bt.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stddef.h>
  7. #include <stdlib.h>
  8. #include <stdio.h>
  9. #include <string.h>
  10. #include "sdkconfig.h"
  11. #include "esp_heap_caps.h"
  12. #include "esp_heap_caps_init.h"
  13. #include "freertos/FreeRTOS.h"
  14. #include "freertos/task.h"
  15. #include "freertos/queue.h"
  16. #include "freertos/semphr.h"
  17. #include "freertos/xtensa_api.h"
  18. #include "freertos/portmacro.h"
  19. #include "xtensa/core-macros.h"
  20. #include "esp_types.h"
  21. #include "esp_mac.h"
  22. #include "esp_random.h"
  23. #include "esp_task.h"
  24. #include "esp_intr_alloc.h"
  25. #include "esp_attr.h"
  26. #include "esp_phy_init.h"
  27. #include "esp_bt.h"
  28. #include "esp_err.h"
  29. #include "esp_log.h"
  30. #include "esp_pm.h"
  31. #include "esp_private/esp_clk.h"
  32. #include "esp_private/periph_ctrl.h"
  33. #include "soc/rtc.h"
  34. #include "soc/soc_memory_layout.h"
  35. #include "soc/dport_reg.h"
  36. #include "esp_coexist_internal.h"
  37. #include "esp_timer.h"
  38. #if !CONFIG_FREERTOS_UNICORE
  39. #include "esp_ipc.h"
  40. #endif
  41. #include "esp_rom_sys.h"
  42. #include "hli_api.h"
  43. #if CONFIG_BT_ENABLED
  44. /* Macro definition
  45. ************************************************************************
  46. */
  47. #define UNUSED(x) (void)(x)
  48. #define BTDM_LOG_TAG "BTDM_INIT"
  49. #define BTDM_INIT_PERIOD (5000) /* ms */
  50. /* Bluetooth system and controller config */
  51. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  52. #define BTDM_CFG_HCI_UART (1<<1)
  53. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  54. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  55. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  56. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  57. /* Sleep mode */
  58. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  59. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  60. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  61. /* Low Power Clock Selection */
  62. #define BTDM_LPCLK_SEL_XTAL (0)
  63. #define BTDM_LPCLK_SEL_XTAL32K (1)
  64. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  65. #define BTDM_LPCLK_SEL_8M (3)
  66. /* Sleep and wakeup interval control */
  67. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  68. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  69. #define BT_DEBUG(...)
  70. #define BT_API_CALL_CHECK(info, api_call, ret) \
  71. do{\
  72. esp_err_t __err = (api_call);\
  73. if ((ret) != __err) {\
  74. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  75. return __err;\
  76. }\
  77. } while(0)
  78. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  79. #define OSI_VERSION 0x00010004
  80. #define OSI_MAGIC_VALUE 0xFADEBEAD
  81. /* Types definition
  82. ************************************************************************
  83. */
  84. /* VHCI function interface */
  85. typedef struct vhci_host_callback {
  86. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  87. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  88. } vhci_host_callback_t;
  89. /* Dram region */
  90. typedef struct {
  91. esp_bt_mode_t mode;
  92. intptr_t start;
  93. intptr_t end;
  94. } btdm_dram_available_region_t;
  95. typedef struct {
  96. void *handle;
  97. } btdm_queue_item_t;
  98. /* OSI function */
  99. struct osi_funcs_t {
  100. uint32_t _version;
  101. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  102. void (*_ints_on)(unsigned int mask);
  103. void (*_interrupt_disable)(void);
  104. void (*_interrupt_restore)(void);
  105. void (*_task_yield)(void);
  106. void (*_task_yield_from_isr)(void);
  107. void *(*_semphr_create)(uint32_t max, uint32_t init);
  108. void (*_semphr_delete)(void *semphr);
  109. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  110. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  111. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  112. int32_t (*_semphr_give)(void *semphr);
  113. void *(*_mutex_create)(void);
  114. void (*_mutex_delete)(void *mutex);
  115. int32_t (*_mutex_lock)(void *mutex);
  116. int32_t (*_mutex_unlock)(void *mutex);
  117. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  118. void (* _queue_delete)(void *queue);
  119. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  120. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  121. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  122. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  123. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  124. void (* _task_delete)(void *task_handle);
  125. bool (* _is_in_isr)(void);
  126. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  127. void *(* _malloc)(size_t size);
  128. void *(* _malloc_internal)(size_t size);
  129. void (* _free)(void *p);
  130. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  131. void (* _srand)(unsigned int seed);
  132. int (* _rand)(void);
  133. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  134. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  135. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  136. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  137. void (* _btdm_sleep_enter_phase2)(void);
  138. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  139. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  140. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  141. bool (* _coex_bt_wakeup_request)(void);
  142. void (* _coex_bt_wakeup_request_end)(void);
  143. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  144. int (* _coex_bt_release)(uint32_t event);
  145. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  146. uint32_t (* _coex_bb_reset_lock)(void);
  147. void (* _coex_bb_reset_unlock)(uint32_t restore);
  148. int (* _coex_schm_register_btdm_callback)(void *callback);
  149. void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
  150. void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
  151. uint32_t (* _coex_schm_interval_get)(void);
  152. uint8_t (* _coex_schm_curr_period_get)(void);
  153. void *(* _coex_schm_curr_phase_get)(void);
  154. int (* _coex_wifi_channel_get)(uint8_t *primary, uint8_t *secondary);
  155. int (* _coex_register_wifi_channel_change_callback)(void *cb);
  156. xt_handler (*_set_isr_l3)(int n, xt_handler f, void *arg);
  157. void (*_interrupt_l3_disable)(void);
  158. void (*_interrupt_l3_restore)(void);
  159. void *(* _customer_queue_create)(uint32_t queue_len, uint32_t item_size);
  160. int (* _coex_version_get)(unsigned int *major, unsigned int *minor, unsigned int *patch);
  161. uint32_t _magic;
  162. };
  163. typedef void (*workitem_handler_t)(void* arg);
  164. /* External functions or values
  165. ************************************************************************
  166. */
  167. /* not for user call, so don't put to include file */
  168. /* OSI */
  169. extern int btdm_osi_funcs_register(void *osi_funcs);
  170. /* Initialise and De-initialise */
  171. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  172. extern void btdm_controller_deinit(void);
  173. extern int btdm_controller_enable(esp_bt_mode_t mode);
  174. extern void btdm_controller_disable(void);
  175. extern uint8_t btdm_controller_get_mode(void);
  176. extern const char *btdm_controller_get_compile_version(void);
