uart.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "esp_attr.h"
  9. #include "esp_intr_alloc.h"
  10. #include "esp_log.h"
  11. #include "esp_err.h"
  12. #include "esp_check.h"
  13. #include "malloc.h"
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/semphr.h"
  16. #include "freertos/ringbuf.h"
  17. #include "hal/uart_hal.h"
  18. #include "hal/gpio_hal.h"
  19. #include "soc/uart_periph.h"
  20. #include "soc/rtc_cntl_reg.h"
  21. #include "driver/uart.h"
  22. #include "driver/gpio.h"
  23. #include "driver/uart_select.h"
  24. #include "esp_private/periph_ctrl.h"
  25. #include "esp_private/esp_clk.h"
  26. #include "sdkconfig.h"
  27. #include "esp_rom_gpio.h"
  28. #ifdef CONFIG_UART_ISR_IN_IRAM
  29. #define UART_ISR_ATTR IRAM_ATTR
  30. #define UART_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
  31. #else
  32. #define UART_ISR_ATTR
  33. #define UART_MALLOC_CAPS MALLOC_CAP_DEFAULT
  34. #endif
  35. #define XOFF (0x13)
  36. #define XON (0x11)
  37. static const char *UART_TAG = "uart";
  38. #define UART_EMPTY_THRESH_DEFAULT (10)
  39. #define UART_FULL_THRESH_DEFAULT (120)
  40. #define UART_TOUT_THRESH_DEFAULT (10)
  41. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  42. #define UART_TX_IDLE_NUM_DEFAULT (0)
  43. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  44. #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
  45. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  46. | (UART_INTR_RXFIFO_TOUT) \
  47. | (UART_INTR_RXFIFO_OVF) \
  48. | (UART_INTR_BRK_DET) \
  49. | (UART_INTR_PARITY_ERR))
  50. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  51. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  52. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  53. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  54. // Check actual UART mode set
  55. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  56. #define UART_CONTEX_INIT_DEF(uart_num) {\
  57. .hal.dev = UART_LL_GET_HW(uart_num),\
  58. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  59. .hw_enabled = false,\
  60. }
  61. #if SOC_UART_SUPPORT_RTC_CLK
  62. #define RTC_ENABLED(uart_num) (BIT(uart_num))
  63. #endif
  64. typedef struct {
  65. uart_event_type_t type; /*!< UART TX data type */
  66. struct {
  67. int brk_len;
  68. size_t size;
  69. uint8_t data[0];
  70. } tx_data;
  71. } uart_tx_data_t;
  72. typedef struct {
  73. int wr;
  74. int rd;
  75. int len;
  76. int *data;
  77. } uart_pat_rb_t;
  78. typedef struct {
  79. uart_port_t uart_num; /*!< UART port number*/
  80. int event_queue_size; /*!< UART event queue size*/
  81. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  82. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  83. bool coll_det_flg; /*!< UART collision detection flag */
  84. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  85. int rx_buffered_len; /*!< UART cached data length */
  86. int rx_buf_size; /*!< RX ring buffer size */
  87. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  88. uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  89. uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
  90. uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
  91. uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  92. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  93. uart_pat_rb_t rx_pattern_pos;
  94. int tx_buf_size; /*!< TX ring buffer size */
  95. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  96. uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  97. uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  98. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  99. uint32_t tx_len_cur;
  100. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  101. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  102. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  103. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  104. QueueHandle_t event_queue; /*!< UART event queue handler*/
  105. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  106. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  107. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  108. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  109. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  110. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  111. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  112. #if CONFIG_UART_ISR_IN_IRAM
  113. void *event_queue_storage;
  114. void *event_queue_struct;
  115. void *rx_ring_buf_storage;
  116. void *rx_ring_buf_struct;
  117. void *tx_ring_buf_storage;
  118. void *tx_ring_buf_struct;
  119. void *rx_mux_struct;
  120. void *tx_mux_struct;
  121. void *tx_fifo_sem_struct;
  122. void *tx_done_sem_struct;
  123. void *tx_brk_sem_struct;
  124. #endif
  125. } uart_obj_t;
  126. typedef struct {
  127. uart_hal_context_t hal; /*!< UART hal context*/
  128. portMUX_TYPE spinlock;
  129. bool hw_enabled;
  130. } uart_context_t;
  131. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  132. static uart_context_t uart_context[UART_NUM_MAX] = {
  133. UART_CONTEX_INIT_DEF(UART_NUM_0),
  134. UART_CONTEX_INIT_DEF(UART_NUM_1),
  135. #if UART_NUM_MAX > 2
  136. UART_CONTEX_INIT_DEF(UART_NUM_2),
  137. #endif
  138. };
  139. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  140. #if SOC_UART_SUPPORT_RTC_CLK
  141. static uint8_t rtc_enabled = 0;
  142. static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED;
  143. static void rtc_clk_enable(uart_port_t uart_num)
  144. {
  145. portENTER_CRITICAL(&rtc_num_spinlock);
  146. if (!(rtc_enabled & RTC_ENABLED(uart_num))) {
  147. rtc_enabled |= RTC_ENABLED(uart_num);
  148. }
  149. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  150. portEXIT_CRITICAL(&rtc_num_spinlock);
  151. }
  152. static void rtc_clk_disable(uart_port_t uart_num)
  153. {
  154. assert(rtc_enabled & RTC_ENABLED(uart_num));
  155. portENTER_CRITICAL(&rtc_num_spinlock);
  156. rtc_enabled &= ~RTC_ENABLED(uart_num);
  157. if (rtc_enabled == 0) {
  158. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  159. }
  160. portEXIT_CRITICAL(&rtc_num_spinlock);
  161. }
  162. #endif
  163. static void uart_module_enable(uart_port_t uart_num)
  164. {
  165. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  166. if (uart_context[uart_num].hw_enabled != true) {
  167. periph_module_enable(uart_periph_signal[uart_num].module);
  168. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  169. // Workaround for ESP32C3: enable core reset
  170. // before enabling uart module clock
  171. // to prevent uart output garbage value.
