uart.c 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/task.h"
  24. #include "freertos/ringbuf.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "sdkconfig.h"
  30. #if CONFIG_IDF_TARGET_ESP32
  31. #include "esp32/clk.h"
  32. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  33. #include "esp32s2beta/clk.h"
  34. #endif
  35. #define UART_NUM SOC_UART_NUM
  36. #define UART_NUM SOC_UART_NUM
  37. #define XOFF (char)0x13
  38. #define XON (char)0x11
  39. static const char *UART_TAG = "uart";
  40. #define UART_CHECK(a, str, ret_val) \
  41. if (!(a)) { \
  42. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  43. return (ret_val); \
  44. }
  45. #define UART_EMPTY_THRESH_DEFAULT (10)
  46. #define UART_FULL_THRESH_DEFAULT (120)
  47. #define UART_TOUT_THRESH_DEFAULT (10)
  48. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  49. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  50. #define UART_TX_IDLE_NUM_DEFAULT (0)
  51. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  52. #define UART_MIN_WAKEUP_THRESH (2)
  53. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  54. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  55. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  56. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  57. // Check actual UART mode set
  58. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  59. typedef struct {
  60. uart_event_type_t type; /*!< UART TX data type */
  61. struct {
  62. int brk_len;
  63. size_t size;
  64. uint8_t data[0];
  65. } tx_data;
  66. } uart_tx_data_t;
  67. typedef struct {
  68. int wr;
  69. int rd;
  70. int len;
  71. int *data;
  72. } uart_pat_rb_t;
  73. typedef struct {
  74. uart_port_t uart_num; /*!< UART port number*/
  75. int queue_size; /*!< UART event queue size*/
  76. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  77. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  78. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  79. bool coll_det_flg; /*!< UART collision detection flag */
  80. //rx parameters
  81. int rx_buffered_len; /*!< UART cached data length */
  82. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  83. int rx_buf_size; /*!< RX ring buffer size */
  84. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  85. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  86. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  87. uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
  88. uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
  89. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  90. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  91. uart_pat_rb_t rx_pattern_pos;
  92. //tx parameters
  93. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  94. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  95. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  96. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  97. int tx_buf_size; /*!< TX ring buffer size */
  98. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  99. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  100. uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  101. uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  102. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  103. uint32_t tx_len_cur;
  104. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  105. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  106. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  107. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  108. } uart_obj_t;
  109. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  110. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  111. static DRAM_ATTR uart_dev_t *const UART[UART_NUM_MAX] = {
  112. &UART0,
  113. &UART1,
  114. #if UART_NUM > 2
  115. &UART2
  116. #endif
  117. };
  118. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  119. portMUX_INITIALIZER_UNLOCKED,
  120. portMUX_INITIALIZER_UNLOCKED,
  121. #if UART_NUM > 2
  122. portMUX_INITIALIZER_UNLOCKED
  123. #endif
  124. };
  125. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  126. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  127. {
  128. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  129. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  130. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  131. UART[uart_num]->conf0.bit_num = data_bit;
  132. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  133. return ESP_OK;
  134. }
  135. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
  136. {
  137. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  138. *(data_bit) = UART[uart_num]->conf0.bit_num;
  139. return ESP_OK;
  140. }
  141. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  142. {
  143. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  144. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  145. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  146. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  147. if (stop_bit == UART_STOP_BITS_2) {
  148. stop_bit = UART_STOP_BITS_1;
  149. UART[uart_num]->rs485_conf.dl1_en = 1;
  150. } else {
  151. UART[uart_num]->rs485_conf.dl1_en = 0;
  152. }
  153. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  154. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. #if CONFIG_IDF_TARGET_ESP32
  161. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  162. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  163. (*stop_bit) = UART_STOP_BITS_2;
  164. } else {
  165. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  166. }
  167. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  168. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  169. #endif
  170. return ESP_OK;
  171. }
  172. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  173. {
  174. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  175. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  176. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  177. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  178. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  179. return ESP_OK;
  180. }
  181. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
  182. {
  183. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  184. int val = UART[uart_num]->conf0.val;
  185. if (val & UART_PARITY_EN_M) {
  186. if (val & UART_PARITY_M) {
  187. (*parity_mode) = UART_PARITY_ODD;
  188. } else {
  189. (*parity_mode) = UART_PARITY_EVEN;
  190. }
  191. } else {
  192. (*parity_mode) = UART_PARITY_DISABLE;
  193. }
  194. return ESP_OK;
  195. }
  196. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  197. {
  198. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  199. esp_err_t ret = ESP_OK;
  200. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  201. int uart_clk_freq;
  202. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  203. /* this UART has been configured to use REF_TICK */
  204. uart_clk_freq = REF_CLK_FREQ;
  205. } else {
  206. uart_clk_freq = esp_clk_apb_freq();
  207. }
  208. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  209. if (clk_div < 16) {
  210. /* baud rate is too high for this clock frequency */
  211. ret = ESP_ERR_INVALID_ARG;
  212. } else {
  213. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  214. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  215. }
  216. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  217. return ret;
  218. }
  219. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  220. {
  221. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  222. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  223. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  224. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  225. uint32_t uart_clk_freq = esp_clk_apb_freq();
  226. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  227. uart_clk_freq = REF_CLK_FREQ;
  228. }
  229. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  230. return ESP_OK;
  231. }
  232. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  233. {
  234. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  235. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  236. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  237. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  238. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  239. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  240. return ESP_OK;
  241. }
  242. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  243. {
  244. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  245. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  246. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  247. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  248. UART[uart_num]->flow_conf.sw_flow_con_en = enable ? 1 : 0;