  177. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  178. extern int btdm_dispatch_work_to_controller(workitem_handler_t callback, void *arg, bool blocking);
  179. /* Sleep */
  180. extern void btdm_controller_enable_sleep(bool enable);
  181. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  182. extern uint8_t btdm_controller_get_sleep_mode(void);
  183. extern bool btdm_power_state_active(void);
  184. extern void btdm_wakeup_request(void);
  185. extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);
  186. /* Low Power Clock */
  187. extern bool btdm_lpclk_select_src(uint32_t sel);
  188. extern bool btdm_lpclk_set_div(uint32_t div);
  189. /* VHCI */
  190. extern bool API_vhci_host_check_send_available(void);
  191. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  192. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  193. /* TX power */
  194. extern int ble_txpwr_set(int power_type, int power_level);
  195. extern int ble_txpwr_get(int power_type);
  196. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  197. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  198. extern void bredr_sco_datapath_set(uint8_t data_path);
  199. extern void btdm_controller_scan_duplicate_list_clear(void);
  200. /* Shutdown */
  201. extern void esp_bt_controller_shutdown(void);
  202. extern char _bss_start_btdm;
  203. extern char _bss_end_btdm;
  204. extern char _data_start_btdm;
  205. extern char _data_end_btdm;
  206. extern uint32_t _data_start_btdm_rom;
  207. extern uint32_t _data_end_btdm_rom;
  208. extern uint32_t _bt_bss_start;
  209. extern uint32_t _bt_bss_end;
  210. extern uint32_t _nimble_bss_start;
  211. extern uint32_t _nimble_bss_end;
  212. extern uint32_t _btdm_bss_start;
  213. extern uint32_t _btdm_bss_end;
  214. extern uint32_t _bt_data_start;
  215. extern uint32_t _bt_data_end;
  216. extern uint32_t _nimble_data_start;
  217. extern uint32_t _nimble_data_end;
  218. extern uint32_t _btdm_data_start;
  219. extern uint32_t _btdm_data_end;
  220. /* Local Function Declare
  221. *********************************************************************
  222. */
  223. #if CONFIG_BTDM_CTRL_HLI
  224. static xt_handler set_isr_hlevel_wrapper(int n, xt_handler f, void *arg);
  225. static void interrupt_hlevel_disable(void);
  226. static void interrupt_hlevel_restore(void);
  227. #endif /* CONFIG_BTDM_CTRL_HLI */
  228. static void task_yield(void);
  229. static void task_yield_from_isr(void);
  230. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  231. static void semphr_delete_wrapper(void *semphr);
  232. static int32_t semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  233. static int32_t semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  234. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  235. static int32_t semphr_give_wrapper(void *semphr);
  236. static void *mutex_create_wrapper(void);
  237. static void mutex_delete_wrapper(void *mutex);
  238. static int32_t mutex_lock_wrapper(void *mutex);
  239. static int32_t mutex_unlock_wrapper(void *mutex);
  240. #if CONFIG_BTDM_CTRL_HLI
  241. static void *queue_create_hlevel_wrapper(uint32_t queue_len, uint32_t item_size);
  242. static void queue_delete_hlevel_wrapper(void *queue);
  243. static int32_t queue_send_hlevel_wrapper(void *queue, void *item, uint32_t block_time_ms);
  244. static int32_t queue_send_from_isr_hlevel_wrapper(void *queue, void *item, void *hptw);
  245. static int32_t queue_recv_hlevel_wrapper(void *queue, void *item, uint32_t block_time_ms);
  246. static int32_t queue_recv_from_isr_hlevel_wrapper(void *queue, void *item, void *hptw);
  247. #else
  248. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  249. static void queue_delete_wrapper(void *queue);
  250. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  251. static int32_t queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  252. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  253. static int32_t queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  254. #endif /* CONFIG_BTDM_CTRL_HLI */
  255. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  256. static void task_delete_wrapper(void *task_handle);
  257. static bool is_in_isr_wrapper(void);
  258. static void cause_sw_intr(void *arg);
  259. static int cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  260. static void *malloc_internal_wrapper(size_t size);
  261. static int32_t read_mac_wrapper(uint8_t mac[6]);
  262. static void srand_wrapper(unsigned int seed);
  263. static int rand_wrapper(void);
  264. static uint32_t btdm_lpcycles_2_us(uint32_t cycles);
  265. static uint32_t btdm_us_2_lpcycles(uint32_t us);
  266. static bool btdm_sleep_check_duration(uint32_t *slot_cnt);
  267. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  268. static void btdm_sleep_enter_phase2_wrapper(void);
  269. static void btdm_sleep_exit_phase3_wrapper(void);
  270. static bool coex_bt_wakeup_request(void);
  271. static void coex_bt_wakeup_request_end(void);
  272. static int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  273. static int coex_bt_release_wrapper(uint32_t event);
  274. static int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  275. static uint32_t coex_bb_reset_lock_wrapper(void);
  276. static void coex_bb_reset_unlock_wrapper(uint32_t restore);
  277. static int coex_schm_register_btdm_callback_wrapper(void *callback);
  278. static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
  279. static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
  280. static uint32_t coex_schm_interval_get_wrapper(void);
  281. static uint8_t coex_schm_curr_period_get_wrapper(void);
  282. static void * coex_schm_curr_phase_get_wrapper(void);
  283. static int coex_wifi_channel_get_wrapper(uint8_t *primary, uint8_t *secondary);
  284. static int coex_register_wifi_channel_change_callback_wrapper(void *cb);
  285. static int coex_version_get_wrapper(unsigned int *major, unsigned int *minor, unsigned int *patch);
  286. #if CONFIG_BTDM_CTRL_HLI
  287. static void *customer_queue_create_hlevel_wrapper(uint32_t queue_len, uint32_t item_size);
  288. #endif /* CONFIG_BTDM_CTRL_HLI */
  289. static void interrupt_l3_disable(void);
  290. static void interrupt_l3_restore(void);
  291. static void bt_controller_deinit_internal(void);
  292. /* Local variable definition
  293. ***************************************************************************
  294. */
  295. /* OSI funcs */
  296. static const struct osi_funcs_t osi_funcs_ro = {
  297. ._version = OSI_VERSION,
  298. #if CONFIG_BTDM_CTRL_HLI
  299. ._set_isr = set_isr_hlevel_wrapper,
  300. ._ints_on = xt_ints_on,
  301. ._interrupt_disable = interrupt_hlevel_disable,
  302. ._interrupt_restore = interrupt_hlevel_restore,
  303. #else
  304. ._set_isr = xt_set_interrupt_handler,
  305. ._ints_on = xt_ints_on,
  306. ._interrupt_disable = interrupt_l3_disable,
  307. ._interrupt_restore = interrupt_l3_restore,
  308. #endif /* CONFIG_BTDM_CTRL_HLI */
  309. ._task_yield = task_yield,
  310. ._task_yield_from_isr = task_yield_from_isr,
  311. ._semphr_create = semphr_create_wrapper,
  312. ._semphr_delete = semphr_delete_wrapper,
  313. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  314. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  315. ._semphr_take = semphr_take_wrapper,
  316. ._semphr_give = semphr_give_wrapper,
  317. ._mutex_create = mutex_create_wrapper,