  172. #if SOC_UART_REQUIRE_CORE_RESET
  173. uart_hal_set_reset_core(&(uart_context[uart_num].hal), true);
  174. periph_module_reset(uart_periph_signal[uart_num].module);
  175. uart_hal_set_reset_core(&(uart_context[uart_num].hal), false);
  176. #else
  177. periph_module_reset(uart_periph_signal[uart_num].module);
  178. #endif
  179. }
  180. uart_context[uart_num].hw_enabled = true;
  181. }
  182. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  183. }
  184. static void uart_module_disable(uart_port_t uart_num)
  185. {
  186. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  187. if (uart_context[uart_num].hw_enabled != false) {
  188. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  189. periph_module_disable(uart_periph_signal[uart_num].module);
  190. }
  191. uart_context[uart_num].hw_enabled = false;
  192. }
  193. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  194. }
  195. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  196. {
  197. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  198. ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  199. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  200. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  201. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  202. return ESP_OK;
  203. }
  204. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
  205. {
  206. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  207. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  208. return ESP_OK;
  209. }
  210. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  211. {
  212. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  213. ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
  214. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  215. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  216. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  217. return ESP_OK;
  218. }
  219. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
  220. {
  221. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  222. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  223. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  224. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  225. return ESP_OK;
  226. }
  227. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  228. {
  229. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  230. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  231. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  232. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  233. return ESP_OK;
  234. }
  235. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
  236. {
  237. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  238. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  239. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  240. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  241. return ESP_OK;
  242. }
  243. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  244. {
  245. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  246. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  247. uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate);
  248. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  249. return ESP_OK;
  250. }
  251. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  252. {
  253. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  254. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  255. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  256. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  257. return ESP_OK;
  258. }
  259. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  260. {
  261. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  262. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  263. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  264. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  265. return ESP_OK;
  266. }
  267. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  268. {
  269. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  270. ESP_RETURN_ON_FALSE((rx_thresh_xon < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
  271. ESP_RETURN_ON_FALSE((rx_thresh_xoff < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xoff thresh error");
  272. uart_sw_flowctrl_t sw_flow_ctl = {
  273. .xon_char = XON,
  274. .xoff_char = XOFF,
  275. .xon_thrd = rx_thresh_xon,
  276. .xoff_thrd = rx_thresh_xoff,
  277. };
  278. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  279. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  280. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  281. return ESP_OK;
  282. }
  283. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  284. {
  285. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  286. ESP_RETURN_ON_FALSE((rx_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  287. ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  288. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  289. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  290. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  291. return ESP_OK;
  292. }
  293. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
  294. {
  295. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  296. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  297. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  298. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  299. return ESP_OK;
  300. }
  301. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  302. {
  303. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  304. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  305. return ESP_OK;
  306. }
  307. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  308. {
  309. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  310. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  311. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  312. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  313. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  314. return ESP_OK;
  315. }
  316. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  317. {
  318. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  319. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  320. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  321. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  322. return ESP_OK;
  323. }
  324. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  325. {
  326. int *pdata = NULL;
  327. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  328. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  329. pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  330. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  331. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  332. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  333. }
  334. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  335. free(pdata);
  336. return ESP_OK;
  337. }
  338. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  339. {
  340. esp_err_t ret = ESP_OK;
  341. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  342. int next = p_pos->wr + 1;
  343. if (next >= p_pos->len) {
  344. next = 0;
  345. }
  346. if (next == p_pos->rd) {
  347. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  348. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  349. #endif
  350. ret = ESP_FAIL;
  351. } else {
  352. p_pos->data[p_pos->wr] = pos;
  353. p_pos->wr = next;
  354. ret = ESP_OK;
  355. }
  356. return ret;
  357. }
  358. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  359. {
  360. if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  361. return ESP_ERR_INVALID_STATE;
  362. } else {
  363. esp_err_t ret = ESP_OK;
  364. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  365. if (p_pos->rd == p_pos->wr) {
  366. ret = ESP_FAIL;
  367. } else {
  368. p_pos->rd++;
  369. }
  370. if (p_pos->rd >= p_pos->len) {
  371. p_pos->rd = 0;
  372. }
  373. return ret;
  374. }
  375. }
  376. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  377. {
  378. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  379. int rd = p_pos->rd;
  380. while (rd != p_pos->wr) {
  381. p_pos->data[rd] -= diff_len;
  382. int rd_rec = rd;
  383. rd ++;
  384. if (rd >= p_pos->len) {
  385. rd = 0;
  386. }
  387. if (p_pos->data[rd_rec] < 0) {
  388. p_pos->rd = rd;
  389. }
  390. }
  391. return ESP_OK;
  392. }
  393. int uart_pattern_pop_pos(uart_port_t uart_num)
  394. {
  395. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  396. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  397. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  398. int pos = -1;
  399. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  400. pos = pat_pos->data[pat_pos->rd];
  401. uart_pattern_dequeue(uart_num);
  402. }
  403. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  404. return pos;
  405. }
  406. int uart_pattern_get_pos(uart_port_t uart_num)
  407. {
  408. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  409. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  410. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  411. int pos = -1;
  412. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  413. pos = pat_pos->data[pat_pos->rd];
  414. }
  415. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  416. return pos;
  417. }
  418. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  419. {
  420. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  421. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  422. int *pdata = (int *) malloc(queue_length * sizeof(int));
  423. if (pdata == NULL) {
  424. return ESP_ERR_NO_MEM;
  425. }
  426. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  427. int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  428. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  429. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  430. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  431. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  432. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  433. free(ptmp);
  434. return ESP_OK;
  435. }
  436. #if CONFIG_IDF_TARGET_ESP32
  437. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  438. {
  439. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  440. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  441. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  442. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  443. uart_at_cmd_t at_cmd = {0};