  249. UART[uart_num]->flow_conf.xonoff_del = enable ? 1 : 0;
  250. #if CONFIG_IDF_TARGET_ESP32
  251. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  252. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  253. UART[uart_num]->swfc_conf.xon_char = XON;
  254. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  255. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  256. UART[uart_num]->swfc_conf1.xon_threshold = rx_thresh_xon;
  257. UART[uart_num]->swfc_conf0.xoff_threshold = rx_thresh_xoff;
  258. UART[uart_num]->swfc_conf1.xon_char = XON;
  259. UART[uart_num]->swfc_conf0.xoff_char = XOFF;
  260. #endif
  261. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  262. return ESP_OK;
  263. }
  264. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  265. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  266. {
  267. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  268. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  269. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  270. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  271. if (flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  272. #if CONFIG_IDF_TARGET_ESP32
  273. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  274. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  275. UART[uart_num]->mem_conf.rx_flow_thrhd = rx_thresh;
  276. #endif
  277. UART[uart_num]->conf1.rx_flow_en = 1;
  278. } else {
  279. UART[uart_num]->conf1.rx_flow_en = 0;
  280. }
  281. if (flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  282. UART[uart_num]->conf0.tx_flow_en = 1;
  283. } else {
  284. UART[uart_num]->conf0.tx_flow_en = 0;
  285. }
  286. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  287. return ESP_OK;
  288. }
  289. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
  290. {
  291. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  292. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  293. if (UART[uart_num]->conf1.rx_flow_en) {
  294. val |= UART_HW_FLOWCTRL_RTS;
  295. }
  296. if (UART[uart_num]->conf0.tx_flow_en) {
  297. val |= UART_HW_FLOWCTRL_CTS;
  298. }
  299. (*flow_ctrl) = val;
  300. return ESP_OK;
  301. }
  302. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  303. {
  304. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  305. #if CONFIG_IDF_TARGET_ESP32
  306. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  307. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  308. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  309. while (UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  310. READ_PERI_REG(UART_FIFO_REG(uart_num));
  311. }
  312. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  313. UART[uart_num]->conf0.rxfifo_rst = 1;
  314. UART[uart_num]->conf0.rxfifo_rst = 0;
  315. #endif
  316. return ESP_OK;
  317. }
  318. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  319. {
  320. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  321. //intr_clr register is write-only
  322. UART[uart_num]->int_clr.val = clr_mask;
  323. return ESP_OK;
  324. }
  325. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  326. {
  327. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  328. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  329. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  330. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  331. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  332. return ESP_OK;
  333. }
  334. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  335. {
  336. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  337. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  338. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  339. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  340. return ESP_OK;
  341. }
  342. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  343. {
  344. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  345. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  346. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  347. }
  348. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  349. {
  350. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  351. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  352. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  353. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  354. }
  355. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  356. {
  357. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  358. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  359. int *pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  360. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  361. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  362. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  363. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  364. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  365. free(pdata);
  366. }
  367. return ESP_OK;
  368. }
  369. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  370. {
  371. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  372. esp_err_t ret = ESP_OK;
  373. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  374. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  375. int next = p_pos->wr + 1;
  376. if (next >= p_pos->len) {
  377. next = 0;
  378. }
  379. if (next == p_pos->rd) {
  380. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  381. ret = ESP_FAIL;
  382. } else {
  383. p_pos->data[p_pos->wr] = pos;
  384. p_pos->wr = next;
  385. ret = ESP_OK;
  386. }
  387. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  388. return ret;
  389. }
  390. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  391. {
  392. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  393. if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  394. return ESP_ERR_INVALID_STATE;
  395. } else {
  396. esp_err_t ret = ESP_OK;
  397. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  398. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  399. if (p_pos->rd == p_pos->wr) {
  400. ret = ESP_FAIL;
  401. } else {
  402. p_pos->rd++;
  403. }
  404. if (p_pos->rd >= p_pos->len) {
  405. p_pos->rd = 0;
  406. }
  407. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  408. return ret;
  409. }
  410. }
  411. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  412. {
  413. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  414. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  415. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  416. int rd = p_pos->rd;
  417. while (rd != p_pos->wr) {
  418. p_pos->data[rd] -= diff_len;
  419. int rd_rec = rd;
  420. rd ++;
  421. if (rd >= p_pos->len) {
  422. rd = 0;
  423. }
  424. if (p_pos->data[rd_rec] < 0) {
  425. p_pos->rd = rd;
  426. }
  427. }
  428. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  429. return ESP_OK;
  430. }
  431. int uart_pattern_pop_pos(uart_port_t uart_num)
  432. {
  433. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  434. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  435. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  436. int pos = -1;
  437. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  438. pos = pat_pos->data[pat_pos->rd];
  439. uart_pattern_dequeue(uart_num);
  440. }
  441. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  442. return pos;
  443. }
  444. int uart_pattern_get_pos(uart_port_t uart_num)
  445. {
  446. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  447. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  448. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  449. int pos = -1;
  450. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  451. pos = pat_pos->data[pat_pos->rd];
  452. }
  453. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  454. return pos;
  455. }
  456. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  457. {
  458. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  459. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  460. int *pdata = (int *) malloc(queue_length * sizeof(int));
  461. if (pdata == NULL) {
  462. return ESP_ERR_NO_MEM;
  463. }
  464. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  465. int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  466. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  467. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  468. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  469. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  470. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  471. free(ptmp);
  472. return ESP_OK;
  473. }
  474. #if CONFIG_IDF_TARGET_ESP32
  475. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  476. {
  477. //This function is deprecated, please use uart_enable_pattern_det_baud_intr instead.
