test_spi_master.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460
  1. /*
  2. * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. /*
  7. Tests for the spi_master device driver
  8. */
  9. #include <esp_types.h>
  10. #include <stdio.h>
  11. #include <stdlib.h>
  12. #include <malloc.h>
  13. #include <string.h>
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/task.h"
  16. #include "freertos/semphr.h"
  17. #include "freertos/queue.h"
  18. #include "unity.h"
  19. #include "driver/spi_master.h"
  20. #include "driver/spi_slave.h"
  21. #include "esp_heap_caps.h"
  22. #include "esp_log.h"
  23. #include "soc/spi_periph.h"
  24. #include "test_utils.h"
  25. #include "test/test_common_spi.h"
  26. #include "soc/gpio_periph.h"
  27. #include "sdkconfig.h"
  28. #include "../cache_utils.h"
  29. #include "soc/soc_memory_layout.h"
  30. #include "driver/spi_common_internal.h"
  31. #include "esp_private/esp_clk.h"
  32. const static char TAG[] = "test_spi";
  33. // There is no input-only pin on esp32c3 and esp32s3
  34. #define TEST_SOC_HAS_INPUT_ONLY_PINS (!DISABLED_FOR_TARGETS(ESP32C3, ESP32S3, ESP32C2))
  35. static void check_spi_pre_n_for(int clk, int pre, int n)
  36. {
  37. spi_device_handle_t handle;
  38. spi_device_interface_config_t devcfg = {
  39. .command_bits = 0,
  40. .address_bits = 0,
  41. .dummy_bits = 0,
  42. .clock_speed_hz = clk,
  43. .duty_cycle_pos = 128,
  44. .mode = 0,
  45. .spics_io_num = PIN_NUM_CS,
  46. .queue_size = 3
  47. };
  48. char sendbuf[16] = "";
  49. spi_transaction_t t;
  50. memset(&t, 0, sizeof(t));
  51. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle));
  52. t.length = 16 * 8;
  53. t.tx_buffer = sendbuf;
  54. TEST_ESP_OK(spi_device_transmit(handle, &t));
  55. spi_dev_t *hw = spi_periph_signal[TEST_SPI_HOST].hw;
  56. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, hw->clock.clkdiv_pre + 1, hw->clock.clkcnt_n + 1);
  57. TEST_ASSERT(hw->clock.clkcnt_n + 1 == n);
  58. TEST_ASSERT(hw->clock.clkdiv_pre + 1 == pre);
  59. TEST_ESP_OK(spi_bus_remove_device(handle));
  60. }
  61. #define TEST_CLK_TIMES 8
  62. /**
  63. * In this test, SPI Clock Calculation:
  64. * Fspi = Fclk_spi_mst / (pre + n)
  65. *
  66. * For each item:
  67. * {freq, pre, n}
  68. */
  69. #define TEST_CLK_PARAM_APB_80 {{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 16, 50}, {333333, 4, 60}, {800000, 2, 50}, {900000, 2, 44}, {8000000, 1, 10}, {20000000, 1, 4}, {26000000, 1, 3} }
  70. #define TEST_CLK_PARAM_APB_40 {{1, SOC_SPI_MAX_PRE_DIVIDER, 64}, {100000, 8, 50}, {333333, 2, 60}, {800000, 1, 50}, {900000, 1, 44}, {8000000, 1, 5}, {10000000, 1, 4}, {20000000, 1, 2} }
  71. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  72. {
  73. spi_bus_config_t buscfg = {
  74. .mosi_io_num = PIN_NUM_MOSI,
  75. .miso_io_num = PIN_NUM_MISO,
  76. .sclk_io_num = PIN_NUM_CLK,
  77. .quadwp_io_num = -1,
  78. .quadhd_io_num = -1
  79. };
  80. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  81. uint32_t apb_freq_hz = esp_clk_apb_freq();
  82. if (apb_freq_hz == (80 * 1000 * 1000)) {
  83. uint32_t clk_param[TEST_CLK_TIMES][3] = TEST_CLK_PARAM_APB_80;
  84. for (int i = 0; i < TEST_CLK_TIMES; i++) {