  318. ._mutex_delete = mutex_delete_wrapper,
  319. ._mutex_lock = mutex_lock_wrapper,
  320. ._mutex_unlock = mutex_unlock_wrapper,
  321. #if CONFIG_BTDM_CTRL_HLI
  322. ._queue_create = queue_create_hlevel_wrapper,
  323. ._queue_delete = queue_delete_hlevel_wrapper,
  324. ._queue_send = queue_send_hlevel_wrapper,
  325. ._queue_send_from_isr = queue_send_from_isr_hlevel_wrapper,
  326. ._queue_recv = queue_recv_hlevel_wrapper,
  327. ._queue_recv_from_isr = queue_recv_from_isr_hlevel_wrapper,
  328. #else
  329. ._queue_create = queue_create_wrapper,
  330. ._queue_delete = queue_delete_wrapper,
  331. ._queue_send = queue_send_wrapper,
  332. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  333. ._queue_recv = queue_recv_wrapper,
  334. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  335. #endif /* CONFIG_BTDM_CTRL_HLI */
  336. ._task_create = task_create_wrapper,
  337. ._task_delete = task_delete_wrapper,
  338. ._is_in_isr = is_in_isr_wrapper,
  339. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  340. ._malloc = malloc,
  341. ._malloc_internal = malloc_internal_wrapper,
  342. ._free = free,
  343. ._read_efuse_mac = read_mac_wrapper,
  344. ._srand = srand_wrapper,
  345. ._rand = rand_wrapper,
  346. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  347. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  348. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  349. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  350. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  351. ._btdm_sleep_exit_phase1 = NULL,
  352. ._btdm_sleep_exit_phase2 = NULL,
  353. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  354. ._coex_bt_wakeup_request = coex_bt_wakeup_request,
  355. ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end,
  356. ._coex_bt_request = coex_bt_request_wrapper,
  357. ._coex_bt_release = coex_bt_release_wrapper,
  358. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  359. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  360. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  361. ._coex_schm_register_btdm_callback = coex_schm_register_btdm_callback_wrapper,
  362. ._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
  363. ._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
  364. ._coex_schm_interval_get = coex_schm_interval_get_wrapper,
  365. ._coex_schm_curr_period_get = coex_schm_curr_period_get_wrapper,
  366. ._coex_schm_curr_phase_get = coex_schm_curr_phase_get_wrapper,
  367. ._coex_wifi_channel_get = coex_wifi_channel_get_wrapper,
  368. ._coex_register_wifi_channel_change_callback = coex_register_wifi_channel_change_callback_wrapper,
  369. ._set_isr_l3 = xt_set_interrupt_handler,
  370. ._interrupt_l3_disable = interrupt_l3_disable,
  371. ._interrupt_l3_restore = interrupt_l3_restore,
  372. #if CONFIG_BTDM_CTRL_HLI
  373. ._customer_queue_create = customer_queue_create_hlevel_wrapper,
  374. #else
  375. ._customer_queue_create = NULL,
  376. #endif /* CONFIG_BTDM_CTRL_HLI */
  377. ._coex_version_get = coex_version_get_wrapper,
  378. ._magic = OSI_MAGIC_VALUE,
  379. };
  380. /* the mode column will be modified by release function to indicate the available region */
  381. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  382. //following is .data
  383. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  384. //following is memory which HW will use
  385. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  386. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  387. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  388. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  389. //following is .bss
  390. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  391. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  392. };
  393. /* Reserve the full memory region used by Bluetooth Controller,
  394. * some may be released later at runtime. */
  395. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  396. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  397. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  398. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  399. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  400. /* Static variable declare */
  401. // timestamp when PHY/RF was switched on
  402. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  403. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  404. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  405. // measured average low power clock period in micro seconds
  406. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  407. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  408. #if CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG
  409. // used low power clock
  410. static DRAM_ATTR uint8_t btdm_lpclk_sel;
  411. #endif /* #ifdef CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG */
  412. static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
  413. #ifdef CONFIG_PM_ENABLE
  414. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  415. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  416. static bool s_pm_lock_acquired = true;
  417. static DRAM_ATTR bool s_btdm_allow_light_sleep;
  418. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  419. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  420. static void btdm_slp_tmr_callback(void *arg);
  421. #endif /* #ifdef CONFIG_PM_ENABLE */
  422. static inline void esp_bt_power_domain_on(void)
  423. {
  424. // Bluetooth module power up
  425. esp_wifi_bt_power_domain_on();
  426. }
  427. static inline void esp_bt_power_domain_off(void)
  428. {
  429. // Bluetooth module power down
  430. esp_wifi_bt_power_domain_off();
  431. }
  432. static inline void btdm_check_and_init_bb(void)
  433. {
  434. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  435. int64_t latest_ts = esp_phy_rf_get_on_ts();
  436. if (latest_ts != s_time_phy_rf_just_enabled ||
  437. s_time_phy_rf_just_enabled == 0) {
  438. btdm_rf_bb_init_phase2();
  439. s_time_phy_rf_just_enabled = latest_ts;
  440. }
  441. }
  442. #if CONFIG_BTDM_CTRL_HLI
  443. struct interrupt_hlevel_cb{
  444. uint32_t status;
  445. uint8_t nested;
  446. };
  447. static DRAM_ATTR struct interrupt_hlevel_cb hli_cb = {
  448. .status = 0,
  449. .nested = 0,
  450. };
  451. static xt_handler set_isr_hlevel_wrapper(int mask, xt_handler f, void *arg)
  452. {
  453. esp_err_t err = hli_intr_register((intr_handler_t) f, arg, DPORT_PRO_INTR_STATUS_0_REG, mask);
  454. if (err == ESP_OK) {
  455. return f;
  456. } else {
  457. return 0;
  458. }
  459. }
  460. static void IRAM_ATTR interrupt_hlevel_disable(void)
  461. {
  462. assert(xPortGetCoreID() == CONFIG_BTDM_CTRL_PINNED_TO_CORE);
  463. assert(hli_cb.nested != UCHAR_MAX);
  464. uint32_t status = hli_intr_disable();
  465. if (hli_cb.nested++ == 0) {
  466. hli_cb.status = status;
  467. }
  468. }
  469. static void IRAM_ATTR interrupt_hlevel_restore(void)
  470. {
  471. assert(xPortGetCoreID() == CONFIG_BTDM_CTRL_PINNED_TO_CORE);
  472. assert(hli_cb.nested > 0);
  473. if (--hli_cb.nested == 0) {
  474. hli_intr_restore(hli_cb.status);
  475. }
  476. }
  477. #endif /* CONFIG_BTDM_CTRL_HLI */
  478. static void IRAM_ATTR interrupt_l3_disable(void)
  479. {
  480. if (xPortInIsrContext()) {
  481. portENTER_CRITICAL_ISR(&global_int_mux);
  482. } else {
  483. portENTER_CRITICAL(&global_int_mux);
  484. }
  485. }