  444. at_cmd.cmd_char = pattern_chr;
  445. at_cmd.char_num = chr_num;
  446. at_cmd.gap_tout = chr_tout;
  447. at_cmd.pre_idle = pre_idle;
  448. at_cmd.post_idle = post_idle;
  449. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  450. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  451. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  452. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  453. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  454. return ESP_OK;
  455. }
  456. #endif
  457. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  458. {
  459. ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
  460. ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  461. ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  462. ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
  463. uart_at_cmd_t at_cmd = {0};
  464. at_cmd.cmd_char = pattern_chr;
  465. at_cmd.char_num = chr_num;
  466. #if CONFIG_IDF_TARGET_ESP32
  467. int apb_clk_freq = 0;
  468. uint32_t uart_baud = 0;
  469. uint32_t uart_div = 0;
  470. uart_get_baudrate(uart_num, &uart_baud);
  471. apb_clk_freq = esp_clk_apb_freq();
  472. uart_div = apb_clk_freq / uart_baud;
  473. at_cmd.gap_tout = chr_tout * uart_div;
  474. at_cmd.pre_idle = pre_idle * uart_div;
  475. at_cmd.post_idle = post_idle * uart_div;
  476. #else
  477. at_cmd.gap_tout = chr_tout;
  478. at_cmd.pre_idle = pre_idle;
  479. at_cmd.post_idle = post_idle;
  480. #endif
  481. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  482. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  483. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  484. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  485. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  486. return ESP_OK;
  487. }
  488. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  489. {
  490. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  491. }
  492. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  493. {
  494. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  495. }
  496. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  497. {
  498. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  499. }
  500. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  501. {
  502. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  503. }
  504. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  505. {
  506. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  507. ESP_RETURN_ON_FALSE((thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "empty intr threshold error");
  508. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  509. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  510. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  511. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  512. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  513. return ESP_OK;
  514. }
  515. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  516. {
  517. int ret;
  518. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  519. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  520. ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  521. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  522. return ret;
  523. }
  524. esp_err_t uart_isr_free(uart_port_t uart_num)
  525. {
  526. esp_err_t ret;
  527. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  528. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  529. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]->intr_handle != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error");
  530. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  531. ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  532. p_uart_obj[uart_num]->intr_handle = NULL;
  533. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  534. return ret;
  535. }
  536. static bool uart_try_set_iomux_pin(uart_port_t uart_num, int io_num, uint32_t idx)
  537. {
  538. /* Store a pointer to the default pin, to optimize access to its fields. */
  539. const uart_periph_sig_t *upin = &uart_periph_signal[uart_num].pins[idx];
  540. /* In theory, if default_gpio is -1, iomux_func should also be -1, but
  541. * let's be safe and test both. */
  542. if (upin->iomux_func == -1 || upin->default_gpio == -1 || upin->default_gpio != io_num) {
  543. return false;
  544. }
  545. /* Assign the correct funct to the GPIO. */
  546. assert (upin->iomux_func != -1);
  547. gpio_iomux_out(io_num, upin->iomux_func, false);
  548. /* If the pin is input, we also have to redirect the signal,
  549. * in order to bypasse the GPIO matrix. */
  550. if (upin->input) {
  551. gpio_iomux_in(io_num, upin->signal);
  552. }
  553. return true;
  554. }
  555. //internal signal can be output to multiple GPIO pads
  556. //only one GPIO pad can connect with input signal
  557. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  558. {
  559. ESP_RETURN_ON_FALSE((uart_num >= 0), ESP_FAIL, UART_TAG, "uart_num error");
  560. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  561. ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
  562. ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
  563. ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
  564. ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
  565. /* In the following statements, if the io_num is negative, no need to configure anything. */
  566. if (tx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, tx_io_num, SOC_UART_TX_PIN_IDX)) {
  567. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  568. gpio_set_level(tx_io_num, 1);
  569. esp_rom_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
  570. }
  571. if (rx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rx_io_num, SOC_UART_RX_PIN_IDX)) {
  572. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  573. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  574. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  575. esp_rom_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
  576. }
  577. if (rts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rts_io_num, SOC_UART_RTS_PIN_IDX)) {
  578. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  579. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  580. esp_rom_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
  581. }
  582. if (cts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, cts_io_num, SOC_UART_CTS_PIN_IDX)) {
  583. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  584. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  585. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  586. esp_rom_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
  587. }
  588. return ESP_OK;
  589. }
  590. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  591. {
  592. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  593. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
  594. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  595. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  596. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  597. return ESP_OK;
  598. }
  599. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  600. {
  601. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  602. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  603. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  604. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  605. return ESP_OK;
  606. }
  607. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  608. {
  609. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  610. ESP_RETURN_ON_FALSE((idle_num <= UART_TX_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart idle num error");
  611. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  612. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  613. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  614. return ESP_OK;
  615. }
  616. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  617. {
  618. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  619. ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
  620. ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
  621. ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
  622. ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
  623. uart_module_enable(uart_num);
  624. #if SOC_UART_SUPPORT_RTC_CLK
  625. if (uart_config->source_clk == UART_SCLK_RTC) {
  626. rtc_clk_enable(uart_num);
  627. }
  628. #endif
  629. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  630. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  631. uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk);
  632. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate);
  633. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  634. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  635. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  636. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  637. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  638. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  639. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  640. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  641. return ESP_OK;
  642. }
  643. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  644. {
  645. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  646. ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
  647. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  648. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  649. if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  650. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  651. } else {
  652. //Disable rx_tout intr
  653. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  654. }
  655. if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  656. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  657. }
  658. if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  659. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  660. }
  661. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  662. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  663. return ESP_OK;
  664. }
  665. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num)
  666. {
  667. int cnt = 0;
  668. int len = length;
  669. while (len >= 0) {
  670. if (buf[len] == pat_chr) {
  671. cnt++;
  672. } else {
  673. cnt = 0;
  674. }
  675. if (cnt >= pat_num) {
  676. break;
  677. }
  678. len --;
  679. }
  680. return len;
  681. }
  682. //internal isr handler for default driver code.