  85. check_spi_pre_n_for(clk_param[i][0], clk_param[i][1], clk_param[i][2]);
  86. }
  87. } else {
  88. TEST_ASSERT(apb_freq_hz == (40 * 1000 * 1000));
  89. uint32_t clk_param[TEST_CLK_TIMES][3] = TEST_CLK_PARAM_APB_40;
  90. for (int i = 0; i < TEST_CLK_TIMES; i++) {
  91. check_spi_pre_n_for(clk_param[i][0], clk_param[i][1], clk_param[i][2]);
  92. }
  93. }
  94. TEST_ESP_OK(spi_bus_free(TEST_SPI_HOST));
  95. }
  96. static spi_device_handle_t setup_spi_bus_loopback(int clkspeed, bool dma)
  97. {
  98. spi_bus_config_t buscfg = {
  99. .mosi_io_num = PIN_NUM_MOSI,
  100. .miso_io_num = PIN_NUM_MOSI,
  101. .sclk_io_num = PIN_NUM_CLK,
  102. .quadwp_io_num = -1,
  103. .quadhd_io_num = -1,
  104. .max_transfer_sz = 4096 * 3
  105. };
  106. spi_device_interface_config_t devcfg = {
  107. .command_bits = 0,
  108. .address_bits = 0,
  109. .dummy_bits = 0,
  110. .clock_speed_hz = clkspeed,
  111. .duty_cycle_pos = 128,
  112. .mode = 0,
  113. .spics_io_num = PIN_NUM_CS,
  114. .queue_size = 3,
  115. };
  116. spi_device_handle_t handle;
  117. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, dma ? SPI_DMA_CH_AUTO : 0));
  118. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle));
  119. //connect MOSI to two devices breaks the output, fix it.
  120. spitest_gpio_output_sel(PIN_NUM_MOSI, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  121. printf("Bus/dev inited.\n");
  122. return handle;
  123. }
  124. static int spi_test(spi_device_handle_t handle, int num_bytes)
  125. {
  126. esp_err_t ret;
  127. int x;
  128. bool success = true;
  129. srand(num_bytes);
  130. char *sendbuf = heap_caps_malloc((num_bytes + 3) & (~3), MALLOC_CAP_DMA);
  131. char *recvbuf = heap_caps_malloc((num_bytes + 3) & (~3), MALLOC_CAP_DMA);
  132. for (x = 0; x < num_bytes; x++) {
  133. sendbuf[x] = rand() & 0xff;
  134. recvbuf[x] = 0x55;
  135. }
  136. spi_transaction_t t;
  137. memset(&t, 0, sizeof(t));
  138. t.length = num_bytes * 8;
  139. t.tx_buffer = sendbuf;
  140. t.rx_buffer = recvbuf;
  141. t.addr = 0xA00000000000000FL;
  142. t.cmd = 0x55;
  143. printf("Transmitting %d bytes...\n", num_bytes);
  144. ret = spi_device_transmit(handle, &t);
  145. TEST_ASSERT(ret == ESP_OK);
  146. srand(num_bytes);
  147. for (x = 0; x < num_bytes; x++) {
  148. if (sendbuf[x] != (rand() & 0xff)) {
  149. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  150. TEST_ASSERT(0);
  151. }
  152. if (sendbuf[x] != recvbuf[x]) {
  153. break;
  154. }
  155. }
  156. if (x != num_bytes) {
  157. int from = x - 16;
  158. if (from < 0) {
  159. from = 0;
  160. }
  161. success = false;
  162. printf("Error at %d! Sent vs recved: (starting from %d)\n", x, from);
  163. for (int i = 0; i < 32; i++) {
  164. if (i + from < num_bytes) {
  165. printf("%02X ", sendbuf[from + i]);
  166. }
  167. }
  168. printf("\n");
  169. for (int i = 0; i < 32; i++) {
  170. if (i + from < num_bytes) {
  171. printf("%02X ", recvbuf[from + i]);
  172. }
  173. }
  174. printf("\n");
  175. }
  176. if (success) {
  177. printf("Success!\n");
  178. }
  179. free(sendbuf);
  180. free(recvbuf);
  181. return success;
  182. }
  183. TEST_CASE("SPI Master test", "[spi]")
  184. {
  185. bool success = true;