  478. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  479. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  480. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  481. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  482. UART[uart_num]->at_cmd_char.data = pattern_chr;
  483. UART[uart_num]->at_cmd_char.char_num = chr_num;
  484. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  485. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  486. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  487. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  488. }
  489. #endif
  490. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  491. {
  492. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  493. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  494. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  495. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  496. UART[uart_num]->at_cmd_char.data = pattern_chr;
  497. UART[uart_num]->at_cmd_char.char_num = chr_num;
  498. #if CONFIG_IDF_TARGET_ESP32
  499. int apb_clk_freq = 0;
  500. uint32_t uart_baud = 0;
  501. uint32_t uart_div = 0;
  502. uart_get_baudrate(uart_num, &uart_baud);
  503. apb_clk_freq = esp_clk_apb_freq();
  504. uart_div = apb_clk_freq / uart_baud;
  505. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout * uart_div;
  506. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle * uart_div;
  507. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle * uart_div;
  508. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  509. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  510. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  511. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  512. #endif
  513. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  514. }
  515. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  516. {
  517. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  518. }
  519. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  520. {
  521. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  522. }
  523. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  524. {
  525. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  526. }
  527. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  528. {
  529. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  530. }
  531. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  532. {
  533. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  534. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  535. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  536. UART[uart_num]->int_clr.txfifo_empty = 1;
  537. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  538. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  539. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  540. return ESP_OK;
  541. }
  542. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  543. {
  544. int ret;
  545. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  546. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  547. switch(uart_num) {
  548. case UART_NUM_1:
  549. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  550. break;
  551. #if UART_NUM > 2
  552. case UART_NUM_2:
  553. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  554. break;
  555. #endif
  556. case UART_NUM_0:
  557. default:
  558. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  559. break;
  560. }
  561. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  562. return ret;
  563. }
  564. esp_err_t uart_isr_free(uart_port_t uart_num)
  565. {
  566. esp_err_t ret;
  567. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  568. if (p_uart_obj[uart_num]->intr_handle == NULL) {
  569. return ESP_ERR_INVALID_ARG;
  570. }
  571. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  572. ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  573. p_uart_obj[uart_num]->intr_handle = NULL;
  574. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  575. return ret;
  576. }
  577. //internal signal can be output to multiple GPIO pads
  578. //only one GPIO pad can connect with input signal
  579. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  580. {
  581. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  582. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  583. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  584. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  585. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  586. int tx_sig, rx_sig, rts_sig, cts_sig;
  587. switch(uart_num) {
  588. case UART_NUM_0:
  589. tx_sig = U0TXD_OUT_IDX;
  590. rx_sig = U0RXD_IN_IDX;
  591. rts_sig = U0RTS_OUT_IDX;
  592. cts_sig = U0CTS_IN_IDX;
  593. break;
  594. case UART_NUM_1:
  595. tx_sig = U1TXD_OUT_IDX;
  596. rx_sig = U1RXD_IN_IDX;
  597. rts_sig = U1RTS_OUT_IDX;
  598. cts_sig = U1CTS_IN_IDX;
  599. break;
  600. #if UART_NUM > 2
  601. case UART_NUM_2:
  602. tx_sig = U2TXD_OUT_IDX;
  603. rx_sig = U2RXD_IN_IDX;
  604. rts_sig = U2RTS_OUT_IDX;
  605. cts_sig = U2CTS_IN_IDX;
  606. break;
  607. #endif
  608. case UART_NUM_MAX:
  609. default:
  610. tx_sig = U0TXD_OUT_IDX;
  611. rx_sig = U0RXD_IN_IDX;
  612. rts_sig = U0RTS_OUT_IDX;
  613. cts_sig = U0CTS_IN_IDX;
  614. break;
  615. }
  616. if (tx_io_num >= 0) {
  617. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  618. gpio_set_level(tx_io_num, 1);
  619. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  620. }
  621. if (rx_io_num >= 0) {
  622. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  623. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  624. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  625. gpio_matrix_in(rx_io_num, rx_sig, 0);
  626. }
  627. if (rts_io_num >= 0) {
  628. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  629. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  630. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  631. }
  632. if (cts_io_num >= 0) {
  633. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  634. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  635. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  636. gpio_matrix_in(cts_io_num, cts_sig, 0);
  637. }
  638. return ESP_OK;
  639. }
  640. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  641. {
  642. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  643. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  644. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  645. UART[uart_num]->conf0.sw_rts = level & 0x1;
  646. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  647. return ESP_OK;
  648. }
  649. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  650. {
  651. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  652. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  653. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  654. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  655. return ESP_OK;
  656. }
  657. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  658. {
  659. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  660. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  661. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  662. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  663. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  664. return ESP_OK;
  665. }
  666. static periph_module_t get_periph_module(uart_port_t uart_num)
  667. {
  668. periph_module_t periph_module = PERIPH_UART0_MODULE;
  669. if (uart_num == UART_NUM_0) {
  670. periph_module = PERIPH_UART0_MODULE;
  671. } else if (uart_num == UART_NUM_1) {
  672. periph_module = PERIPH_UART1_MODULE;
  673. }
  674. #if SOC_UART_NUM > 2
  675. else if (uart_num == UART_NUM_2) {
  676. periph_module = PERIPH_UART2_MODULE;
  677. }
  678. #endif
  679. else {
  680. assert(0 && "uart_num error");
  681. }
  682. return periph_module;
  683. }
  684. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  685. {
  686. esp_err_t r;
  687. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  688. UART_CHECK((uart_config), "param null", ESP_FAIL);
  689. periph_module_t periph_module = get_periph_module(uart_num);
  690. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  691. periph_module_reset(periph_module);
  692. }
  693. periph_module_enable(periph_module);
  694. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  695. if (r != ESP_OK) {
  696. return r;
  697. }
  698. UART[uart_num]->conf0.val =
  699. (uart_config->parity << UART_PARITY_S)
  700. | (uart_config->data_bits << UART_BIT_NUM_S)
  701. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  702. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  703. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  704. if (r != ESP_OK) {
  705. return r;
  706. }
  707. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  708. if (r != ESP_OK) {
  709. return r;
  710. }
  711. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  712. //A hardware reset does not reset the fifo,
  713. //so we need to reset the fifo manually.