  683. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  684. {
  685. uart_obj_t *p_uart = (uart_obj_t *) param;
  686. uint8_t uart_num = p_uart->uart_num;
  687. int rx_fifo_len = 0;
  688. uint32_t uart_intr_status = 0;
  689. uart_event_t uart_event;
  690. portBASE_TYPE HPTaskAwoken = 0;
  691. static uint8_t pat_flg = 0;
  692. while (1) {
  693. // The `continue statement` may cause the interrupt to loop infinitely
  694. // we exit the interrupt here
  695. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  696. //Exit form while loop
  697. if (uart_intr_status == 0) {
  698. break;
  699. }
  700. uart_event.type = UART_EVENT_MAX;
  701. if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  702. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  703. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  704. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  705. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  706. if (p_uart->tx_waiting_brk) {
  707. continue;
  708. }
  709. //TX semaphore will only be used when tx_buf_size is zero.
  710. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  711. p_uart->tx_waiting_fifo = false;
  712. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  713. } else {
  714. //We don't use TX ring buffer, because the size is zero.
  715. if (p_uart->tx_buf_size == 0) {
  716. continue;
  717. }
  718. bool en_tx_flg = false;
  719. uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  720. //We need to put a loop here, in case all the buffer items are very short.
  721. //That would cause a watch_dog reset because empty interrupt happens so often.
  722. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  723. while (tx_fifo_rem) {
  724. if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  725. size_t size;
  726. p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  727. if (p_uart->tx_head) {
  728. //The first item is the data description
  729. //Get the first item to get the data information
  730. if (p_uart->tx_len_tot == 0) {
  731. p_uart->tx_ptr = NULL;
  732. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  733. if (p_uart->tx_head->type == UART_DATA_BREAK) {
  734. p_uart->tx_brk_flg = 1;
  735. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  736. }
  737. //We have saved the data description from the 1st item, return buffer.
  738. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  739. } else if (p_uart->tx_ptr == NULL) {
  740. //Update the TX item pointer, we will need this to return item to buffer.
  741. p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
  742. en_tx_flg = true;
  743. p_uart->tx_len_cur = size;
  744. }
  745. } else {
  746. //Can not get data from ring buffer, return;
  747. break;
  748. }
  749. }
  750. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  751. //To fill the TX FIFO.
  752. uint32_t send_len = 0;
  753. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  754. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  755. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  756. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  757. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  758. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  759. }
  760. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  761. (const uint8_t *)p_uart->tx_ptr,
  762. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  763. &send_len);
  764. p_uart->tx_ptr += send_len;
  765. p_uart->tx_len_tot -= send_len;
  766. p_uart->tx_len_cur -= send_len;
  767. tx_fifo_rem -= send_len;
  768. if (p_uart->tx_len_cur == 0) {
  769. //Return item to ring buffer.
  770. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  771. p_uart->tx_head = NULL;
  772. p_uart->tx_ptr = NULL;
  773. //Sending item done, now we need to send break if there is a record.
  774. //Set TX break signal after FIFO is empty
  775. if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  776. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  777. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  778. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  779. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  780. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  781. p_uart->tx_waiting_brk = 1;
  782. //do not enable TX empty interrupt
  783. en_tx_flg = false;
  784. } else {
  785. //enable TX empty interrupt
  786. en_tx_flg = true;
  787. }
  788. } else {
  789. //enable TX empty interrupt
  790. en_tx_flg = true;
  791. }
  792. }
  793. }
  794. if (en_tx_flg) {
  795. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  796. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  797. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  798. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  799. }
  800. }
  801. } else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  802. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  803. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  804. ) {
  805. if (pat_flg == 1) {
  806. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  807. pat_flg = 0;
  808. }
  809. if (p_uart->rx_buffer_full_flg == false) {
  810. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  811. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  812. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  813. }
  814. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  815. uint8_t pat_chr = 0;
  816. uint8_t pat_num = 0;
  817. int pat_idx = -1;
  818. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  819. //Get the buffer from the FIFO
  820. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  821. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  822. uart_event.type = UART_PATTERN_DET;
  823. uart_event.size = rx_fifo_len;
  824. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  825. } else {
  826. //After Copying the Data From FIFO ,Clear intr_status
  827. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  828. uart_event.type = UART_DATA;
  829. uart_event.size = rx_fifo_len;
  830. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  831. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  832. if (p_uart->uart_select_notif_callback) {
  833. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  834. }
  835. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  836. }
  837. p_uart->rx_stash_len = rx_fifo_len;
  838. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  839. //Mainly for applications that uses flow control or small ring buffer.
  840. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  841. p_uart->rx_buffer_full_flg = true;
  842. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  843. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  844. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  845. if (uart_event.type == UART_PATTERN_DET) {
  846. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  847. if (rx_fifo_len < pat_num) {
  848. //some of the characters are read out in last interrupt
  849. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  850. } else {
  851. uart_pattern_enqueue(uart_num,
  852. pat_idx <= -1 ?
  853. //can not find the pattern in buffer,
  854. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  855. // find the pattern in buffer
  856. p_uart->rx_buffered_len + pat_idx);
  857. }
  858. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  859. if ((p_uart->event_queue != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken))) {
  860. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  861. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  862. #endif
  863. }
  864. }
  865. uart_event.type = UART_BUFFER_FULL;
  866. } else {
  867. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  868. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  869. if (rx_fifo_len < pat_num) {
  870. //some of the characters are read out in last interrupt
  871. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  872. } else if (pat_idx >= 0) {
  873. // find the pattern in stash buffer.