  186. printf("Testing bus at 80KHz\n");
  187. spi_device_handle_t handle = setup_spi_bus_loopback(80000, true);
  188. success &= spi_test(handle, 16); //small
  189. success &= spi_test(handle, 21); //small, unaligned
  190. success &= spi_test(handle, 36); //aligned
  191. success &= spi_test(handle, 128); //aligned
  192. success &= spi_test(handle, 129); //unaligned
  193. success &= spi_test(handle, 4096 - 2); //multiple descs, edge case 1
  194. success &= spi_test(handle, 4096 - 1); //multiple descs, edge case 2
  195. success &= spi_test(handle, 4096 * 3); //multiple descs
  196. master_free_device_bus(handle);
  197. printf("Testing bus at 80KHz, non-DMA\n");
  198. handle = setup_spi_bus_loopback(80000, false);
  199. success &= spi_test(handle, 4); //aligned
  200. success &= spi_test(handle, 16); //small
  201. success &= spi_test(handle, 21); //small, unaligned
  202. success &= spi_test(handle, 32); //small
  203. success &= spi_test(handle, 47); //small, unaligned
  204. success &= spi_test(handle, 63); //small
  205. success &= spi_test(handle, 64); //small, unaligned
  206. master_free_device_bus(handle);
  207. printf("Testing bus at 26MHz\n");
  208. handle = setup_spi_bus_loopback(20000000, true);
  209. success &= spi_test(handle, 128); //DMA, aligned
  210. success &= spi_test(handle, 4096 * 3); //DMA, multiple descs
  211. master_free_device_bus(handle);
  212. printf("Testing bus at 900KHz\n");
  213. handle = setup_spi_bus_loopback(9000000, true);
  214. success &= spi_test(handle, 128); //DMA, aligned
  215. success &= spi_test(handle, 4096 * 3); //DMA, multiple descs
  216. master_free_device_bus(handle);
  217. TEST_ASSERT(success);
  218. }
  219. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]")
  220. {
  221. esp_err_t ret;
  222. bool success = true;
  223. spi_device_interface_config_t devcfg = {
  224. .command_bits = 0,
  225. .address_bits = 0,
  226. .dummy_bits = 0,
  227. .clock_speed_hz = 1000000,
  228. .duty_cycle_pos = 128,
  229. .mode = 0,
  230. .spics_io_num = PIN_NUM_CS,
  231. .queue_size = 3,
  232. };
  233. spi_device_handle_t handle1 = setup_spi_bus_loopback(80000, true);
  234. spi_device_handle_t handle2;
  235. spi_bus_add_device(TEST_SPI_HOST, &devcfg, &handle2);
  236. printf("Sending to dev 1\n");
  237. success &= spi_test(handle1, 7);
  238. printf("Sending to dev 1\n");
  239. success &= spi_test(handle1, 15);
  240. printf("Sending to dev 2\n");
  241. success &= spi_test(handle2, 15);
  242. printf("Sending to dev 1\n");
  243. success &= spi_test(handle1, 32);
  244. printf("Sending to dev 2\n");
  245. success &= spi_test(handle2, 32);
  246. printf("Sending to dev 1\n");
  247. success &= spi_test(handle1, 63);
  248. printf("Sending to dev 2\n");
  249. success &= spi_test(handle2, 63);
  250. printf("Sending to dev 1\n");
  251. success &= spi_test(handle1, 5000);
  252. printf("Sending to dev 2\n");
  253. success &= spi_test(handle2, 5000);
  254. ret = spi_bus_remove_device(handle2);
  255. TEST_ASSERT(ret == ESP_OK);
  256. master_free_device_bus(handle1);
  257. TEST_ASSERT(success);
  258. }
  259. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin, so this test could be ignored.