  714. uart_reset_rx_fifo(uart_num);
  715. return r;
  716. }
  717. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  718. {
  719. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  720. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  721. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  722. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  723. if (intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  724. #if CONFIG_IDF_TARGET_ESP32
  725. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  726. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  727. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  728. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  729. } else {
  730. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  731. }
  732. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  733. UART[uart_num]->mem_conf.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  734. #endif
  735. UART[uart_num]->conf1.rx_tout_en = 1;
  736. } else {
  737. UART[uart_num]->conf1.rx_tout_en = 0;
  738. }
  739. if (intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  740. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  741. }
  742. if (intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  743. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  744. }
  745. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  746. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  747. return ESP_OK;
  748. }
  749. static int uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, int pat_num)
  750. {
  751. int cnt = 0;
  752. int len = length;
  753. while (len >= 0) {
  754. if (buf[len] == pat_chr) {
  755. cnt++;
  756. } else {
  757. cnt = 0;
  758. }
  759. if (cnt >= pat_num) {
  760. break;
  761. }
  762. len --;
  763. }
  764. return len;
  765. }
  766. //internal isr handler for default driver code.
  767. static void uart_rx_intr_handler_default(void *param)
  768. {
  769. uart_obj_t *p_uart = (uart_obj_t *) param;
  770. uint8_t uart_num = p_uart->uart_num;
  771. uart_dev_t *uart_reg = UART[uart_num];
  772. int rx_fifo_len = 0;
  773. uint8_t buf_idx = 0;
  774. uint32_t uart_intr_status = 0;
  775. uart_event_t uart_event;
  776. portBASE_TYPE HPTaskAwoken = 0;
  777. static uint8_t pat_flg = 0;
  778. while(1) {
  779. uart_intr_status = uart_reg->int_st.val;
  780. // The `continue statement` may cause the interrupt to loop infinitely
  781. // we exit the interrupt here
  782. if(uart_intr_status == 0) {
  783. break;
  784. }
  785. uart_event.type = UART_EVENT_MAX;
  786. if (uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  787. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  788. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  789. if (p_uart->tx_waiting_brk) {
  790. continue;
  791. }
  792. //TX semaphore will only be used when tx_buf_size is zero.
  793. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  794. p_uart->tx_waiting_fifo = false;
  795. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  796. } else {
  797. //We don't use TX ring buffer, because the size is zero.
  798. if (p_uart->tx_buf_size == 0) {
  799. continue;
  800. }
  801. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  802. bool en_tx_flg = false;
  803. //We need to put a loop here, in case all the buffer items are very short.
  804. //That would cause a watch_dog reset because empty interrupt happens so often.
  805. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  806. while (tx_fifo_rem) {
  807. if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  808. size_t size;
  809. p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  810. if (p_uart->tx_head) {
  811. //The first item is the data description
  812. //Get the first item to get the data information
  813. if (p_uart->tx_len_tot == 0) {
  814. p_uart->tx_ptr = NULL;
  815. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  816. if (p_uart->tx_head->type == UART_DATA_BREAK) {
  817. p_uart->tx_brk_flg = 1;
  818. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  819. }
  820. //We have saved the data description from the 1st item, return buffer.
  821. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  822. }else if(p_uart->tx_ptr == NULL) {
  823. //Update the TX item pointer, we will need this to return item to buffer.
  824. p_uart->tx_ptr = (uint8_t *) p_uart->tx_head;
  825. en_tx_flg = true;
  826. p_uart->tx_len_cur = size;
  827. }
  828. } else {
  829. //Can not get data from ring buffer, return;
  830. break;
  831. }
  832. }
  833. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  834. //To fill the TX FIFO.
  835. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  836. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  837. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  838. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  839. uart_reg->conf0.sw_rts = 0;
  840. uart_reg->int_ena.tx_done = 1;
  841. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  842. }
  843. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  844. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  845. *(p_uart->tx_ptr++) & 0xff);
  846. }
  847. p_uart->tx_len_tot -= send_len;
  848. p_uart->tx_len_cur -= send_len;
  849. tx_fifo_rem -= send_len;
  850. if (p_uart->tx_len_cur == 0) {
  851. //Return item to ring buffer.
  852. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  853. p_uart->tx_head = NULL;
  854. p_uart->tx_ptr = NULL;
  855. //Sending item done, now we need to send break if there is a record.