  874. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  875. }
  876. }
  877. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  878. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  879. }
  880. } else {
  881. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  882. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  883. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  884. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  885. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  886. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  887. uart_event.type = UART_PATTERN_DET;
  888. uart_event.size = rx_fifo_len;
  889. pat_flg = 1;
  890. }
  891. }
  892. } else if (uart_intr_status & UART_INTR_RXFIFO_OVF) {
  893. // When fifo overflows, we reset the fifo.
  894. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  895. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  896. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  897. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  898. if (p_uart->uart_select_notif_callback) {
  899. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  900. }
  901. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  902. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  903. uart_event.type = UART_FIFO_OVF;
  904. } else if (uart_intr_status & UART_INTR_BRK_DET) {
  905. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  906. uart_event.type = UART_BREAK;
  907. } else if (uart_intr_status & UART_INTR_FRAM_ERR) {
  908. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  909. if (p_uart->uart_select_notif_callback) {
  910. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  911. }
  912. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  913. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  914. uart_event.type = UART_FRAME_ERR;
  915. } else if (uart_intr_status & UART_INTR_PARITY_ERR) {
  916. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  917. if (p_uart->uart_select_notif_callback) {
  918. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  919. }
  920. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  921. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  922. uart_event.type = UART_PARITY_ERR;
  923. } else if (uart_intr_status & UART_INTR_TX_BRK_DONE) {
  924. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  925. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  926. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  927. if (p_uart->tx_brk_flg == 1) {
  928. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  929. }
  930. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  931. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  932. if (p_uart->tx_brk_flg == 1) {
  933. p_uart->tx_brk_flg = 0;
  934. p_uart->tx_waiting_brk = 0;
  935. } else {
  936. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  937. }
  938. } else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  939. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  940. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  941. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  942. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  943. } else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  944. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  945. uart_event.type = UART_PATTERN_DET;
  946. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  947. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  948. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  949. // RS485 collision or frame error interrupt triggered
  950. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  951. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  952. // Set collision detection flag
  953. p_uart_obj[uart_num]->coll_det_flg = true;
  954. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  955. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  956. uart_event.type = UART_EVENT_MAX;
  957. } else if (uart_intr_status & UART_INTR_TX_DONE) {
  958. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  959. // The TX_DONE interrupt is triggered but transmit is active
  960. // then postpone interrupt processing for next interrupt
  961. uart_event.type = UART_EVENT_MAX;
  962. } else {
  963. // Workaround for RS485: If the RS485 half duplex mode is active
  964. // and transmitter is in idle state then reset received buffer and reset RTS pin
  965. // skip this behavior for other UART modes
  966. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  967. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  968. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  969. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  970. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  971. }
  972. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  973. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  974. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  975. }
  976. } else {
  977. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  978. uart_event.type = UART_EVENT_MAX;
  979. }
  980. if (uart_event.type != UART_EVENT_MAX && p_uart->event_queue) {
  981. if (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken)) {
  982. #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM
  983. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  984. #endif
  985. }
  986. }
  987. }
  988. if (HPTaskAwoken == pdTRUE) {
  989. portYIELD_FROM_ISR();
  990. }
  991. }
  992. /**************************************************************/
  993. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  994. {
  995. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  996. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  997. BaseType_t res;
  998. portTickType ticks_start = xTaskGetTickCount();
  999. //Take tx_mux
  1000. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1001. if (res == pdFALSE) {
  1002. return ESP_ERR_TIMEOUT;
  1003. }
  1004. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1005. if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  1006. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1007. return ESP_OK;
  1008. }
  1009. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1010. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1011. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1012. TickType_t ticks_end = xTaskGetTickCount();
  1013. if (ticks_end - ticks_start > ticks_to_wait) {
  1014. ticks_to_wait = 0;
  1015. } else {
  1016. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1017. }
  1018. //take 2nd tx_done_sem, wait given from ISR
  1019. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1020. if (res == pdFALSE) {
  1021. // The TX_DONE interrupt will be disabled in ISR
  1022. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1023. return ESP_ERR_TIMEOUT;
  1024. }
  1025. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1026. return ESP_OK;
  1027. }
  1028. int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
  1029. {
  1030. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1031. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1032. ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
  1033. if (len == 0) {
  1034. return 0;
  1035. }
  1036. int tx_len = 0;
  1037. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1038. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1039. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1040. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1041. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1042. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1043. }
  1044. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t *) buffer, len, (uint32_t *)&tx_len);
  1045. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1046. return tx_len;
  1047. }
  1048. static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
  1049. {
  1050. if (size == 0) {
  1051. return 0;
  1052. }
  1053. size_t original_size = size;
  1054. //lock for uart_tx
  1055. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1056. p_uart_obj[uart_num]->coll_det_flg = false;
  1057. if (p_uart_obj[uart_num]->tx_buf_size > 0) {
  1058. size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1059. int offset = 0;
  1060. uart_tx_data_t evt;
  1061. evt.tx_data.size = size;
  1062. evt.tx_data.brk_len = brk_len;
  1063. if (brk_en) {
  1064. evt.type = UART_DATA_BREAK;
  1065. } else {
  1066. evt.type = UART_DATA;
  1067. }
  1068. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1069. while (size > 0) {
  1070. size_t send_size = size > max_size / 2 ? max_size / 2 : size;
  1071. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
  1072. size -= send_size;
  1073. offset += send_size;
  1074. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1075. }
  1076. } else {
  1077. while (size) {
  1078. //semaphore for tx_fifo available
  1079. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1080. uint32_t sent = 0;
  1081. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1082. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1083. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1084. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1085. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1086. }
  1087. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t *)src, size, &sent);
  1088. if (sent < size) {
  1089. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1090. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1091. }
  1092. size -= sent;
  1093. src += sent;
  1094. }
  1095. }
  1096. if (brk_en) {
  1097. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1098. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1099. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1100. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1101. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1102. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1103. }
  1104. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1105. }
  1106. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1107. return original_size;
  1108. }
  1109. int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size)
  1110. {
  1111. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1112. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
  1113. ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
  1114. return uart_tx_all(uart_num, src, size, 0, 0);
  1115. }
  1116. int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len)
  1117. {
  1118. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1119. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1120. ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
  1121. ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
  1122. ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
  1123. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1124. }
  1125. static bool uart_check_buf_full(uart_port_t uart_num)
  1126. {
  1127. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1128. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1129. if (res == pdTRUE) {
  1130. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1131. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1132. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1133. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1134. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1135. return true;
  1136. }
  1137. }
  1138. return false;
  1139. }
  1140. int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait)
  1141. {
  1142. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
  1143. ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
  1144. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
  1145. uint8_t *data = NULL;
  1146. size_t size;
  1147. size_t copy_len = 0;
  1148. int len_tmp;
  1149. if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
  1150. return -1;
  1151. }
  1152. while (length) {
  1153. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1154. data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1155. if (data) {
  1156. p_uart_obj[uart_num]->rx_head_ptr = data;
  1157. p_uart_obj[uart_num]->rx_ptr = data;
  1158. p_uart_obj[uart_num]->rx_cur_remain = size;
  1159. } else {
  1160. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1161. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1162. //to solve the possible asynchronous issues.