  260. static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs)
  261. {
  262. esp_err_t ret;
  263. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  264. cfg.mosi_io_num = mosi;
  265. cfg.miso_io_num = miso;
  266. cfg.sclk_io_num = sclk;
  267. spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  268. master_cfg.spics_io_num = cs;
  269. ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, SPI_DMA_CH_AUTO);
  270. if (ret != ESP_OK) {
  271. return ret;
  272. }
  273. spi_device_handle_t spi;
  274. ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi);
  275. if (ret != ESP_OK) {
  276. spi_bus_free(TEST_SPI_HOST);
  277. return ret;
  278. }
  279. master_free_device_bus(spi);
  280. return ESP_OK;
  281. }
  282. static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs)
  283. {
  284. esp_err_t ret;
  285. spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  286. cfg.mosi_io_num = mosi;
  287. cfg.miso_io_num = miso;
  288. cfg.sclk_io_num = sclk;
  289. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  290. slave_cfg.spics_io_num = cs;
  291. ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, SPI_DMA_CH_AUTO);
  292. if (ret != ESP_OK) {
  293. return ret;
  294. }
  295. spi_slave_free(TEST_SLAVE_HOST);
  296. return ESP_OK;
  297. }
  298. TEST_CASE("spi placed on input-only pins", "[spi]")
  299. {
  300. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  301. TEST_ASSERT(test_master_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
  302. TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS));
  303. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS) != ESP_OK);
  304. TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN) != ESP_OK);
  305. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  306. TEST_ESP_OK(test_slave_pins(INPUT_ONLY_PIN, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS));
  307. TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, INPUT_ONLY_PIN, PIN_NUM_CLK, PIN_NUM_CS) != ESP_OK);
  308. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, INPUT_ONLY_PIN, PIN_NUM_CS));
  309. TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, INPUT_ONLY_PIN));
  310. }
  311. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  312. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  313. TEST_CASE("spi bus setting with different pin configs", "[spi]")
  314. {
  315. spi_bus_config_t cfg;
  316. uint32_t flags_o;
  317. uint32_t flags_expected;
  318. ESP_LOGI(TAG, "test 6 iomux output pins...");
  319. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_QUAD;
  320. cfg = (spi_bus_config_t) {
  321. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  322. .max_transfer_sz = 8, .flags = flags_expected
  323. };
  324. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  325. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  326. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  327. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  328. ESP_LOGI(TAG, "test 4 iomux output pins...");
  329. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_IOMUX_PINS | SPICOMMON_BUSFLAG_DUAL;
  330. cfg = (spi_bus_config_t) {
  331. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  332. .max_transfer_sz = 8, .flags = flags_expected
  333. };
  334. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  335. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  336. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  337. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  338. ESP_LOGI(TAG, "test 6 output pins...");
  339. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD | SPICOMMON_BUSFLAG_GPIO_PINS;
  340. //swap MOSI and MISO
  341. cfg = (spi_bus_config_t) {
  342. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  343. .max_transfer_sz = 8, .flags = flags_expected
  344. };
  345. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  346. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  347. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  348. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  349. ESP_LOGI(TAG, "test 4 output pins...");
  350. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  351. //swap MOSI and MISO
  352. cfg = (spi_bus_config_t) {
  353. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  354. .max_transfer_sz = 8, .flags = flags_expected
  355. };
  356. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  357. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  358. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  359. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  360. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  361. ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin...");
  362. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
  363. cfg = (spi_bus_config_t) {
  364. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  365. .max_transfer_sz = 8, .flags = flags_expected
  366. };
  367. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  368. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  369. ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin...");
  370. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD | SPICOMMON_BUSFLAG_GPIO_PINS;
  371. cfg = (spi_bus_config_t) {