  856. //Set TX break signal after FIFO is empty
  857. if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  858. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  859. uart_reg->int_ena.tx_brk_done = 0;
  860. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  861. uart_reg->conf0.txd_brk = 1;
  862. uart_reg->int_clr.tx_brk_done = 1;
  863. uart_reg->int_ena.tx_brk_done = 1;
  864. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  865. p_uart->tx_waiting_brk = 1;
  866. //do not enable TX empty interrupt
  867. en_tx_flg = false;
  868. } else {
  869. //enable TX empty interrupt
  870. en_tx_flg = true;
  871. }
  872. } else {
  873. //enable TX empty interrupt
  874. en_tx_flg = true;
  875. }
  876. }
  877. }
  878. if (en_tx_flg) {
  879. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  880. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  881. }
  882. }
  883. } else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  884. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  885. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  886. ) {
  887. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  888. if (pat_flg == 1) {
  889. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  890. pat_flg = 0;
  891. }
  892. if (p_uart->rx_buffer_full_flg == false) {
  893. //We have to read out all data in RX FIFO to clear the interrupt signal
  894. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  895. #if CONFIG_IDF_TARGET_ESP32
  896. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  897. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  898. p_uart->rx_data_buf[buf_idx] = READ_PERI_REG(UART_FIFO_AHB_REG(uart_num));
  899. #endif
  900. }
  901. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  902. int pat_num = uart_reg->at_cmd_char.char_num;
  903. int pat_idx = -1;
  904. //Get the buffer from the FIFO
  905. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  906. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  907. uart_event.type = UART_PATTERN_DET;
  908. uart_event.size = rx_fifo_len;
  909. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  910. } else {
  911. //After Copying the Data From FIFO ,Clear intr_status
  912. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  913. uart_event.type = UART_DATA;
  914. uart_event.size = rx_fifo_len;
  915. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  916. if (p_uart->uart_select_notif_callback) {
  917. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  918. }
  919. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  920. }
  921. p_uart->rx_stash_len = rx_fifo_len;
  922. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  923. //Mainly for applications that uses flow control or small ring buffer.
  924. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  925. p_uart->rx_buffer_full_flg = true;
  926. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  927. if (uart_event.type == UART_PATTERN_DET) {
  928. if (rx_fifo_len < pat_num) {
  929. //some of the characters are read out in last interrupt
  930. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  931. } else {
  932. uart_pattern_enqueue(uart_num,
  933. pat_idx <= -1 ?
  934. //can not find the pattern in buffer,
  935. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  936. // find the pattern in buffer
  937. p_uart->rx_buffered_len + pat_idx);
  938. }
  939. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  940. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  941. }
  942. }
  943. uart_event.type = UART_BUFFER_FULL;
  944. } else {
  945. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  946. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  947. if (rx_fifo_len < pat_num) {
  948. //some of the characters are read out in last interrupt
  949. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  950. } else if (pat_idx >= 0) {
  951. // find pattern in statsh buffer.
  952. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  953. }
  954. }
  955. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  956. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  957. }
  958. } else {
  959. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  960. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  961. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  962. uart_reg->int_clr.at_cmd_char_det = 1;
  963. uart_event.type = UART_PATTERN_DET;
  964. uart_event.size = rx_fifo_len;
  965. pat_flg = 1;
  966. }
  967. }
  968. } else if (uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  969. // When fifo overflows, we reset the fifo.
  970. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  971. uart_reset_rx_fifo(uart_num);
  972. uart_reg->int_clr.rxfifo_ovf = 1;
  973. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  974. uart_event.type = UART_FIFO_OVF;
  975. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  976. if (p_uart->uart_select_notif_callback) {
  977. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  978. }
  979. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  980. } else if (uart_intr_status & UART_BRK_DET_INT_ST_M) {
  981. uart_reg->int_clr.brk_det = 1;
  982. uart_event.type = UART_BREAK;
  983. } else if (uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  984. uart_reg->int_clr.frm_err = 1;
  985. uart_event.type = UART_FRAME_ERR;
  986. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  987. if (p_uart->uart_select_notif_callback) {
  988. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  989. }
  990. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  991. } else if (uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  992. uart_reg->int_clr.parity_err = 1;
  993. uart_event.type = UART_PARITY_ERR;
  994. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  995. if (p_uart->uart_select_notif_callback) {
  996. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  997. }
  998. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  999. } else if (uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  1000. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1001. uart_reg->conf0.txd_brk = 0;
  1002. uart_reg->int_ena.tx_brk_done = 0;
  1003. uart_reg->int_clr.tx_brk_done = 1;
  1004. if (p_uart->tx_brk_flg == 1) {
  1005. uart_reg->int_ena.txfifo_empty = 1;
  1006. }
  1007. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1008. if (p_uart->tx_brk_flg == 1) {
  1009. p_uart->tx_brk_flg = 0;
  1010. p_uart->tx_waiting_brk = 0;
  1011. } else {
  1012. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  1013. }
  1014. } else if (uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  1015. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  1016. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  1017. } else if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  1018. uart_reg->int_clr.at_cmd_char_det = 1;
  1019. uart_event.type = UART_PATTERN_DET;
  1020. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  1021. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  1022. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  1023. // RS485 collision or frame error interrupt triggered
  1024. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  1025. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1026. uart_reset_rx_fifo(uart_num);
  1027. // Set collision detection flag
  1028. p_uart_obj[uart_num]->coll_det_flg = true;
  1029. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1030. uart_event.type = UART_EVENT_MAX;
  1031. } else if (uart_intr_status & UART_TX_DONE_INT_ST_M) {
  1032. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  1033. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  1034. // If RS485 half duplex mode is enable then reset FIFO and
  1035. // reset RTS pin to start receiver driver
  1036. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1037. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1038. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  1039. uart_reg->conf0.sw_rts = 1;