  1163. if (uart_check_buf_full(uart_num)) {
  1164. //This condition will never be true if `uart_read_bytes`
  1165. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1166. continue;
  1167. } else {
  1168. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1169. return copy_len;
  1170. }
  1171. }
  1172. }
  1173. if (p_uart_obj[uart_num]->rx_cur_remain > length) {
  1174. len_tmp = length;
  1175. } else {
  1176. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1177. }
  1178. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1179. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1180. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1181. uart_pattern_queue_update(uart_num, len_tmp);
  1182. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1183. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1184. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1185. copy_len += len_tmp;
  1186. length -= len_tmp;
  1187. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1188. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1189. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1190. p_uart_obj[uart_num]->rx_ptr = NULL;
  1191. uart_check_buf_full(uart_num);
  1192. }
  1193. }
  1194. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1195. return copy_len;
  1196. }
  1197. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
  1198. {
  1199. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1200. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1201. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1202. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1203. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1204. return ESP_OK;
  1205. }
  1206. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1207. static esp_err_t uart_disable_intr_mask_and_return_prev(uart_port_t uart_num, uint32_t disable_mask, uint32_t *prev_mask)
  1208. {
  1209. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1210. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1211. *prev_mask = uart_hal_get_intr_ena_status(&uart_context[uart_num].hal) & disable_mask;
  1212. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  1213. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1214. return ESP_OK;
  1215. }
  1216. esp_err_t uart_flush_input(uart_port_t uart_num)
  1217. {
  1218. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1219. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1220. uart_obj_t *p_uart = p_uart_obj[uart_num];
  1221. uint8_t *data;
  1222. size_t size;
  1223. uint32_t prev_mask;
  1224. //rx sem protect the ring buffer read related functions
  1225. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1226. uart_disable_intr_mask_and_return_prev(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT, &prev_mask);
  1227. while (true) {
  1228. if (p_uart->rx_head_ptr) {
  1229. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1230. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1231. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1232. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1233. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1234. p_uart->rx_ptr = NULL;
  1235. p_uart->rx_cur_remain = 0;
  1236. p_uart->rx_head_ptr = NULL;
  1237. }
  1238. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1239. if(data == NULL) {
  1240. bool error = false;
  1241. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1242. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1243. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1244. error = true;
  1245. }
  1246. //We also need to clear the `rx_buffer_full_flg` here.
  1247. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1248. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1249. if (error) {
  1250. // this must be called outside the critical section
  1251. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1252. }
  1253. break;
  1254. }
  1255. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1256. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1257. uart_pattern_queue_update(uart_num, size);
  1258. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1259. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1260. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1261. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1262. if (res == pdTRUE) {
  1263. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1264. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1265. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1266. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1267. }
  1268. }
  1269. }
  1270. p_uart->rx_ptr = NULL;
  1271. p_uart->rx_cur_remain = 0;
  1272. p_uart->rx_head_ptr = NULL;
  1273. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1274. uart_enable_intr_mask(uart_num, prev_mask);
  1275. xSemaphoreGive(p_uart->rx_mux);
  1276. return ESP_OK;
  1277. }
  1278. static void uart_free_driver_obj(uart_obj_t *uart_obj)
  1279. {
  1280. if (uart_obj->tx_fifo_sem) {
  1281. vSemaphoreDelete(uart_obj->tx_fifo_sem);
  1282. }
  1283. if (uart_obj->tx_done_sem) {
  1284. vSemaphoreDelete(uart_obj->tx_done_sem);
  1285. }
  1286. if (uart_obj->tx_brk_sem) {
  1287. vSemaphoreDelete(uart_obj->tx_brk_sem);
  1288. }
  1289. if (uart_obj->tx_mux) {
  1290. vSemaphoreDelete(uart_obj->tx_mux);
  1291. }
  1292. if (uart_obj->rx_mux) {
  1293. vSemaphoreDelete(uart_obj->rx_mux);
  1294. }
  1295. if (uart_obj->event_queue) {
  1296. vQueueDelete(uart_obj->event_queue);
  1297. }
  1298. if (uart_obj->rx_ring_buf) {
  1299. vRingbufferDelete(uart_obj->rx_ring_buf);
  1300. }
  1301. if (uart_obj->tx_ring_buf) {
  1302. vRingbufferDelete(uart_obj->tx_ring_buf);
  1303. }
  1304. #if CONFIG_UART_ISR_IN_IRAM
  1305. free(uart_obj->event_queue_storage);
  1306. free(uart_obj->event_queue_struct);
  1307. free(uart_obj->tx_ring_buf_storage);
  1308. free(uart_obj->tx_ring_buf_struct);
  1309. free(uart_obj->rx_ring_buf_storage);
  1310. free(uart_obj->rx_ring_buf_struct);
  1311. free(uart_obj->rx_mux_struct);
  1312. free(uart_obj->tx_mux_struct);
  1313. free(uart_obj->tx_brk_sem_struct);
  1314. free(uart_obj->tx_done_sem_struct);
  1315. free(uart_obj->tx_fifo_sem_struct);
  1316. #endif
  1317. free(uart_obj);
  1318. }
  1319. static uart_obj_t *uart_alloc_driver_obj(int event_queue_size, int tx_buffer_size, int rx_buffer_size)
  1320. {
  1321. uart_obj_t *uart_obj = heap_caps_calloc(1, sizeof(uart_obj_t), UART_MALLOC_CAPS);
  1322. if (!uart_obj) {
  1323. return NULL;
  1324. }
  1325. #if CONFIG_UART_ISR_IN_IRAM
  1326. if (event_queue_size > 0) {
  1327. uart_obj->event_queue_storage = heap_caps_calloc(event_queue_size, sizeof(uart_event_t), UART_MALLOC_CAPS);
  1328. uart_obj->event_queue_struct = heap_caps_calloc(1, sizeof(StaticQueue_t), UART_MALLOC_CAPS);