  372. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  373. .max_transfer_sz = 8, .flags = flags_expected
  374. };
  375. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  376. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  377. ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin...");
  378. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
  379. cfg = (spi_bus_config_t) {
  380. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  381. .max_transfer_sz = 8, .flags = flags_expected
  382. };
  383. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  384. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  385. ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin...");
  386. flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_GPIO_PINS;
  387. cfg = (spi_bus_config_t) {
  388. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  389. .max_transfer_sz = 8, .flags = flags_expected
  390. };
  391. TEST_ESP_OK(spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  392. TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o );
  393. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  394. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  395. ESP_LOGI(TAG, "check native flag for 6 output pins...");
  396. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  397. //swap MOSI and MISO
  398. cfg = (spi_bus_config_t) {
  399. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  400. .max_transfer_sz = 8, .flags = flags_expected
  401. };
  402. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  403. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  404. ESP_LOGI(TAG, "check native flag for 4 output pins...");
  405. flags_expected = SPICOMMON_BUSFLAG_IOMUX_PINS;
  406. //swap MOSI and MISO
  407. cfg = (spi_bus_config_t) {
  408. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  409. .max_transfer_sz = 8, .flags = flags_expected
  410. };
  411. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  412. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  413. #if TEST_SOC_HAS_INPUT_ONLY_PINS //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  414. ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin...");
  415. flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  416. cfg = (spi_bus_config_t) {
  417. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  418. .max_transfer_sz = 8, .flags = flags_expected
  419. };
  420. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  421. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  422. cfg = (spi_bus_config_t) {
  423. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  424. .max_transfer_sz = 8, .flags = flags_expected
  425. };
  426. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  427. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  428. ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin...");
  429. flags_expected = SPICOMMON_BUSFLAG_DUAL | SPICOMMON_BUSFLAG_GPIO_PINS;
  430. cfg = (spi_bus_config_t) {
  431. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = INPUT_ONLY_PIN, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  432. .max_transfer_sz = 8, .flags = flags_expected
  433. };
  434. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  435. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  436. cfg = (spi_bus_config_t) {
  437. .mosi_io_num = INPUT_ONLY_PIN, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = -1,
  438. .max_transfer_sz = 8, .flags = flags_expected
  439. };
  440. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  441. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  442. //There is no input-only pin on esp32c3 and esp32s3, so this test could be ignored.
  443. #endif //#if TEST_SOC_HAS_INPUT_ONLY_PINS
  444. ESP_LOGI(TAG, "check sclk flag...");
  445. flags_expected = SPICOMMON_BUSFLAG_SCLK;
  446. cfg = (spi_bus_config_t) {
  447. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = -1, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  448. .max_transfer_sz = 8, .flags = flags_expected
  449. };
  450. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  451. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  452. ESP_LOGI(TAG, "check mosi flag...");
  453. flags_expected = SPICOMMON_BUSFLAG_MOSI;
  454. cfg = (spi_bus_config_t) {
  455. .mosi_io_num = -1, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  456. .max_transfer_sz = 8, .flags = flags_expected
  457. };
  458. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  459. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  460. ESP_LOGI(TAG, "check miso flag...");
  461. flags_expected = SPICOMMON_BUSFLAG_MISO;
  462. cfg = (spi_bus_config_t) {
  463. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = -1, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  464. .max_transfer_sz = 8, .flags = flags_expected
  465. };
  466. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  467. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  468. ESP_LOGI(TAG, "check quad flag...");
  469. flags_expected = SPICOMMON_BUSFLAG_QUAD;
  470. cfg = (spi_bus_config_t) {
  471. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = -1, .quadwp_io_num = spi_periph_signal[TEST_SPI_HOST].spiwp_iomux_pin,
  472. .max_transfer_sz = 8, .flags = flags_expected
  473. };