  1040. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1041. }
  1042. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  1043. } else {
  1044. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  1045. uart_event.type = UART_EVENT_MAX;
  1046. }
  1047. if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  1048. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  1049. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  1050. }
  1051. }
  1052. }
  1053. if(HPTaskAwoken == pdTRUE) {
  1054. portYIELD_FROM_ISR();
  1055. }
  1056. }
  1057. /**************************************************************/
  1058. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1059. {
  1060. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1061. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1062. BaseType_t res;
  1063. portTickType ticks_start = xTaskGetTickCount();
  1064. //Take tx_mux
  1065. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1066. if (res == pdFALSE) {
  1067. return ESP_ERR_TIMEOUT;
  1068. }
  1069. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1070. typeof(UART0.status) status = UART[uart_num]->status;
  1071. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  1072. #ifdef CONFIG_IDF_TARGET_ESP32
  1073. if (status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  1074. #else /* TODO: check transmitter state machine on ESP32S2Beta */
  1075. if (status.txfifo_cnt == 0) {
  1076. #endif
  1077. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1078. return ESP_OK;
  1079. }
  1080. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1081. TickType_t ticks_end = xTaskGetTickCount();
  1082. if (ticks_end - ticks_start > ticks_to_wait) {
  1083. ticks_to_wait = 0;
  1084. } else {
  1085. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1086. }
  1087. //take 2nd tx_done_sem, wait given from ISR
  1088. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1089. if (res == pdFALSE) {
  1090. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1091. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1092. return ESP_ERR_TIMEOUT;
  1093. }
  1094. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1095. return ESP_OK;
  1096. }
  1097. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1098. {
  1099. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1100. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1101. UART[uart_num]->conf0.txd_brk = 1;
  1102. UART[uart_num]->int_clr.tx_brk_done = 1;
  1103. UART[uart_num]->int_ena.tx_brk_done = 1;
  1104. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1105. return ESP_OK;
  1106. }
  1107. //Fill UART tx_fifo and return a number,
  1108. //This function by itself is not thread-safe, always call from within a muxed section.
  1109. static int uart_fill_fifo(uart_port_t uart_num, const char *buffer, uint32_t len)
  1110. {
  1111. uint8_t i = 0;
  1112. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1113. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1114. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1115. // Set the RTS pin if RS485 mode is enabled
  1116. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1117. UART[uart_num]->conf0.sw_rts = 0;
  1118. UART[uart_num]->int_ena.tx_done = 1;
  1119. }
  1120. for (i = 0; i < copy_cnt; i++) {
  1121. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1122. }
  1123. return copy_cnt;
  1124. }
  1125. int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
  1126. {
  1127. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1128. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1129. UART_CHECK(buffer, "buffer null", (-1));
  1130. if (len == 0) {
  1131. return 0;
  1132. }
  1133. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1134. int tx_len = uart_fill_fifo(uart_num, (const char *) buffer, len);
  1135. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1136. return tx_len;
  1137. }
  1138. static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
  1139. {
  1140. if (size == 0) {
  1141. return 0;
  1142. }
  1143. size_t original_size = size;
  1144. //lock for uart_tx
  1145. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1146. p_uart_obj[uart_num]->coll_det_flg = false;
  1147. if (p_uart_obj[uart_num]->tx_buf_size > 0) {
  1148. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1149. int offset = 0;
  1150. uart_tx_data_t evt;
  1151. evt.tx_data.size = size;
  1152. evt.tx_data.brk_len = brk_len;
  1153. if (brk_en) {
  1154. evt.type = UART_DATA_BREAK;
  1155. } else {
  1156. evt.type = UART_DATA;
  1157. }
  1158. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1159. while (size > 0) {
  1160. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1161. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
  1162. size -= send_size;
  1163. offset += send_size;
  1164. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1165. }
  1166. } else {
  1167. while (size) {
  1168. //semaphore for tx_fifo available
  1169. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1170. size_t sent = uart_fill_fifo(uart_num, (char *) src, size);
  1171. if (sent < size) {
  1172. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1173. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1174. }
  1175. size -= sent;
  1176. src += sent;
  1177. }
  1178. }
  1179. if (brk_en) {
  1180. uart_set_break(uart_num, brk_len);
  1181. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1182. }
  1183. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1184. }
  1185. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1186. return original_size;
  1187. }
  1188. int uart_write_bytes(uart_port_t uart_num, const char *src, size_t size)
  1189. {
  1190. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1191. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1192. UART_CHECK(src, "buffer null", (-1));
  1193. return uart_tx_all(uart_num, src, size, 0, 0);
  1194. }
  1195. int uart_write_bytes_with_break(uart_port_t uart_num, const char *src, size_t size, int brk_len)
  1196. {
  1197. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1198. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1199. UART_CHECK((size > 0), "uart size error", (-1));
  1200. UART_CHECK((src), "uart data null", (-1));
  1201. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1202. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1203. }
  1204. static bool uart_check_buf_full(uart_port_t uart_num)
  1205. {
  1206. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1207. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1208. if (res == pdTRUE) {
  1209. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1210. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1211. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1212. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1213. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1214. return true;
  1215. }
  1216. }
  1217. return false;
  1218. }
  1219. int uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait)
  1220. {
  1221. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1222. UART_CHECK((buf), "uart data null", (-1));
  1223. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1224. uint8_t *data = NULL;
  1225. size_t size;
  1226. size_t copy_len = 0;
  1227. int len_tmp;
  1228. if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
  1229. return -1;
  1230. }
  1231. while (length) {
  1232. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1233. data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1234. if (data) {
  1235. p_uart_obj[uart_num]->rx_head_ptr = data;
  1236. p_uart_obj[uart_num]->rx_ptr = data;
  1237. p_uart_obj[uart_num]->rx_cur_remain = size;
  1238. } else {
  1239. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1240. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1241. //to solve the possible asynchronous issues.
