adc_hal.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. /*
  2. * SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <sys/param.h>
  7. #include "sdkconfig.h"
  8. #include "hal/adc_hal.h"
  9. #include "hal/assert.h"
  10. #include "soc/lldesc.h"
  11. #include "soc/soc_caps.h"
  12. #if CONFIG_IDF_TARGET_ESP32
  13. //ADC utilises I2S0 DMA on ESP32
  14. #include "hal/i2s_ll.h"
  15. #include "hal/i2s_types.h"
  16. #include "soc/i2s_struct.h"
  17. #endif
  18. #if CONFIG_IDF_TARGET_ESP32S2
  19. //ADC utilises SPI3 DMA on ESP32S2
  20. #include "hal/spi_ll.h"
  21. #include "soc/spi_struct.h"
  22. #endif
  23. /*---------------------------------------------------------------
  24. Define all ADC DMA required operations here
  25. ---------------------------------------------------------------*/
  26. #if SOC_GDMA_SUPPORTED
  27. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) gdma_ll_rx_clear_interrupt_status(dev, chan, mask)
  28. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, true)
  29. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) gdma_ll_rx_enable_interrupt(dev, chan, mask, false)
  30. #define adc_dma_ll_rx_reset_channel(dev, chan) gdma_ll_rx_reset_channel(dev, chan)
  31. #define adc_dma_ll_rx_stop(dev, chan) gdma_ll_rx_stop(dev, chan)
  32. #define adc_dma_ll_rx_start(dev, chan, addr) do { \
  33. gdma_ll_rx_set_desc_addr(dev, chan, (uint32_t)addr); \
  34. gdma_ll_rx_start(dev, chan); \
  35. } while (0)
  36. #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
  37. #define adc_ll_digi_reset(dev) adc_ll_digi_reset()
  38. #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
  39. #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
  40. //ADC utilises SPI3 DMA on ESP32S2
  41. #elif CONFIG_IDF_TARGET_ESP32S2
  42. #define adc_dma_ll_rx_get_intr(dev, mask) spi_ll_get_intr(dev, mask)
  43. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) spi_ll_clear_intr(dev, mask)
  44. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) spi_ll_enable_intr(dev, mask)
  45. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) spi_ll_disable_intr(dev, mask)
  46. #define adc_dma_ll_rx_reset_channel(dev, chan) spi_dma_ll_rx_reset(dev, chan)
  47. #define adc_dma_ll_rx_stop(dev, chan) spi_dma_ll_rx_stop(dev, chan)
  48. #define adc_dma_ll_rx_start(dev, chan, addr) spi_dma_ll_rx_start(dev, chan, addr)
  49. #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) spi_dma_ll_get_in_suc_eof_desc_addr(dev, chan)
  50. #define adc_ll_digi_dma_set_eof_num(dev, num) adc_ll_digi_dma_set_eof_num(num)
  51. #define adc_ll_digi_reset(dev) adc_ll_digi_reset()
  52. #define adc_ll_digi_trigger_enable(dev) adc_ll_digi_trigger_enable()
  53. #define adc_ll_digi_trigger_disable(dev) adc_ll_digi_trigger_disable()
  54. //ADC utilises I2S0 DMA on ESP32
  55. #else //CONFIG_IDF_TARGET_ESP32
  56. #define adc_dma_ll_rx_get_intr(dev, mask) ({i2s_ll_get_intr_status(dev) & mask;})
  57. #define adc_dma_ll_rx_clear_intr(dev, chan, mask) i2s_ll_clear_intr_status(dev, mask)
  58. #define adc_dma_ll_rx_enable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val |= mask;} while (0)
  59. #define adc_dma_ll_rx_disable_intr(dev, chan, mask) do {((i2s_dev_t *)(dev))->int_ena.val &= ~mask;} while (0)
  60. #define adc_dma_ll_rx_reset_channel(dev, chan) i2s_ll_rx_reset_dma(dev)
  61. #define adc_dma_ll_rx_stop(dev, chan) i2s_ll_rx_stop_link(dev)
  62. #define adc_dma_ll_rx_start(dev, chan, address) do { \
  63. ((i2s_dev_t *)(dev))->in_link.addr = (uint32_t)(address); \
  64. i2s_ll_enable_dma(dev, 1); \
  65. ((i2s_dev_t *)(dev))->in_link.start = 1; \
  66. } while (0)
  67. #define adc_dma_ll_get_in_suc_eof_desc_addr(dev, chan) ({uint32_t addr; i2s_ll_rx_get_eof_des_addr(dev, &addr); addr;})
  68. #define adc_ll_digi_dma_set_eof_num(dev, num) do {((i2s_dev_t *)(dev))->rx_eof_num = num;} while (0)
  69. #define adc_ll_digi_reset(dev) do { \
  70. i2s_ll_rx_reset(dev); \
  71. i2s_ll_rx_reset_fifo(dev); \
  72. } while (0)
  73. #define adc_ll_digi_trigger_enable(dev) i2s_ll_rx_start(dev)
  74. #define adc_ll_digi_trigger_disable(dev) i2s_ll_rx_stop(dev)
  75. #define adc_ll_digi_dma_enable() adc_ll_digi_set_data_source(1) //Will this influence I2S0
  76. #define adc_ll_digi_dma_disable() adc_ll_digi_set_data_source(0)
  77. //ESP32 ADC uses the DMA through I2S. The I2S needs to be configured.