  1329. if (!uart_obj->event_queue_storage || !uart_obj->event_queue_struct) {
  1330. goto err;
  1331. }
  1332. }
  1333. if (tx_buffer_size > 0) {
  1334. uart_obj->tx_ring_buf_storage = heap_caps_calloc(1, tx_buffer_size, UART_MALLOC_CAPS);
  1335. uart_obj->tx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS);
  1336. if (!uart_obj->tx_ring_buf_storage || !uart_obj->tx_ring_buf_struct) {
  1337. goto err;
  1338. }
  1339. }
  1340. uart_obj->rx_ring_buf_storage = heap_caps_calloc(1, rx_buffer_size, UART_MALLOC_CAPS);
  1341. uart_obj->rx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS);
  1342. uart_obj->rx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1343. uart_obj->tx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1344. uart_obj->tx_brk_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1345. uart_obj->tx_done_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1346. uart_obj->tx_fifo_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
  1347. if (!uart_obj->rx_ring_buf_storage || !uart_obj->rx_ring_buf_struct || !uart_obj->rx_mux_struct ||
  1348. !uart_obj->tx_mux_struct || !uart_obj->tx_brk_sem_struct || !uart_obj->tx_done_sem_struct ||
  1349. !uart_obj->tx_fifo_sem_struct) {
  1350. goto err;
  1351. }
  1352. if (event_queue_size > 0) {
  1353. uart_obj->event_queue = xQueueCreateStatic(event_queue_size, sizeof(uart_event_t),
  1354. uart_obj->event_queue_storage, uart_obj->event_queue_struct);
  1355. if (!uart_obj->event_queue) {
  1356. goto err;
  1357. }
  1358. }
  1359. if (tx_buffer_size > 0) {
  1360. uart_obj->tx_ring_buf = xRingbufferCreateStatic(tx_buffer_size, RINGBUF_TYPE_NOSPLIT,
  1361. uart_obj->tx_ring_buf_storage, uart_obj->tx_ring_buf_struct);
  1362. if (!uart_obj->tx_ring_buf) {
  1363. goto err;
  1364. }
  1365. }
  1366. uart_obj->rx_ring_buf = xRingbufferCreateStatic(rx_buffer_size, RINGBUF_TYPE_BYTEBUF,
  1367. uart_obj->rx_ring_buf_storage, uart_obj->rx_ring_buf_struct);
  1368. uart_obj->rx_mux = xSemaphoreCreateMutexStatic(uart_obj->rx_mux_struct);
  1369. uart_obj->tx_mux = xSemaphoreCreateMutexStatic(uart_obj->tx_mux_struct);
  1370. uart_obj->tx_brk_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_brk_sem_struct);
  1371. uart_obj->tx_done_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_done_sem_struct);
  1372. uart_obj->tx_fifo_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_fifo_sem_struct);
  1373. if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
  1374. !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
  1375. goto err;
  1376. }
  1377. #else
  1378. if (event_queue_size > 0) {
  1379. uart_obj->event_queue = xQueueCreate(event_queue_size, sizeof(uart_event_t));
  1380. if (!uart_obj->event_queue) {
  1381. goto err;
  1382. }
  1383. }
  1384. if (tx_buffer_size > 0) {
  1385. uart_obj->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1386. if (!uart_obj->tx_ring_buf) {
  1387. goto err;
  1388. }
  1389. }
  1390. uart_obj->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1391. uart_obj->tx_mux = xSemaphoreCreateMutex();
  1392. uart_obj->rx_mux = xSemaphoreCreateMutex();
  1393. uart_obj->tx_brk_sem = xSemaphoreCreateBinary();
  1394. uart_obj->tx_done_sem = xSemaphoreCreateBinary();
  1395. uart_obj->tx_fifo_sem = xSemaphoreCreateBinary();
  1396. if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
  1397. !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
  1398. goto err;
  1399. }
  1400. #endif
  1401. return uart_obj;
  1402. err:
  1403. uart_free_driver_obj(uart_obj);
  1404. return NULL;
  1405. }
  1406. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int event_queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1407. {
  1408. esp_err_t r;
  1409. #ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
  1410. ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
  1411. #endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
  1412. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1413. ESP_RETURN_ON_FALSE((rx_buffer_size > SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "uart rx buffer length error");
  1414. ESP_RETURN_ON_FALSE((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
  1415. #if CONFIG_UART_ISR_IN_IRAM
  1416. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1417. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1418. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1419. }
  1420. #else
  1421. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1422. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1423. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1424. }
  1425. #endif
  1426. if (p_uart_obj[uart_num] == NULL) {
  1427. p_uart_obj[uart_num] = uart_alloc_driver_obj(event_queue_size, tx_buffer_size, rx_buffer_size);
  1428. if (p_uart_obj[uart_num] == NULL) {
  1429. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1430. return ESP_FAIL;
  1431. }
  1432. p_uart_obj[uart_num]->uart_num = uart_num;
  1433. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1434. p_uart_obj[uart_num]->coll_det_flg = false;
  1435. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1436. p_uart_obj[uart_num]->event_queue_size = event_queue_size;
  1437. p_uart_obj[uart_num]->tx_ptr = NULL;
  1438. p_uart_obj[uart_num]->tx_head = NULL;
  1439. p_uart_obj[uart_num]->tx_len_tot = 0;
  1440. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1441. p_uart_obj[uart_num]->tx_brk_len = 0;
  1442. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1443. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1444. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1445. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1446. p_uart_obj[uart_num]->rx_ptr = NULL;
  1447. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1448. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1449. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1450. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1451. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1452. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1453. if (uart_queue) {
  1454. *uart_queue = p_uart_obj[uart_num]->event_queue;
  1455. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->event_queue));
  1456. }
  1457. } else {
  1458. ESP_LOGE(UART_TAG, "UART driver already installed");
  1459. return ESP_FAIL;
  1460. }
  1461. uart_intr_config_t uart_intr = {
  1462. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1463. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1464. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1465. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1466. };
  1467. uart_module_enable(uart_num);