  474. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  475. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  476. cfg = (spi_bus_config_t) {
  477. .mosi_io_num = spi_periph_signal[TEST_SPI_HOST].spid_iomux_pin, .miso_io_num = spi_periph_signal[TEST_SPI_HOST].spiq_iomux_pin, .sclk_io_num = spi_periph_signal[TEST_SPI_HOST].spiclk_iomux_pin, .quadhd_io_num = spi_periph_signal[TEST_SPI_HOST].spihd_iomux_pin, .quadwp_io_num = -1,
  478. .max_transfer_sz = 8, .flags = flags_expected
  479. };
  480. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_MASTER, &flags_o));
  481. TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(TEST_SPI_HOST, &cfg, flags_expected | SPICOMMON_BUSFLAG_SLAVE, &flags_o));
  482. }
  483. TEST_CASE("SPI Master no response when switch from host1 (SPI2) to host2 (SPI3)", "[spi]")
  484. {
  485. //spi config
  486. spi_bus_config_t bus_config;
  487. spi_device_interface_config_t device_config;
  488. spi_device_handle_t spi;
  489. spi_host_device_t host;
  490. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  491. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  492. bus_config.miso_io_num = -1;
  493. bus_config.mosi_io_num = PIN_NUM_MOSI;
  494. bus_config.sclk_io_num = PIN_NUM_CLK;
  495. bus_config.quadwp_io_num = -1;
  496. bus_config.quadhd_io_num = -1;
  497. device_config.clock_speed_hz = 50000;
  498. device_config.mode = 0;
  499. device_config.spics_io_num = -1;
  500. device_config.queue_size = 1;
  501. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  502. struct spi_transaction_t transaction = {
  503. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  504. .length = 16,
  505. .rx_buffer = NULL,
  506. .tx_data = {0x04, 0x00}
  507. };
  508. //initialize for first host
  509. host = TEST_SPI_HOST;
  510. TEST_ESP_OK(spi_bus_initialize(host, &bus_config, SPI_DMA_CH_AUTO));
  511. TEST_ESP_OK(spi_bus_add_device(host, &device_config, &spi));
  512. printf("before first xmit\n");
  513. TEST_ESP_OK(spi_device_transmit(spi, &transaction));
  514. printf("after first xmit\n");
  515. TEST_ESP_OK(spi_bus_remove_device(spi));
  516. TEST_ESP_OK(spi_bus_free(host));
  517. //for second host and failed before
  518. host = TEST_SLAVE_HOST;
  519. TEST_ESP_OK(spi_bus_initialize(host, &bus_config, SPI_DMA_CH_AUTO));
  520. TEST_ESP_OK(spi_bus_add_device(host, &device_config, &spi));
  521. printf("before second xmit\n");
  522. // the original version (bit mis-written) stucks here.
  523. TEST_ESP_OK(spi_device_transmit(spi, &transaction));
  524. // test case success when see this.
  525. printf("after second xmit\n");
  526. TEST_ESP_OK(spi_bus_remove_device(spi));
  527. TEST_ESP_OK(spi_bus_free(host));
  528. }
  529. DRAM_ATTR static uint32_t data_dram[80] = {0};
  530. //force to place in code area.
  531. static const uint8_t data_drom[320 + 3] = {
  532. 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A,
  533. 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58,
  534. 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D,
  535. 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26,
  536. 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34,
  537. 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3,
  538. 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C,
  539. 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE,
  540. 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83,
  541. 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7,
  542. };
  543. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  544. {
  545. #ifdef CONFIG_SPIRAM
  546. //test psram if enabled
  547. ESP_LOGI(TAG, "testing PSRAM...");
  548. uint32_t *data_malloc = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_SPIRAM);
  549. TEST_ASSERT(esp_ptr_external_ram(data_malloc));
  550. #else
  551. uint32_t *data_malloc = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_DMA);
  552. TEST_ASSERT(esp_ptr_in_dram(data_malloc));
  553. #endif
  554. TEST_ASSERT(data_malloc != NULL);
  555. TEST_ASSERT(esp_ptr_in_dram(data_dram));
  556. TEST_ASSERT(esp_ptr_in_drom(data_drom));
  557. ESP_LOGI(TAG, "dram: %p", data_dram);
  558. ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc);
  559. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  560. uint32_t *data_iram = (uint32_t *)heap_caps_malloc(324, MALLOC_CAP_EXEC);
  561. TEST_ASSERT(data_iram != NULL);
  562. TEST_ASSERT(esp_ptr_executable(data_iram) || esp_ptr_in_iram(data_iram) || esp_ptr_in_diram_iram(data_iram));
  563. ESP_LOGI(TAG, "iram: %p", data_iram);
  564. #endif
  565. srand(52);
  566. for (int i = 0; i < 320 / 4; i++) {
  567. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  568. data_iram[i] = rand();
  569. #endif
  570. data_dram[i] = rand();
  571. data_malloc[i] = rand();
  572. }
  573. esp_err_t ret;
  574. spi_device_handle_t spi;
  575. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  576. buscfg.miso_io_num = PIN_NUM_MOSI;
  577. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  578. //Initialize the SPI bus
  579. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  580. //Attach the LCD to the SPI bus
  581. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  582. //connect MOSI to two devices breaks the output, fix it.