  1242. if (uart_check_buf_full(uart_num)) {
  1243. //This condition will never be true if `uart_read_bytes`
  1244. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1245. continue;
  1246. } else {
  1247. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1248. return copy_len;
  1249. }
  1250. }
  1251. }
  1252. if (p_uart_obj[uart_num]->rx_cur_remain > length) {
  1253. len_tmp = length;
  1254. } else {
  1255. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1256. }
  1257. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1258. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1259. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1260. uart_pattern_queue_update(uart_num, len_tmp);
  1261. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1262. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1263. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1264. copy_len += len_tmp;
  1265. length -= len_tmp;
  1266. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1267. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1268. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1269. p_uart_obj[uart_num]->rx_ptr = NULL;
  1270. uart_check_buf_full(uart_num);
  1271. }
  1272. }
  1273. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1274. return copy_len;
  1275. }
  1276. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
  1277. {
  1278. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1279. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1280. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1281. return ESP_OK;
  1282. }
  1283. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1284. esp_err_t uart_flush_input(uart_port_t uart_num)
  1285. {
  1286. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1287. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1288. uart_obj_t *p_uart = p_uart_obj[uart_num];
  1289. uint8_t *data;
  1290. size_t size;
  1291. //rx sem protect the ring buffer read related functions
  1292. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1293. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1294. while (true) {
  1295. if (p_uart->rx_head_ptr) {
  1296. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1297. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1298. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1299. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1300. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1301. p_uart->rx_ptr = NULL;
  1302. p_uart->rx_cur_remain = 0;
  1303. p_uart->rx_head_ptr = NULL;
  1304. }
  1305. data = (uint8_t *) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1306. if (data == NULL) {
  1307. if ( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1308. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1309. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1310. }
  1311. //We also need to clear the `rx_buffer_full_flg` here.
  1312. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1313. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1314. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1315. break;
  1316. }
  1317. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1318. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1319. uart_pattern_queue_update(uart_num, size);
  1320. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1321. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1322. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1323. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1324. if (res == pdTRUE) {
  1325. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1326. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1327. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1328. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1329. }
  1330. }
  1331. }
  1332. p_uart->rx_ptr = NULL;
  1333. p_uart->rx_cur_remain = 0;
  1334. p_uart->rx_head_ptr = NULL;
  1335. uart_reset_rx_fifo(uart_num);
  1336. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1337. xSemaphoreGive(p_uart->rx_mux);
  1338. return ESP_OK;
  1339. }
  1340. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1341. {
  1342. esp_err_t r;
  1343. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1344. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1345. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1346. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1347. if (p_uart_obj[uart_num] == NULL) {
  1348. p_uart_obj[uart_num] = (uart_obj_t *) calloc(1, sizeof(uart_obj_t));
  1349. if (p_uart_obj[uart_num] == NULL) {
  1350. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1351. return ESP_FAIL;
  1352. }
  1353. p_uart_obj[uart_num]->uart_num = uart_num;
  1354. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1355. p_uart_obj[uart_num]->coll_det_flg = false;
  1356. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1357. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1358. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1359. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1360. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1361. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1362. p_uart_obj[uart_num]->queue_size = queue_size;
  1363. p_uart_obj[uart_num]->tx_ptr = NULL;
  1364. p_uart_obj[uart_num]->tx_head = NULL;
  1365. p_uart_obj[uart_num]->tx_len_tot = 0;
  1366. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1367. p_uart_obj[uart_num]->tx_brk_len = 0;
  1368. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1369. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1370. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1371. if (uart_queue) {
  1372. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1373. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1374. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1375. } else {
  1376. p_uart_obj[uart_num]->xQueueUart = NULL;
  1377. }
  1378. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1379. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1380. p_uart_obj[uart_num]->rx_ptr = NULL;
  1381. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1382. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1383. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1384. if (tx_buffer_size > 0) {
  1385. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1386. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1387. } else {
  1388. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1389. p_uart_obj[uart_num]->tx_buf_size = 0;
  1390. }
  1391. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1392. } else {
  1393. ESP_LOGE(UART_TAG, "UART driver already installed");
  1394. return ESP_FAIL;
  1395. }
  1396. r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1397. if (r != ESP_OK) {
  1398. goto err;
  1399. }
  1400. uart_intr_config_t uart_intr = {
  1401. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1402. | UART_RXFIFO_TOUT_INT_ENA_M
  1403. | UART_FRM_ERR_INT_ENA_M
  1404. | UART_RXFIFO_OVF_INT_ENA_M
  1405. | UART_BRK_DET_INT_ENA_M
  1406. | UART_PARITY_ERR_INT_ENA_M,
  1407. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1408. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1409. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1410. };
  1411. r = uart_intr_config(uart_num, &uart_intr);
  1412. if (r != ESP_OK) {
  1413. goto err;
  1414. }
  1415. return r;
  1416. err:
  1417. uart_driver_delete(uart_num);
  1418. return r;
  1419. }