  486. static void IRAM_ATTR interrupt_l3_restore(void)
  487. {
  488. if (xPortInIsrContext()) {
  489. portEXIT_CRITICAL_ISR(&global_int_mux);
  490. } else {
  491. portEXIT_CRITICAL(&global_int_mux);
  492. }
  493. }
  494. static void IRAM_ATTR task_yield(void)
  495. {
  496. vPortYield();
  497. }
  498. static void IRAM_ATTR task_yield_from_isr(void)
  499. {
  500. portYIELD_FROM_ISR();
  501. }
  502. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  503. {
  504. btdm_queue_item_t *semphr = heap_caps_calloc(1, sizeof(btdm_queue_item_t), MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
  505. assert(semphr);
  506. void *handle = NULL;
  507. /* IDF FreeRTOS guarantees that all dynamic memory allocation goes to internal RAM. */
  508. handle = (void *)xSemaphoreCreateCounting(max, init);
  509. assert(handle);
  510. #if CONFIG_BTDM_CTRL_HLI
  511. SemaphoreHandle_t downstream_semaphore = handle;
  512. assert(downstream_semaphore);
  513. hli_queue_handle_t s_semaphore = hli_semaphore_create(max, downstream_semaphore);
  514. assert(s_semaphore);
  515. semphr->handle = (void *)s_semaphore;
  516. #else
  517. semphr->handle = handle;
  518. #endif /* CONFIG_BTDM_CTRL_HLI */
  519. return semphr;
  520. }
  521. static void semphr_delete_wrapper(void *semphr)
  522. {
  523. if (semphr == NULL) {
  524. return;
  525. }
  526. btdm_queue_item_t *semphr_item = (btdm_queue_item_t *)semphr;
  527. void *handle = NULL;
  528. #if CONFIG_BTDM_CTRL_HLI
  529. if (semphr_item->handle) {
  530. handle = ((hli_queue_handle_t)(semphr_item->handle))->downstream;
  531. hli_queue_delete((hli_queue_handle_t)(semphr_item->handle));
  532. }
  533. #else
  534. handle = semphr_item->handle;
  535. #endif /* CONFIG_BTDM_CTRL_HLI */
  536. if (handle) {
  537. vSemaphoreDelete(handle);
  538. }
  539. free(semphr);
  540. }
  541. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  542. {
  543. #if CONFIG_BTDM_CTRL_HLI
  544. // Not support it
  545. assert(0);
  546. return 0;
  547. #else
  548. void *handle = ((btdm_queue_item_t *)semphr)->handle;
  549. return (int32_t)xSemaphoreTakeFromISR(handle, hptw);
  550. #endif /* CONFIG_BTDM_CTRL_HLI */
  551. }
  552. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  553. {
  554. void *handle = ((btdm_queue_item_t *)semphr)->handle;
  555. #if CONFIG_BTDM_CTRL_HLI
  556. UNUSED(hptw);
  557. assert(xPortGetCoreID() == CONFIG_BTDM_CTRL_PINNED_TO_CORE);
  558. return hli_semaphore_give(handle);
  559. #else
  560. return (int32_t)xSemaphoreGiveFromISR(handle, hptw);
  561. #endif /* CONFIG_BTDM_CTRL_HLI */
  562. }
  563. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  564. {
  565. bool ret;
  566. void *handle = ((btdm_queue_item_t *)semphr)->handle;
  567. #if CONFIG_BTDM_CTRL_HLI
  568. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  569. ret = xSemaphoreTake(((hli_queue_handle_t)handle)->downstream, portMAX_DELAY);
  570. } else {
  571. ret = xSemaphoreTake(((hli_queue_handle_t)handle)->downstream, block_time_ms / portTICK_PERIOD_MS);
  572. }
  573. #else
  574. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  575. ret = xSemaphoreTake(handle, portMAX_DELAY);
  576. } else {
  577. ret = xSemaphoreTake(handle, block_time_ms / portTICK_PERIOD_MS);
  578. }
  579. #endif /* CONFIG_BTDM_CTRL_HLI */
  580. return (int32_t)ret;
  581. }
  582. static int32_t semphr_give_wrapper(void *semphr)
  583. {
  584. void *handle = ((btdm_queue_item_t *)semphr)->handle;
  585. #if CONFIG_BTDM_CTRL_HLI
  586. return (int32_t)xSemaphoreGive(((hli_queue_handle_t)handle)->downstream);
  587. #else
  588. return (int32_t)xSemaphoreGive(handle);
  589. #endif /* CONFIG_BTDM_CTRL_HLI */
  590. }
  591. static void *mutex_create_wrapper(void)
  592. {
  593. return (void *)xSemaphoreCreateMutex();
  594. }
  595. static void mutex_delete_wrapper(void *mutex)
  596. {
  597. vSemaphoreDelete(mutex);
  598. }
  599. static int32_t mutex_lock_wrapper(void *mutex)
  600. {
  601. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  602. }
  603. static int32_t mutex_unlock_wrapper(void *mutex)
  604. {
  605. return (int32_t)xSemaphoreGive(mutex);
  606. }
  607. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  608. {
  609. btdm_queue_item_t *queue = NULL;
  610. queue = (btdm_queue_item_t*)heap_caps_malloc(sizeof(btdm_queue_item_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  611. assert(queue);
  612. /* IDF FreeRTOS guarantees that all dynamic memory allocation goes to internal RAM. */
  613. queue->handle = xQueueCreate( queue_len, item_size);
  614. assert(queue->handle);
  615. return queue;
  616. }
  617. static void queue_delete_wrapper(void *queue)
  618. {
  619. btdm_queue_item_t *queue_item = (btdm_queue_item_t *)queue;
  620. if (queue_item) {
  621. if(queue_item->handle){
  622. vQueueDelete(queue_item->handle);
  623. }
  624. free(queue_item);
  625. }
  626. }
  627. #if CONFIG_BTDM_CTRL_HLI
  628. static void *queue_create_hlevel_wrapper(uint32_t queue_len, uint32_t item_size)
  629. {
  630. btdm_queue_item_t *queue_item = queue_create_wrapper(queue_len, item_size);
  631. assert(queue_item);
  632. QueueHandle_t downstream_queue = queue_item->handle;
  633. assert(queue_item->handle);
  634. hli_queue_handle_t queue = hli_queue_create(queue_len, item_size, downstream_queue);
  635. assert(queue);
  636. queue_item->handle = queue;
  637. return (void *)queue_item;
  638. }
  639. static void *customer_queue_create_hlevel_wrapper(uint32_t queue_len, uint32_t item_size)
  640. {
  641. btdm_queue_item_t *queue_item = queue_create_wrapper(queue_len, item_size);
  642. assert(queue_item);
  643. QueueHandle_t downstream_queue = queue_item->handle;
  644. assert(queue_item->handle);
  645. hli_queue_handle_t queue = hli_customer_queue_create(queue_len, item_size, downstream_queue);
  646. assert(queue);
  647. queue_item->handle = queue;
  648. return (void *)queue_item;
  649. }
  650. static void queue_delete_hlevel_wrapper(void *queue)
  651. {
  652. if (queue == NULL) {
  653. return;
  654. }
  655. btdm_queue_item_t *queue_item = (btdm_queue_item_t *)queue;
  656. if (queue_item->handle) {
  657. void *handle = ((hli_queue_handle_t)(queue_item->handle))->downstream;
  658. hli_queue_delete(queue_item->handle);
  659. queue_item->handle = handle;
  660. queue_delete_wrapper(queue_item);
  661. }
  662. }
  663. static int32_t queue_send_hlevel_wrapper(void *queue, void *item, uint32_t block_time_ms)
  664. {
  665. void *handle = ((btdm_queue_item_t *)queue)->handle;
  666. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  667. return (int32_t)xQueueSend(((hli_queue_handle_t)handle)->downstream, item, portMAX_DELAY);
  668. } else {
  669. return (int32_t)xQueueSend(((hli_queue_handle_t)handle)->downstream, item, block_time_ms / portTICK_PERIOD_MS);
  670. }
  671. }
  672. /**
  673. * Queue send from isr
  674. * @param queue The queue which will send to
  675. * @param item The message which will be send
  676. * @param hptw need do task yield or not
  677. * @return send success or not
  678. * There is an issue here: When the queue is full, it may reture true but it send fail to the queue, sometimes.
  679. * But in Bluetooth controller's isr, We don't care about the return value.
  680. * It only required tp send success when the queue is empty all the time.
  681. * So, this function meets the requirement.