  583. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  584. #define TEST_REGION_SIZE 5
  585. static spi_transaction_t trans[TEST_REGION_SIZE];
  586. int x;
  587. memset(trans, 0, sizeof(trans));
  588. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  589. trans[0].length = 320 * 8,
  590. trans[0].tx_buffer = data_iram;
  591. trans[0].rx_buffer = data_malloc + 1;
  592. trans[1].length = 320 * 8,
  593. trans[1].tx_buffer = data_dram;
  594. trans[1].rx_buffer = data_iram;
  595. trans[2].length = 320 * 8,
  596. trans[2].tx_buffer = data_drom;
  597. trans[2].rx_buffer = data_iram;
  598. #endif
  599. trans[3].length = 320 * 8,
  600. trans[3].tx_buffer = data_malloc + 2;
  601. trans[3].rx_buffer = data_dram;
  602. trans[4].length = 4 * 8,
  603. trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  604. uint32_t *ptr = (uint32_t *)trans[4].rx_data;
  605. *ptr = 0x54545454;
  606. ptr = (uint32_t *)trans[4].tx_data;
  607. *ptr = 0xbc124960;
  608. //Queue all transactions.
  609. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  610. for (x = 0; x < TEST_REGION_SIZE; x++) {
  611. #else
  612. for (x = 3; x < TEST_REGION_SIZE; x++) {
  613. #endif
  614. ESP_LOGI(TAG, "transmitting %d...", x);
  615. ret = spi_device_transmit(spi, &trans[x]);
  616. TEST_ASSERT(ret == ESP_OK);
  617. if (trans[x].flags & SPI_TRANS_USE_RXDATA) {
  618. TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4);
  619. } else {
  620. TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 / 4);
  621. }
  622. }
  623. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  624. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  625. free(data_malloc);
  626. #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE
  627. free(data_iram);
  628. #endif
  629. }
  630. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  631. // 1. RX buffer not aligned (start and end)
  632. // 2. not setting rx_buffer
  633. // 3. setting rx_length != length
  634. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  635. {
  636. uint8_t tx_buf[320] = {0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  637. uint8_t rx_buf[320];
  638. spi_device_handle_t spi;
  639. spi_bus_config_t buscfg = {
  640. .miso_io_num = PIN_NUM_MOSI,
  641. .mosi_io_num = PIN_NUM_MOSI,
  642. .sclk_io_num = PIN_NUM_CLK,
  643. .quadwp_io_num = -1,
  644. .quadhd_io_num = -1
  645. };
  646. spi_device_interface_config_t devcfg = {
  647. .clock_speed_hz = 10 * 1000 * 1000, //Clock out at 10 MHz
  648. .mode = 0, //SPI mode 0
  649. .spics_io_num = PIN_NUM_CS, //CS pin
  650. .queue_size = 7, //We want to be able to queue 7 transactions at a time
  651. .pre_cb = NULL,
  652. };
  653. //Initialize the SPI bus
  654. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  655. //Attach the LCD to the SPI bus
  656. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  657. //connect MOSI to two devices breaks the output, fix it.
  658. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  659. memset(rx_buf, 0x66, 320);
  660. for ( int i = 0; i < 8; i ++ ) {
  661. memset( rx_buf, 0x66, sizeof(rx_buf));
  662. spi_transaction_t t = {};
  663. t.length = 8 * (i + 1);
  664. t.rxlength = 0;
  665. t.tx_buffer = tx_buf + 2 * i;
  666. t.rx_buffer = rx_buf + i;
  667. if ( i == 1 ) {
  668. //test set no start
  669. t.rx_buffer = NULL;
  670. } else if ( i == 2 ) {
  671. //test rx length != tx_length
  672. t.rxlength = t.length - 8;
  673. }
  674. spi_device_transmit( spi, &t );
  675. for ( int i = 0; i < 16; i ++ ) {
  676. printf("%02X ", rx_buf[i]);
  677. }
  678. printf("\n");
  679. if ( i == 1 ) {
  680. // no rx, skip check
  681. } else if ( i == 2 ) {
  682. //test rx length = tx length-1
  683. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length / 8 - 1 );
  684. } else {
  685. //normal check
  686. TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length / 8 );
  687. }
  688. }
  689. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  690. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  691. }
  692. #if (TEST_SPI_PERIPH_NUM >= 2)
  693. //These will only be enabled on chips with 2 or more SPI peripherals
  694. static uint8_t bitswap(uint8_t in)
  695. {
  696. uint8_t out = 0;
  697. for (int i = 0; i < 8; i++) {
  698. out = out >> 1;
  699. if (in & 0x80) {
  700. out |= 0x80;
  701. }
  702. in = in << 1;
  703. }
  704. return out;
  705. }
  706. void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
  707. {
  708. spi_device_handle_t spi;
  709. ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first ? "LSB" : "MSB");
  710. //initial master, mode 0, 1MHz
  711. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  712. buscfg.quadhd_io_num = UNCONNECTED_PIN;
  713. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO));
  714. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  715. devcfg.clock_speed_hz = 1 * 1000 * 1000;
  716. if (lsb_first) {
  717. devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
  718. }
  719. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
  720. //connecting pins to two peripherals breaks the output, fix it.