  1420. //Make sure no other tasks are still using UART before you call this function
  1421. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1422. {
  1423. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1424. if (p_uart_obj[uart_num] == NULL) {
  1425. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1426. return ESP_OK;
  1427. }
  1428. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1429. uart_disable_rx_intr(uart_num);
  1430. uart_disable_tx_intr(uart_num);
  1431. uart_pattern_link_free(uart_num);
  1432. if (p_uart_obj[uart_num]->tx_fifo_sem) {
  1433. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1434. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1435. }
  1436. if (p_uart_obj[uart_num]->tx_done_sem) {
  1437. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1438. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1439. }
  1440. if (p_uart_obj[uart_num]->tx_brk_sem) {
  1441. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1442. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1443. }
  1444. if (p_uart_obj[uart_num]->tx_mux) {
  1445. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1446. p_uart_obj[uart_num]->tx_mux = NULL;
  1447. }
  1448. if (p_uart_obj[uart_num]->rx_mux) {
  1449. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1450. p_uart_obj[uart_num]->rx_mux = NULL;
  1451. }
  1452. if (p_uart_obj[uart_num]->xQueueUart) {
  1453. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1454. p_uart_obj[uart_num]->xQueueUart = NULL;
  1455. }
  1456. if (p_uart_obj[uart_num]->rx_ring_buf) {
  1457. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1458. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1459. }
  1460. if (p_uart_obj[uart_num]->tx_ring_buf) {
  1461. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1462. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1463. }
  1464. free(p_uart_obj[uart_num]);
  1465. p_uart_obj[uart_num] = NULL;
  1466. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  1467. periph_module_t periph_module = get_periph_module(uart_num);
  1468. periph_module_disable(periph_module);
  1469. }
  1470. return ESP_OK;
  1471. }
  1472. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1473. {
  1474. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1475. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1476. }
  1477. }
  1478. portMUX_TYPE *uart_get_selectlock(void)
  1479. {
  1480. return &uart_selectlock;
  1481. }
  1482. // Set UART mode
  1483. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1484. {
  1485. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1486. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1487. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1488. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1489. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1490. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1491. }
  1492. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1493. UART[uart_num]->rs485_conf.en = 0;
  1494. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1495. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1496. UART[uart_num]->conf0.irda_en = 0;
  1497. UART[uart_num]->conf0.sw_rts = 0;
  1498. switch (mode) {
  1499. case UART_MODE_UART:
  1500. break;
  1501. case UART_MODE_RS485_COLLISION_DETECT:
  1502. // This mode allows read while transmitting that allows collision detection
  1503. p_uart_obj[uart_num]->coll_det_flg = false;
  1504. // Transmitter’s output signal loop back to the receiver’s input signal
  1505. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1506. // Transmitter should send data when its receiver is busy
  1507. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1508. UART[uart_num]->rs485_conf.en = 1;
  1509. // Enable collision detection interrupts
  1510. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1511. | UART_RXFIFO_FULL_INT_ENA
  1512. | UART_RS485_CLASH_INT_ENA
  1513. | UART_RS485_FRM_ERR_INT_ENA
  1514. | UART_RS485_PARITY_ERR_INT_ENA);
  1515. break;
  1516. case UART_MODE_RS485_APP_CTRL:
  1517. // Application software control, remove echo
  1518. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1519. UART[uart_num]->rs485_conf.en = 1;
  1520. break;
  1521. case UART_MODE_RS485_HALF_DUPLEX:
  1522. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1523. UART[uart_num]->conf0.sw_rts = 1;
  1524. UART[uart_num]->rs485_conf.en = 1;
  1525. // Must be set to 0 to automatically remove echo
  1526. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1527. // This is to void collision
  1528. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1529. break;
  1530. case UART_MODE_IRDA:
  1531. UART[uart_num]->conf0.irda_en = 1;
  1532. break;
  1533. default:
  1534. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1535. break;
  1536. }
  1537. p_uart_obj[uart_num]->uart_mode = mode;
  1538. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1539. return ESP_OK;
  1540. }
  1541. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1542. {
  1543. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1544. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1545. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1546. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1547. // transmission time of one symbol (~11 bit) on current baudrate
  1548. if (tout_thresh > 0) {
  1549. #if CONFIG_IDF_TARGET_ESP32
  1550. //ESP32 hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1551. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1552. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1553. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  1554. } else {
  1555. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1556. }
  1557. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  1558. UART[uart_num]->mem_conf.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1559. #endif
  1560. UART[uart_num]->conf1.rx_tout_en = 1;
  1561. } else {
  1562. UART[uart_num]->conf1.rx_tout_en = 0;
  1563. }
  1564. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1565. return ESP_OK;
  1566. }
  1567. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
  1568. {
  1569. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1570. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1571. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1572. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1573. "wrong mode", ESP_ERR_INVALID_ARG);
  1574. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1575. return ESP_OK;
  1576. }
  1577. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1578. {
  1579. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1580. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1581. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1582. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1583. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1584. return ESP_OK;
  1585. }
  1586. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
  1587. {
  1588. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1589. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1590. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1591. return ESP_OK;
  1592. }
  1593. void uart_wait_tx_idle_polling(uart_port_t uart_num)
  1594. {
  1595. uint32_t status;
  1596. do {
  1597. status = READ_PERI_REG(UART_STATUS_REG(uart_num));
  1598. /* either tx count or state is non-zero */
  1599. } while ((status & (UART_ST_UTX_OUT_M | UART_TXFIFO_CNT_M)) != 0);
  1600. }