  682. */
  683. static int32_t IRAM_ATTR queue_send_from_isr_hlevel_wrapper(void *queue, void *item, void *hptw)
  684. {
  685. UNUSED(hptw);
  686. assert(xPortGetCoreID() == CONFIG_BTDM_CTRL_PINNED_TO_CORE);
  687. void *handle = ((btdm_queue_item_t *)queue)->handle;
  688. return hli_queue_put(handle, item);
  689. }
  690. static int32_t queue_recv_hlevel_wrapper(void *queue, void *item, uint32_t block_time_ms)
  691. {
  692. bool ret;
  693. void *handle = ((btdm_queue_item_t *)queue)->handle;
  694. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  695. ret = xQueueReceive(((hli_queue_handle_t)handle)->downstream, item, portMAX_DELAY);
  696. } else {
  697. ret = xQueueReceive(((hli_queue_handle_t)handle)->downstream, item, block_time_ms / portTICK_PERIOD_MS);
  698. }
  699. return (int32_t)ret;
  700. }
  701. static int32_t IRAM_ATTR queue_recv_from_isr_hlevel_wrapper(void *queue, void *item, void *hptw)
  702. {
  703. // Not support it
  704. assert(0);
  705. return 0;
  706. }
  707. #else
  708. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  709. {
  710. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  711. return (int32_t)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY);
  712. } else {
  713. return (int32_t)xQueueSend(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS);
  714. }
  715. }
  716. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  717. {
  718. return (int32_t)xQueueSendFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw);
  719. }
  720. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  721. {
  722. bool ret;
  723. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  724. ret = xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, portMAX_DELAY);
  725. } else {
  726. ret = xQueueReceive(((btdm_queue_item_t*)queue)->handle, item, block_time_ms / portTICK_PERIOD_MS);
  727. }
  728. return (int32_t)ret;
  729. }
  730. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  731. {
  732. return (int32_t)xQueueReceiveFromISR(((btdm_queue_item_t*)queue)->handle, item, hptw);
  733. }
  734. #endif /* CONFIG_BTDM_CTRL_HLI */
  735. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  736. {
  737. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  738. }
  739. static void task_delete_wrapper(void *task_handle)
  740. {
  741. vTaskDelete(task_handle);
  742. }
  743. static bool IRAM_ATTR is_in_isr_wrapper(void)
  744. {
  745. return !xPortCanYield();
  746. }
  747. static void IRAM_ATTR cause_sw_intr(void *arg)
  748. {
  749. /* just convert void * to int, because the width is the same */
  750. uint32_t intr_no = (uint32_t)arg;
  751. XTHAL_SET_INTSET((1<<intr_no));
  752. }
  753. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  754. {
  755. esp_err_t err = ESP_OK;
  756. #if CONFIG_FREERTOS_UNICORE
  757. cause_sw_intr((void *)intr_no);
  758. #else /* CONFIG_FREERTOS_UNICORE */
  759. if (xPortGetCoreID() == core_id) {
  760. cause_sw_intr((void *)intr_no);
  761. } else {
  762. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  763. }
  764. #endif /* !CONFIG_FREERTOS_UNICORE */
  765. return err;
  766. }
  767. static void *malloc_internal_wrapper(size_t size)
  768. {
  769. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  770. }
  771. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  772. {
  773. return esp_read_mac(mac, ESP_MAC_BT);
  774. }
  775. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  776. {
  777. /* empty function */
  778. }
  779. static int IRAM_ATTR rand_wrapper(void)
  780. {
  781. return (int)esp_random();
  782. }
  783. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  784. {
  785. // The number of lp cycles should not lead to overflow. Thrs: 100s
  786. // clock measurement is conducted
  787. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  788. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  789. return (uint32_t)us;
  790. }
  791. /*
  792. * @brief Converts a duration in slots into a number of low power clock cycles.
  793. */
  794. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  795. {
  796. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  797. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  798. // clock measurement is conducted
  799. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  800. return (uint32_t)cycles;
  801. }
  802. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  803. {
  804. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  805. return false;
  806. }
  807. /* wake up in advance considering the delay in enabling PHY/RF */
  808. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  809. return true;
  810. }
  811. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  812. {
  813. #ifdef CONFIG_PM_ENABLE
  814. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  815. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  816. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  817. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  818. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  819. // and set the timer in advance
  820. uint32_t uncertainty = (us_to_sleep >> 11);
  821. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  822. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  823. }
  824. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  825. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  826. }
  827. #endif
  828. }
  829. static void btdm_sleep_enter_phase2_wrapper(void)
  830. {
  831. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  832. esp_phy_disable();
  833. #ifdef CONFIG_PM_ENABLE
  834. if (s_pm_lock_acquired) {
  835. esp_pm_lock_release(s_pm_lock);
  836. s_pm_lock_acquired = false;
  837. }
  838. #endif
  839. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  840. esp_phy_disable();
  841. // pause bluetooth baseband
  842. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  843. }
  844. }
  845. static void btdm_sleep_exit_phase3_wrapper(void)
  846. {
  847. #ifdef CONFIG_PM_ENABLE
  848. if (!s_pm_lock_acquired) {
  849. s_pm_lock_acquired = true;
  850. esp_pm_lock_acquire(s_pm_lock);
  851. }
  852. #endif
  853. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  854. esp_phy_enable();
  855. btdm_check_and_init_bb();
  856. #ifdef CONFIG_PM_ENABLE
  857. esp_timer_stop(s_btdm_slp_tmr);
  858. #endif
  859. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  860. // resume bluetooth baseband
  861. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  862. esp_phy_enable();
  863. }
  864. }
  865. #ifdef CONFIG_PM_ENABLE
  866. static void btdm_slp_tmr_customer_callback(void * arg)
  867. {
  868. (void)(arg);
  869. if (!s_pm_lock_acquired) {
  870. s_pm_lock_acquired = true;
  871. esp_pm_lock_acquire(s_pm_lock);
  872. }
  873. }
  874. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  875. {
  876. (void)(arg);
  877. btdm_dispatch_work_to_controller(btdm_slp_tmr_customer_callback, NULL, true);
  878. }
  879. #endif
  880. #define BTDM_ASYNC_WAKEUP_REQ_HCI 0
  881. #define BTDM_ASYNC_WAKEUP_REQ_COEX 1
  882. #define BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA 2
  883. #define BTDM_ASYNC_WAKEUP_REQMAX 3
  884. static void btdm_wakeup_request_callback(void * arg)
  885. {
  886. (void)(arg);
  887. #if CONFIG_PM_ENABLE
  888. if (!s_pm_lock_acquired) {
  889. s_pm_lock_acquired = true;
  890. esp_pm_lock_acquire(s_pm_lock);
  891. }
  892. esp_timer_stop(s_btdm_slp_tmr);
  893. #endif
  894. btdm_wakeup_request();
  895. semphr_give_wrapper(s_wakeup_req_sem);
  896. }
  897. static bool async_wakeup_request(int event)
  898. {
  899. bool do_wakeup_request = false;
  900. switch (event) {
  901. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  902. btdm_in_wakeup_requesting_set(true);
  903. // NO break
  904. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  905. if (!btdm_power_state_active()) {