  78. #define I2S_BASE_CLK (160 * 1000 * 1000)
  79. #define SAMPLE_BITS 16
  80. #define ADC_LL_CLKM_DIV_NUM_DEFAULT 2
  81. #define ADC_LL_CLKM_DIV_B_DEFAULT 0
  82. #define ADC_LL_CLKM_DIV_A_DEFAULT 1
  83. #endif
  84. void adc_hal_dma_ctx_config(adc_hal_dma_ctx_t *hal, const adc_hal_dma_config_t *config)
  85. {
  86. hal->desc_dummy_head.next = hal->rx_desc;
  87. hal->dev = config->dev;
  88. hal->desc_max_num = config->desc_max_num;
  89. hal->dma_chan = config->dma_chan;
  90. hal->eof_num = config->eof_num;
  91. }
  92. void adc_hal_digi_init(adc_hal_dma_ctx_t *hal)
  93. {
  94. // Set internal FSM wait time, fixed value.
  95. adc_ll_digi_set_fsm_time(ADC_LL_FSM_RSTB_WAIT_DEFAULT, ADC_LL_FSM_START_WAIT_DEFAULT,
  96. ADC_LL_FSM_STANDBY_WAIT_DEFAULT);
  97. adc_ll_set_sample_cycle(ADC_LL_SAMPLE_CYCLE_DEFAULT);
  98. adc_hal_pwdet_set_cct(ADC_LL_PWDET_CCT_DEFAULT);
  99. adc_ll_digi_output_invert(ADC_UNIT_1, ADC_LL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_1));
  100. adc_ll_digi_output_invert(ADC_UNIT_2, ADC_LL_DIGI_DATA_INVERT_DEFAULT(ADC_UNIT_2));
  101. adc_ll_digi_set_clk_div(ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT);
  102. adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
  103. adc_dma_ll_rx_enable_intr(hal->dev, hal->dma_chan, ADC_HAL_DMA_INTR_MASK);
  104. adc_ll_digi_dma_set_eof_num(hal->dev, hal->eof_num);
  105. #if CONFIG_IDF_TARGET_ESP32
  106. i2s_ll_rx_set_sample_bit(hal->dev, SAMPLE_BITS, SAMPLE_BITS);
  107. i2s_ll_rx_enable_mono_mode(hal->dev, 1);
  108. i2s_ll_rx_force_enable_fifo_mod(hal->dev, 1);
  109. i2s_ll_enable_builtin_adc(hal->dev, 1);
  110. #endif
  111. adc_oneshot_ll_disable_all_unit();
  112. }
  113. void adc_hal_digi_deinit(adc_hal_dma_ctx_t *hal)
  114. {
  115. adc_ll_digi_trigger_disable(hal->dev);
  116. adc_ll_digi_dma_disable();
  117. adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
  118. adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
  119. adc_ll_digi_reset(hal->dev);
  120. adc_ll_digi_controller_clk_disable();
  121. }
  122. /*---------------------------------------------------------------
  123. DMA read
  124. ---------------------------------------------------------------*/
  125. static adc_ll_digi_convert_mode_t get_convert_mode(adc_digi_convert_mode_t convert_mode)
  126. {
  127. #if CONFIG_IDF_TARGET_ESP32 || SOC_ADC_DIGI_CONTROLLER_NUM == 1
  128. return ADC_LL_DIGI_CONV_ONLY_ADC1;
  129. #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
  130. switch (convert_mode) {
  131. case ADC_CONV_SINGLE_UNIT_1:
  132. return ADC_LL_DIGI_CONV_ONLY_ADC1;
  133. case ADC_CONV_SINGLE_UNIT_2:
  134. return ADC_LL_DIGI_CONV_ONLY_ADC2;
  135. case ADC_CONV_BOTH_UNIT:
  136. return ADC_LL_DIGI_CONV_BOTH_UNIT;
  137. case ADC_CONV_ALTER_UNIT:
  138. return ADC_LL_DIGI_CONV_ALTER_UNIT;
  139. default:
  140. abort();
  141. }
  142. #endif
  143. }
  144. /**
  145. * For esp32s2 and later chips
  146. * - Set ADC digital controller clock division factor. The clock is divided from `APLL` or `APB` clock.
