911. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  912. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  913. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  914. _ledc_fade_hw_acquire(speed_mode, channel);
  915. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  916. _ledc_fade_hw_release(speed_mode, channel);
  917. return ESP_OK;
  918. }
  919. esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
  920. {
  921. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  922. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  923. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_DUTY_SCALE_MAX), "fade scale");
  924. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_DUTY_CYCLE_MAX), "cycle_num");
  925. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  926. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  927. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  928. _ledc_fade_hw_acquire(speed_mode, channel);
  929. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  930. _ledc_fade_hw_release(speed_mode, channel);
  931. return ESP_OK;
  932. }
  933. esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  934. {
  935. LEDC_CHECK(s_ledc_fade_rec != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
  936. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  937. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  938. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  939. _ledc_fade_hw_acquire(speed_mode, channel);
  940. _ledc_fade_start(speed_mode, channel, fade_mode);
  941. _ledc_fade_hw_release(speed_mode, channel);
  942. return ESP_OK;
  943. }
  944. esp_err_t ledc_fade_func_install(int intr_alloc_flags)
  945. {
  946. //OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
  947. return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
  948. }
  949. void ledc_fade_func_uninstall(void)
  950. {
  951. if (s_ledc_fade_rec == NULL) {
  952. return;
  953. }
  954. if (s_ledc_fade_isr_handle) {
  955. esp_intr_free(s_ledc_fade_isr_handle);
  956. s_ledc_fade_isr_handle = NULL;
  957. }
  958. int channel, mode;
  959. for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
  960. for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
  961. ledc_fade_channel_deinit(mode, channel);
  962. }
  963. }
  964. return;
  965. }
  966. esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg)
  967. {
  968. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  969. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  970. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  971. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  972. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb;
  973. s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg;
  974. return ESP_OK;
  975. }
  976. /*
  977. * The functions below are thread-safe version of APIs for duty and fade control.
  978. * These APIs can be called from different tasks.
  979. */
  980. esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  981. {
  982. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  983. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  984. LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  985. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  986. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  987. _ledc_op_lock_acquire(speed_mode, channel);
  988. _ledc_fade_hw_acquire(speed_mode, channel);
  989. _ledc_set_fade_with_step(speed_mode, channel, duty, 0, 1);
  990. _ledc_fade_start(speed_mode, channel, LEDC_FADE_WAIT_DONE);
  991. _ledc_fade_hw_release(speed_mode, channel);
  992. _ledc_op_lock_release(speed_mode, channel);
  993. return ESP_OK;
  994. }
  995. esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
  996. {
  997. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  998. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  999. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1000. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1001. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1002. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1003. _ledc_op_lock_acquire(speed_mode, channel);
  1004. _ledc_fade_hw_acquire(speed_mode, channel);
  1005. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1006. _ledc_fade_start(speed_mode, channel, fade_mode);
  1007. if (fade_mode == LEDC_FADE_WAIT_DONE) {
  1008. _ledc_fade_hw_release(speed_mode, channel);
  1009. }
  1010. _ledc_op_lock_release(speed_mode, channel);
  1011. return ESP_OK;
  1012. }
  1013. esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
  1014. {
  1015. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1016. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1017. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1018. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1019. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1020. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_DUTY_SCALE_MAX), "fade scale");
  1021. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_DUTY_CYCLE_MAX), "cycle_num");
  1022. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1023. _ledc_op_lock_acquire(speed_mode, channel);
  1024. _ledc_fade_hw_acquire(speed_mode, channel);
  1025. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1026. _ledc_fade_start(speed_mode, channel, fade_mode);
  1027. if (fade_mode == LEDC_FADE_WAIT_DONE) {
  1028. _ledc_fade_hw_release(speed_mode, channel);
  1029. }
  1030. _ledc_op_lock_release(speed_mode, channel);
  1031. return ESP_OK;
  1032. }