  906. do_wakeup_request = true;
  907. btdm_dispatch_work_to_controller(btdm_wakeup_request_callback, NULL, true);
  908. semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
  909. }
  910. break;
  911. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  912. if (!btdm_power_state_active()) {
  913. do_wakeup_request = true;
  914. #if CONFIG_PM_ENABLE
  915. if (!s_pm_lock_acquired) {
  916. s_pm_lock_acquired = true;
  917. esp_pm_lock_acquire(s_pm_lock);
  918. }
  919. esp_timer_stop(s_btdm_slp_tmr);
  920. #endif
  921. btdm_wakeup_request();
  922. }
  923. break;
  924. default:
  925. return false;
  926. }
  927. return do_wakeup_request;
  928. }
  929. static void async_wakeup_request_end(int event)
  930. {
  931. bool request_lock = false;
  932. switch (event) {
  933. case BTDM_ASYNC_WAKEUP_REQ_HCI:
  934. request_lock = true;
  935. break;
  936. case BTDM_ASYNC_WAKEUP_REQ_COEX:
  937. case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA:
  938. request_lock = false;
  939. break;
  940. default:
  941. return;
  942. }
  943. if (request_lock) {
  944. btdm_in_wakeup_requesting_set(false);
  945. }
  946. return;
  947. }
  948. static bool coex_bt_wakeup_request(void)
  949. {
  950. return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX);
  951. }
  952. static void coex_bt_wakeup_request_end(void)
  953. {
  954. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX);
  955. return;
  956. }
  957. static int IRAM_ATTR coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration)
  958. {
  959. #if CONFIG_SW_COEXIST_ENABLE
  960. return coex_bt_request(event, latency, duration);
  961. #else
  962. return 0;
  963. #endif
  964. }
  965. static int IRAM_ATTR coex_bt_release_wrapper(uint32_t event)
  966. {
  967. #if CONFIG_SW_COEXIST_ENABLE
  968. return coex_bt_release(event);
  969. #else
  970. return 0;
  971. #endif
  972. }
  973. static int coex_register_bt_cb_wrapper(coex_func_cb_t cb)
  974. {
  975. #if CONFIG_SW_COEXIST_ENABLE
  976. return coex_register_bt_cb(cb);
  977. #else
  978. return 0;
  979. #endif
  980. }
  981. static uint32_t IRAM_ATTR coex_bb_reset_lock_wrapper(void)
  982. {
  983. #if CONFIG_SW_COEXIST_ENABLE
  984. return coex_bb_reset_lock();
  985. #else
  986. return 0;
  987. #endif
  988. }
  989. static void IRAM_ATTR coex_bb_reset_unlock_wrapper(uint32_t restore)
  990. {
  991. #if CONFIG_SW_COEXIST_ENABLE
  992. coex_bb_reset_unlock(restore);
  993. #endif
  994. }
  995. static int coex_schm_register_btdm_callback_wrapper(void *callback)
  996. {
  997. #if CONFIG_SW_COEXIST_ENABLE
  998. return coex_schm_register_callback(COEX_SCHM_CALLBACK_TYPE_BT, callback);
  999. #else
  1000. return 0;
  1001. #endif
  1002. }
  1003. static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
  1004. {
  1005. #if CONFIG_SW_COEXIST_ENABLE
  1006. coex_schm_status_bit_clear(type, status);
  1007. #endif
  1008. }
  1009. static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
  1010. {
  1011. #if CONFIG_SW_COEXIST_ENABLE
  1012. coex_schm_status_bit_set(type, status);
  1013. #endif
  1014. }
  1015. static uint32_t coex_schm_interval_get_wrapper(void)
  1016. {
  1017. #if CONFIG_SW_COEXIST_ENABLE
  1018. return coex_schm_interval_get();
  1019. #else
  1020. return 0;
  1021. #endif
  1022. }
  1023. static uint8_t coex_schm_curr_period_get_wrapper(void)
  1024. {
  1025. #if CONFIG_SW_COEXIST_ENABLE
  1026. return coex_schm_curr_period_get();
  1027. #else
  1028. return 1;
  1029. #endif
  1030. }
  1031. static void * coex_schm_curr_phase_get_wrapper(void)
  1032. {
  1033. #if CONFIG_SW_COEXIST_ENABLE
  1034. return coex_schm_curr_phase_get();
  1035. #else
  1036. return NULL;
  1037. #endif
  1038. }
  1039. static int coex_wifi_channel_get_wrapper(uint8_t *primary, uint8_t *secondary)
  1040. {
  1041. #if CONFIG_SW_COEXIST_ENABLE
  1042. return coex_wifi_channel_get(primary, secondary);
  1043. #else
  1044. return -1;
  1045. #endif
  1046. }
  1047. static int coex_register_wifi_channel_change_callback_wrapper(void *cb)
  1048. {
  1049. #if CONFIG_SW_COEXIST_ENABLE
  1050. return coex_register_wifi_channel_change_callback(cb);
  1051. #else
  1052. return -1;
  1053. #endif
  1054. }
  1055. static int coex_version_get_wrapper(unsigned int *major, unsigned int *minor, unsigned int *patch)
  1056. {
  1057. #if CONFIG_SW_COEXIST_ENABLE
  1058. const char *ver_str = esp_coex_version_get();
  1059. if (ver_str != NULL) {
  1060. unsigned int _major = 0, _minor = 0, _patch = 0;
  1061. if (sscanf(ver_str, "%u.%u.%u", &_major, &_minor, &_patch) != 3) {
  1062. return -1;
  1063. }
  1064. if (major != NULL) {
  1065. *major = _major;
  1066. }
  1067. if (minor != NULL) {
  1068. *minor = _minor;
  1069. }
  1070. if (patch != NULL) {
  1071. *patch = _patch;
  1072. }
  1073. return 0;
  1074. }
  1075. #endif
  1076. return -1;
  1077. }
  1078. bool esp_vhci_host_check_send_available(void)
  1079. {
  1080. return API_vhci_host_check_send_available();
  1081. }
  1082. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  1083. {
  1084. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI);
  1085. API_vhci_host_send_packet(data, len);
  1086. async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI);
  1087. }
  1088. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  1089. {
  1090. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  1091. }
  1092. static uint32_t btdm_config_mask_load(void)
  1093. {
  1094. uint32_t mask = 0x0;
  1095. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  1096. mask |= BTDM_CFG_HCI_UART;
  1097. #endif
  1098. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  1099. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  1100. #endif
  1101. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  1102. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  1103. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  1104. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  1105. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  1106. return mask;
  1107. }
  1108. static void btdm_controller_mem_init(void)
  1109. {
  1110. /* initialise .data section */
  1111. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  1112. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  1113. //initial em, .bss section
  1114. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  1115. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  1116. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  1117. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  1118. }
  1119. }
  1120. }
  1121. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  1122. {
  1123. int ret = heap_caps_add_region(start, end);
  1124. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  1125. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  1126. * we replace it by ESP_OK
  1127. */
  1128. if (ret == ESP_ERR_INVALID_SIZE) {
  1129. return ESP_OK;
  1130. }
  1131. return ret;
  1132. }
  1133. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  1134. {
  1135. bool update = true;
  1136. intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL;
  1137. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1138. return ESP_ERR_INVALID_STATE;
  1139. }
  1140. //already released
  1141. if (!(mode & btdm_dram_available_region[0].mode)) {
  1142. return ESP_ERR_INVALID_STATE;
  1143. }
  1144. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  1145. //skip the share mode, idle mode and other mode
  1146. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  1147. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  1148. //clear the bit of the mode which will be released
  1149. btdm_dram_available_region[i].mode &= ~mode;
  1150. continue;
  1151. } else {
  1152. //clear the bit of the mode which will be released