  147. * Expression: controller_clk = APLL/APB * (div_num + div_a / div_b + 1).
  148. * - Enable clock and select clock source for ADC digital controller.
  149. * For esp32, use I2S clock
  150. */
  151. static void adc_hal_digi_sample_freq_config(adc_hal_dma_ctx_t *hal, adc_continuous_clk_src_t clk_src, uint32_t clk_src_freq_hz, uint32_t sample_freq_hz)
  152. {
  153. #if !CONFIG_IDF_TARGET_ESP32
  154. uint32_t interval = clk_src_freq_hz / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1) / 2 / sample_freq_hz;
  155. //set sample interval
  156. adc_ll_digi_set_trigger_interval(interval);
  157. //Here we set the clock divider factor to make the digital clock to 5M Hz
  158. adc_ll_digi_controller_clk_div(ADC_LL_CLKM_DIV_NUM_DEFAULT, ADC_LL_CLKM_DIV_B_DEFAULT, ADC_LL_CLKM_DIV_A_DEFAULT);
  159. adc_ll_digi_clk_sel(clk_src);
  160. #else
  161. i2s_ll_rx_clk_set_src(hal->dev, I2S_CLK_SRC_DEFAULT); /*!< Clock from PLL_D2_CLK(160M)*/
  162. uint32_t bclk_div = 16;
  163. uint32_t bclk = sample_freq_hz * 2;
  164. uint32_t mclk = bclk * bclk_div;
  165. uint32_t mclk_div = I2S_BASE_CLK / mclk;
  166. i2s_ll_rx_set_mclk(hal->dev, I2S_BASE_CLK, mclk, mclk_div);
  167. i2s_ll_rx_set_bck_div_num(hal->dev, bclk_div);
  168. #endif
  169. }
  170. void adc_hal_digi_controller_config(adc_hal_dma_ctx_t *hal, const adc_hal_digi_ctrlr_cfg_t *cfg)
  171. {
  172. #if (SOC_ADC_DIGI_CONTROLLER_NUM == 1)
  173. //Only one pattern table, this variable is for readability
  174. const int pattern_both = 0;
  175. adc_ll_digi_clear_pattern_table(pattern_both);
  176. adc_ll_digi_set_pattern_table_len(pattern_both, cfg->adc_pattern_len);
  177. for (int i = 0; i < cfg->adc_pattern_len; i++) {
  178. adc_ll_digi_set_pattern_table(pattern_both, i, cfg->adc_pattern[i]);
  179. }
  180. #elif (SOC_ADC_DIGI_CONTROLLER_NUM >= 2)
  181. uint32_t adc1_pattern_idx = 0;
  182. uint32_t adc2_pattern_idx = 0;
  183. adc_ll_digi_clear_pattern_table(ADC_UNIT_1);
  184. adc_ll_digi_clear_pattern_table(ADC_UNIT_2);
  185. for (int i = 0; i < cfg->adc_pattern_len; i++) {
  186. if (cfg->adc_pattern[i].unit == ADC_UNIT_1) {
  187. adc_ll_digi_set_pattern_table(ADC_UNIT_1, adc1_pattern_idx, cfg->adc_pattern[i]);
  188. adc1_pattern_idx++;
  189. } else if (cfg->adc_pattern[i].unit == ADC_UNIT_2) {
  190. adc_ll_digi_set_pattern_table(ADC_UNIT_2, adc2_pattern_idx, cfg->adc_pattern[i]);
  191. adc2_pattern_idx++;
  192. } else {
  193. abort();
  194. }
  195. }
  196. adc_ll_digi_set_pattern_table_len(ADC_UNIT_1, adc1_pattern_idx);
  197. adc_ll_digi_set_pattern_table_len(ADC_UNIT_2, adc2_pattern_idx);
  198. #endif
  199. adc_ll_digi_convert_limit_enable(ADC_LL_DEFAULT_CONV_LIMIT_EN);
  200. adc_ll_digi_set_convert_limit_num(ADC_LL_DEFAULT_CONV_LIMIT_NUM);
  201. adc_ll_digi_set_convert_mode(get_convert_mode(cfg->conv_mode));
  202. //clock and sample frequency