  1468. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1469. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1470. r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1471. if (r != ESP_OK) {
  1472. goto err;
  1473. }
  1474. r = uart_intr_config(uart_num, &uart_intr);
  1475. if (r != ESP_OK) {
  1476. goto err;
  1477. }
  1478. return r;
  1479. err:
  1480. uart_driver_delete(uart_num);
  1481. return r;
  1482. }
  1483. //Make sure no other tasks are still using UART before you call this function
  1484. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1485. {
  1486. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
  1487. if (p_uart_obj[uart_num] == NULL) {
  1488. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1489. return ESP_OK;
  1490. }
  1491. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1492. uart_disable_rx_intr(uart_num);
  1493. uart_disable_tx_intr(uart_num);
  1494. uart_pattern_link_free(uart_num);
  1495. uart_free_driver_obj(p_uart_obj[uart_num]);
  1496. p_uart_obj[uart_num] = NULL;
  1497. #if SOC_UART_SUPPORT_RTC_CLK
  1498. uart_sclk_t sclk = 0;
  1499. uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
  1500. if (sclk == UART_SCLK_RTC) {
  1501. rtc_clk_disable(uart_num);
  1502. }
  1503. #endif
  1504. uart_module_disable(uart_num);
  1505. return ESP_OK;
  1506. }
  1507. bool uart_is_driver_installed(uart_port_t uart_num)
  1508. {
  1509. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1510. }
  1511. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1512. {
  1513. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1514. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1515. }
  1516. }
  1517. portMUX_TYPE *uart_get_selectlock(void)
  1518. {
  1519. return &uart_selectlock;
  1520. }
  1521. // Set UART mode
  1522. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1523. {
  1524. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1525. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
  1526. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1527. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1528. ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
  1529. "disable hw flowctrl before using RS485 mode");
  1530. }
  1531. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1532. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1533. if (mode == UART_MODE_RS485_COLLISION_DETECT) {
  1534. // This mode allows read while transmitting that allows collision detection
  1535. p_uart_obj[uart_num]->coll_det_flg = false;
  1536. // Enable collision detection interrupts
  1537. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1538. | UART_INTR_RXFIFO_FULL
  1539. | UART_INTR_RS485_CLASH
  1540. | UART_INTR_RS485_FRM_ERR
  1541. | UART_INTR_RS485_PARITY_ERR);
  1542. }
  1543. p_uart_obj[uart_num]->uart_mode = mode;
  1544. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1545. return ESP_OK;
  1546. }
  1547. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1548. {
  1549. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1550. ESP_RETURN_ON_FALSE((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1551. "rx fifo full threshold value error");
  1552. if (p_uart_obj[uart_num] == NULL) {
  1553. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1554. return ESP_ERR_INVALID_STATE;
  1555. }
  1556. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1557. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1558. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1559. }
  1560. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1561. return ESP_OK;
  1562. }
  1563. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1564. {
  1565. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1566. ESP_RETURN_ON_FALSE((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
  1567. "tx fifo empty threshold value error");
  1568. if (p_uart_obj[uart_num] == NULL) {
  1569. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1570. return ESP_ERR_INVALID_STATE;
  1571. }
  1572. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1573. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1574. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1575. }
  1576. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1577. return ESP_OK;
  1578. }
  1579. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1580. {
  1581. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1582. // get maximum timeout threshold
  1583. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1584. if (tout_thresh > tout_max_thresh) {
  1585. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1586. return ESP_ERR_INVALID_ARG;
  1587. }
  1588. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1589. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1590. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1591. return ESP_OK;
  1592. }
  1593. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
  1594. {
  1595. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1596. ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
  1597. ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
  1598. ESP_RETURN_ON_FALSE((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1599. ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
  1600. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1601. return ESP_OK;
  1602. }
  1603. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1604. {
  1605. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1606. ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V && wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
  1607. "wakeup_threshold out of bounds");
  1608. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1609. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1610. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1611. return ESP_OK;
  1612. }
  1613. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
  1614. {
  1615. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1616. ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
  1617. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1618. return ESP_OK;
  1619. }
  1620. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1621. {
  1622. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1623. while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1624. return ESP_OK;
  1625. }
  1626. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1627. {
  1628. ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
  1629. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1630. return ESP_OK;
  1631. }
  1632. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1633. {
  1634. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1635. if (rx_tout) {
  1636. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1637. } else {
  1638. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1639. }
  1640. }