  1153. btdm_dram_available_region[i].mode &= ~mode;
  1154. }
  1155. if (update) {
  1156. mem_start = btdm_dram_available_region[i].start;
  1157. mem_end = btdm_dram_available_region[i].end;
  1158. update = false;
  1159. }
  1160. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  1161. mem_end = btdm_dram_available_region[i].end;
  1162. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  1163. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  1164. && mem_end == btdm_dram_available_region[i+1].start) {
  1165. continue;
  1166. } else {
  1167. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  1168. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1169. update = true;
  1170. }
  1171. } else {
  1172. mem_end = btdm_dram_available_region[i].end;
  1173. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  1174. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1175. update = true;
  1176. }
  1177. }
  1178. if (mode == ESP_BT_MODE_BTDM) {
  1179. mem_start = (intptr_t)&_btdm_bss_start;
  1180. mem_end = (intptr_t)&_btdm_bss_end;
  1181. if (mem_start != mem_end) {
  1182. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1183. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1184. }
  1185. mem_start = (intptr_t)&_btdm_data_start;
  1186. mem_end = (intptr_t)&_btdm_data_end;
  1187. if (mem_start != mem_end) {
  1188. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1189. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1190. }
  1191. }
  1192. return ESP_OK;
  1193. }
  1194. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  1195. {
  1196. int ret;
  1197. intptr_t mem_start, mem_end;
  1198. ret = esp_bt_controller_mem_release(mode);
  1199. if (ret != ESP_OK) {
  1200. return ret;
  1201. }
  1202. if (mode == ESP_BT_MODE_BTDM) {
  1203. mem_start = (intptr_t)&_bt_bss_start;
  1204. mem_end = (intptr_t)&_bt_bss_end;
  1205. if (mem_start != mem_end) {
  1206. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1207. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1208. }
  1209. mem_start = (intptr_t)&_bt_data_start;
  1210. mem_end = (intptr_t)&_bt_data_end;
  1211. if (mem_start != mem_end) {
  1212. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1213. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1214. }
  1215. mem_start = (intptr_t)&_nimble_bss_start;
  1216. mem_end = (intptr_t)&_nimble_bss_end;
  1217. if (mem_start != mem_end) {
  1218. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  1219. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1220. }
  1221. mem_start = (intptr_t)&_nimble_data_start;
  1222. mem_end = (intptr_t)&_nimble_data_end;
  1223. if (mem_start != mem_end) {
  1224. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  1225. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  1226. }
  1227. }
  1228. return ESP_OK;
  1229. }
  1230. #if CONFIG_BTDM_CTRL_HLI
  1231. static void hli_queue_setup_cb(void* arg)
  1232. {
  1233. hli_queue_setup();
  1234. }
  1235. static void hli_queue_setup_pinned_to_core(int core_id)
  1236. {
  1237. #if CONFIG_FREERTOS_UNICORE
  1238. hli_queue_setup_cb(NULL);
  1239. #else /* CONFIG_FREERTOS_UNICORE */
  1240. if (xPortGetCoreID() == core_id) {
  1241. hli_queue_setup_cb(NULL);
  1242. } else {
  1243. esp_ipc_call(core_id, hli_queue_setup_cb, NULL);
  1244. }
  1245. #endif /* !CONFIG_FREERTOS_UNICORE */
  1246. }
  1247. #endif /* CONFIG_BTDM_CTRL_HLI */
  1248. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  1249. {
  1250. esp_err_t err;
  1251. uint32_t btdm_cfg_mask = 0;
  1252. #if CONFIG_BTDM_CTRL_HLI
  1253. hli_queue_setup_pinned_to_core(CONFIG_BTDM_CTRL_PINNED_TO_CORE);
  1254. #endif /* CONFIG_BTDM_CTRL_HLI */
  1255. //if all the bt available memory was already released, cannot initialize bluetooth controller
  1256. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  1257. return ESP_ERR_INVALID_STATE;
  1258. }
  1259. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  1260. if (osi_funcs_p == NULL) {
  1261. return ESP_ERR_NO_MEM;
  1262. }
  1263. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  1264. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  1265. return ESP_ERR_INVALID_ARG;
  1266. }
  1267. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  1268. return ESP_ERR_INVALID_STATE;
  1269. }
  1270. if (cfg == NULL) {
  1271. return ESP_ERR_INVALID_ARG;
  1272. }
  1273. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  1274. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  1275. return ESP_ERR_INVALID_ARG;
  1276. }
  1277. //overwrite some parameters
  1278. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  1279. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  1280. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  1281. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  1282. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  1283. return ESP_ERR_INVALID_ARG;
  1284. }
  1285. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  1286. s_wakeup_req_sem = semphr_create_wrapper(1, 0);
  1287. if (s_wakeup_req_sem == NULL) {
  1288. err = ESP_ERR_NO_MEM;
  1289. goto error;
  1290. }
  1291. esp_phy_modem_init();
  1292. esp_bt_power_domain_on();
  1293. btdm_controller_mem_init();
  1294. periph_module_enable(PERIPH_BT_MODULE);
  1295. #ifdef CONFIG_PM_ENABLE
  1296. s_btdm_allow_light_sleep = false;
  1297. #endif
  1298. // set default sleep clock cycle and its fractional bits
  1299. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1300. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1301. #if CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_ORIG
  1302. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1303. #if CONFIG_BTDM_CTRL_LPCLK_SEL_EXT_32K_XTAL
  1304. // check whether or not EXT_CRYS is working
  1305. if (rtc_clk_slow_src_get() == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
  1306. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // External 32kHz XTAL
  1307. #ifdef CONFIG_PM_ENABLE
  1308. s_btdm_allow_light_sleep = true;
  1309. #endif
  1310. } else {
  1311. ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
  1312. "light sleep mode will not be able to apply when bluetooth is enabled");
  1313. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1314. }
  1315. #else
  1316. btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value
  1317. #endif
  1318. bool select_src_ret __attribute__((unused));
  1319. bool set_div_ret __attribute__((unused));
  1320. if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
  1321. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1322. set_div_ret = btdm_lpclk_set_div(esp_clk_xtal_freq() * 2 / MHZ - 1);
  1323. assert(select_src_ret && set_div_ret);
  1324. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1325. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1326. } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K
  1327. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1328. set_div_ret = btdm_lpclk_set_div(0);
  1329. assert(select_src_ret && set_div_ret);
  1330. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1331. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1332. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1333. assert(btdm_lpcycle_us != 0);
  1334. }
  1335. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1336. #elif CONFIG_BTDM_CTRL_MODEM_SLEEP_MODE_EVED
  1337. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1338. #else
  1339. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1340. #endif
  1341. #ifdef CONFIG_PM_ENABLE
  1342. if (!s_btdm_allow_light_sleep) {
  1343. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  1344. goto error;
  1345. }
  1346. }
  1347. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1348. goto error;
  1349. }
  1350. esp_timer_create_args_t create_args = {