  203. adc_hal_digi_sample_freq_config(hal, cfg->clk_src, cfg->clk_src_freq_hz, cfg->sample_freq_hz);
  204. }
  205. static void adc_hal_digi_dma_link_descriptors(dma_descriptor_t *desc, uint8_t *data_buf, uint32_t size, uint32_t num)
  206. {
  207. HAL_ASSERT(((uint32_t)data_buf % 4) == 0);
  208. HAL_ASSERT((size % 4) == 0);
  209. uint32_t n = 0;
  210. while (num--) {
  211. desc[n] = (dma_descriptor_t) {
  212. .dw0.size = size,
  213. .dw0.length = 0,
  214. .dw0.suc_eof = 0,
  215. .dw0.owner = 1,
  216. .buffer = data_buf,
  217. .next = &desc[n+1]
  218. };
  219. data_buf += size;
  220. n++;
  221. }
  222. desc[n-1].next = NULL;
  223. }
  224. void adc_hal_digi_start(adc_hal_dma_ctx_t *hal, uint8_t *data_buf)
  225. {
  226. //stop peripheral and DMA
  227. adc_hal_digi_stop(hal);
  228. //reset DMA
  229. adc_dma_ll_rx_reset_channel(hal->dev, hal->dma_chan);
  230. //reset peripheral
  231. adc_ll_digi_reset(hal->dev);
  232. //reset the current descriptor address
  233. hal->cur_desc_ptr = &hal->desc_dummy_head;
  234. adc_hal_digi_dma_link_descriptors(hal->rx_desc, data_buf, hal->eof_num * SOC_ADC_DIGI_DATA_BYTES_PER_CONV, hal->desc_max_num);
  235. //start DMA
  236. adc_dma_ll_rx_start(hal->dev, hal->dma_chan, (lldesc_t *)hal->rx_desc);
  237. //connect DMA and peripheral
  238. adc_ll_digi_dma_enable();
  239. //start ADC
  240. adc_ll_digi_trigger_enable(hal->dev);
  241. }
  242. #if !SOC_GDMA_SUPPORTED
  243. intptr_t adc_hal_get_desc_addr(adc_hal_dma_ctx_t *hal)
  244. {
  245. return adc_dma_ll_get_in_suc_eof_desc_addr(hal->dev, hal->dma_chan);
  246. }
  247. bool adc_hal_check_event(adc_hal_dma_ctx_t *hal, uint32_t mask)
  248. {
  249. return adc_dma_ll_rx_get_intr(hal->dev, mask);
  250. }
  251. #endif //#if !SOC_GDMA_SUPPORTED
  252. adc_hal_dma_desc_status_t adc_hal_get_reading_result(adc_hal_dma_ctx_t *hal, const intptr_t eof_desc_addr, dma_descriptor_t **cur_desc)
  253. {
  254. HAL_ASSERT(hal->cur_desc_ptr);
  255. if (!hal->cur_desc_ptr->next) {
  256. return ADC_HAL_DMA_DESC_NULL;
  257. }
  258. if ((intptr_t)hal->cur_desc_ptr == eof_desc_addr) {
  259. return ADC_HAL_DMA_DESC_WAITING;
  260. }
  261. hal->cur_desc_ptr = hal->cur_desc_ptr->next;
  262. *cur_desc = hal->cur_desc_ptr;
  263. return ADC_HAL_DMA_DESC_VALID;
  264. }
  265. void adc_hal_digi_clr_intr(adc_hal_dma_ctx_t *hal, uint32_t mask)
  266. {
  267. adc_dma_ll_rx_clear_intr(hal->dev, hal->dma_chan, mask);
  268. }
  269. void adc_hal_digi_dis_intr(adc_hal_dma_ctx_t *hal, uint32_t mask)
  270. {
  271. adc_dma_ll_rx_disable_intr(hal->dev, hal->dma_chan, mask);
  272. }
  273. void adc_hal_digi_stop(adc_hal_dma_ctx_t *hal)
  274. {
  275. //stop ADC
  276. adc_ll_digi_trigger_disable(hal->dev);
  277. //stop DMA
  278. adc_dma_ll_rx_stop(hal->dev, hal->dma_chan);
  279. //disconnect DMA and peripheral
  280. adc_ll_digi_dma_disable();
  281. }