  1351. .callback = btdm_slp_tmr_callback,
  1352. .arg = NULL,
  1353. .name = "btSlp"
  1354. };
  1355. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1356. goto error;
  1357. }
  1358. s_pm_lock_acquired = true;
  1359. #endif
  1360. #if CONFIG_SW_COEXIST_ENABLE
  1361. coex_init();
  1362. #endif
  1363. btdm_cfg_mask = btdm_config_mask_load();
  1364. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1365. err = ESP_ERR_NO_MEM;
  1366. goto error;
  1367. }
  1368. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1369. return ESP_OK;
  1370. error:
  1371. bt_controller_deinit_internal();
  1372. return err;
  1373. }
  1374. esp_err_t esp_bt_controller_deinit(void)
  1375. {
  1376. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1377. return ESP_ERR_INVALID_STATE;
  1378. }
  1379. btdm_controller_deinit();
  1380. bt_controller_deinit_internal();
  1381. return ESP_OK;
  1382. }
  1383. static void bt_controller_deinit_internal(void)
  1384. {
  1385. periph_module_disable(PERIPH_BT_MODULE);
  1386. #ifdef CONFIG_PM_ENABLE
  1387. if (!s_btdm_allow_light_sleep) {
  1388. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1389. s_light_sleep_pm_lock = NULL;
  1390. }
  1391. if (s_pm_lock != NULL) {
  1392. esp_pm_lock_delete(s_pm_lock);
  1393. s_pm_lock = NULL;
  1394. }
  1395. if (s_btdm_slp_tmr != NULL) {
  1396. esp_timer_stop(s_btdm_slp_tmr);
  1397. esp_timer_delete(s_btdm_slp_tmr);
  1398. s_btdm_slp_tmr = NULL;
  1399. }
  1400. s_pm_lock_acquired = false;
  1401. #endif
  1402. if (s_wakeup_req_sem) {
  1403. semphr_delete_wrapper(s_wakeup_req_sem);
  1404. s_wakeup_req_sem = NULL;
  1405. }
  1406. if (osi_funcs_p) {
  1407. free(osi_funcs_p);
  1408. osi_funcs_p = NULL;
  1409. }
  1410. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1411. btdm_lpcycle_us = 0;
  1412. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1413. esp_bt_power_domain_off();
  1414. esp_phy_modem_deinit();
  1415. }
  1416. static void bt_controller_shutdown(void* arg)
  1417. {
  1418. esp_bt_controller_shutdown();
  1419. }
  1420. static void bt_shutdown(void)
  1421. {
  1422. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1423. return;
  1424. }
  1425. #if !CONFIG_FREERTOS_UNICORE
  1426. esp_ipc_call_blocking(CONFIG_BTDM_CTRL_PINNED_TO_CORE, bt_controller_shutdown, NULL);
  1427. #else
  1428. bt_controller_shutdown(NULL);
  1429. #endif
  1430. esp_phy_disable();
  1431. return;
  1432. }
  1433. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1434. {
  1435. int ret;
  1436. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1437. return ESP_ERR_INVALID_STATE;
  1438. }
  1439. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1440. if (mode != btdm_controller_get_mode()) {
  1441. return ESP_ERR_INVALID_ARG;
  1442. }
  1443. #ifdef CONFIG_PM_ENABLE
  1444. if (!s_btdm_allow_light_sleep) {
  1445. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1446. }
  1447. esp_pm_lock_acquire(s_pm_lock);
  1448. #endif
  1449. esp_phy_enable();
  1450. #if CONFIG_SW_COEXIST_ENABLE
  1451. coex_enable();
  1452. #endif
  1453. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1454. btdm_controller_enable_sleep(true);
  1455. }
  1456. // inititalize bluetooth baseband
  1457. btdm_check_and_init_bb();
  1458. ret = btdm_controller_enable(mode);
  1459. if (ret != 0) {
  1460. #if CONFIG_SW_COEXIST_ENABLE
  1461. coex_disable();
  1462. #endif
  1463. esp_phy_disable();
  1464. #ifdef CONFIG_PM_ENABLE
  1465. if (!s_btdm_allow_light_sleep) {
  1466. esp_pm_lock_release(s_light_sleep_pm_lock);
  1467. }
  1468. esp_pm_lock_release(s_pm_lock);
  1469. #endif
  1470. return ESP_ERR_INVALID_STATE;
  1471. }
  1472. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1473. ret = esp_register_shutdown_handler(bt_shutdown);
  1474. if (ret != ESP_OK) {
  1475. ESP_LOGW(BTDM_LOG_TAG, "Register shutdown handler failed, ret = 0x%x", ret);
  1476. }
  1477. return ESP_OK;
  1478. }
  1479. esp_err_t esp_bt_controller_disable(void)
  1480. {
  1481. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1482. return ESP_ERR_INVALID_STATE;
  1483. }
  1484. // disable modem sleep and wake up from sleep mode
  1485. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1486. btdm_controller_enable_sleep(false);
  1487. async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA);
  1488. while (!btdm_power_state_active()) {
  1489. esp_rom_delay_us(1000);
  1490. }
  1491. }
  1492. btdm_controller_disable();
  1493. #if CONFIG_SW_COEXIST_ENABLE
  1494. coex_disable();
  1495. #endif
  1496. esp_phy_disable();
  1497. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1498. esp_unregister_shutdown_handler(bt_shutdown);
  1499. #ifdef CONFIG_PM_ENABLE
  1500. if (!s_btdm_allow_light_sleep) {
  1501. esp_pm_lock_release(s_light_sleep_pm_lock);
  1502. }
  1503. esp_pm_lock_release(s_pm_lock);
  1504. #endif
  1505. return ESP_OK;
  1506. }
  1507. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1508. {
  1509. return btdm_controller_status;
  1510. }
  1511. /* extra functions */
  1512. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1513. {
  1514. if (ble_txpwr_set(power_type, power_level) != 0) {
  1515. return ESP_ERR_INVALID_ARG;
  1516. }
  1517. return ESP_OK;
  1518. }
  1519. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1520. {
  1521. return (esp_power_level_t)ble_txpwr_get(power_type);
  1522. }
  1523. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1524. {
  1525. esp_err_t err;
  1526. int ret;
  1527. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1528. if (ret == 0) {
  1529. err = ESP_OK;
  1530. } else if (ret == -1) {
  1531. err = ESP_ERR_INVALID_ARG;
  1532. } else {
  1533. err = ESP_ERR_INVALID_STATE;
  1534. }
  1535. return err;
  1536. }
  1537. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1538. {
  1539. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1540. return ESP_ERR_INVALID_ARG;
  1541. }
  1542. return ESP_OK;
  1543. }
  1544. esp_err_t esp_bt_sleep_enable (void)
  1545. {
  1546. esp_err_t status;
  1547. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1548. return ESP_ERR_INVALID_STATE;
  1549. }
  1550. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG ||
  1551. btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1552. btdm_controller_enable_sleep (true);
  1553. status = ESP_OK;
  1554. } else {
  1555. status = ESP_ERR_NOT_SUPPORTED;
  1556. }
  1557. return status;
  1558. }
  1559. esp_err_t esp_bt_sleep_disable (void)
  1560. {
  1561. esp_err_t status;
  1562. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1563. return ESP_ERR_INVALID_STATE;
  1564. }
  1565. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG ||
  1566. btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1567. btdm_controller_enable_sleep (false);
  1568. status = ESP_OK;
  1569. } else {
  1570. status = ESP_ERR_NOT_SUPPORTED;
  1571. }
  1572. return status;
  1573. }
  1574. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1575. {
  1576. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1577. return ESP_ERR_INVALID_STATE;
  1578. }
  1579. bredr_sco_datapath_set(data_path);
  1580. return ESP_OK;
  1581. }
  1582. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1583. {
  1584. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1585. return ESP_ERR_INVALID_STATE;
  1586. }
  1587. btdm_controller_scan_duplicate_list_clear();
  1588. return ESP_OK;
  1589. }
  1590. /**
  1591. * This function re-write controller's function,
  1592. * As coredump can not show paramerters in function which is in a .a file.
  1593. *
  1594. * After coredump fixing this issue, just delete this function.
  1595. */
  1596. void IRAM_ATTR r_assert(const char *condition, int param0, int param1, const char *file, int line)
  1597. {
  1598. __asm__ __volatile__("ill\n");
  1599. }
  1600. #endif /* CONFIG_BT_ENABLED */