  721. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  722. spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  723. spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  724. spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  725. for (int i = 0; i < 8; i++) {
  726. //prepare slave tx data
  727. slave_txdata_t slave_txdata = (slave_txdata_t) {
  728. .start = spitest_slave_send + 4 * (i % 3),
  729. .len = 256,
  730. };
  731. xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
  732. vTaskDelay(50);
  733. //prepare master tx data
  734. int cmd_bits = (i + 1) * 2;
  735. int addr_bits =
  736. #ifdef CONFIG_IDF_TARGET_ESP32
  737. 56 - 8 * i;
  738. #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
  739. //ESP32S2 only supportes up to 32 bits address
  740. 28 - 4 * i;
  741. #endif
  742. int round_up = (cmd_bits + addr_bits + 7) / 8 * 8;
  743. addr_bits = round_up - cmd_bits;
  744. spi_transaction_ext_t trans = (spi_transaction_ext_t) {
  745. .base = {
  746. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  747. .addr = 0x456789abcdef0123,
  748. .cmd = 0x9876,
  749. },
  750. .command_bits = cmd_bits,
  751. .address_bits = addr_bits,
  752. };
  753. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  754. ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
  755. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&trans));
  756. //wait for both master and slave end
  757. size_t rcv_len;
  758. slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
  759. rcv_len -= 8;
  760. uint8_t *buffer = rcv_data->data;
  761. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  762. TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len + 7) / 8);
  763. TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits + addr_bits);
  764. ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
  765. uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
  766. uint64_t addr_expected = trans.base.addr & ((1ULL << addr_bits) - 1);
  767. uint8_t *data_ptr = buffer;
  768. uint16_t cmd_got = *(uint16_t *)data_ptr;
  769. data_ptr += cmd_bits / 8;
  770. cmd_got = __builtin_bswap16(cmd_got);
  771. cmd_got = cmd_got >> (16 - cmd_bits);
  772. int remain_bits = cmd_bits % 8;
  773. uint64_t addr_got = *(uint64_t *)data_ptr;
  774. data_ptr += 8;
  775. addr_got = __builtin_bswap64(addr_got);
  776. addr_got = (addr_got << remain_bits);
  777. addr_got |= (*data_ptr >> (8 - remain_bits));
  778. addr_got = addr_got >> (64 - addr_bits);
  779. if (lsb_first) {
  780. cmd_got = __builtin_bswap16(cmd_got);
  781. addr_got = __builtin_bswap64(addr_got);
  782. uint8_t *swap_ptr = (uint8_t *)&cmd_got;
  783. swap_ptr[0] = bitswap(swap_ptr[0]);
  784. swap_ptr[1] = bitswap(swap_ptr[1]);
  785. cmd_got = cmd_got >> (16 - cmd_bits);
  786. swap_ptr = (uint8_t *)&addr_got;
  787. for (int j = 0; j < 8; j++) {
  788. swap_ptr[j] = bitswap(swap_ptr[j]);
  789. }
  790. addr_got = addr_got >> (64 - addr_bits);
  791. }
  792. ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got >> 32), (uint32_t)addr_got);
  793. TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
  794. if (addr_bits > 0) {
  795. TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
  796. TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
  797. }
  798. //clean
  799. vRingbufferReturnItem(slave_context->data_received, rcv_data);
  800. }
  801. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  802. TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
  803. }
  804. TEST_CASE("SPI master variable cmd & addr test", "[spi]")
  805. {
  806. spi_slave_task_context_t slave_context = {};
  807. esp_err_t err = init_slave_context( &slave_context );
  808. TEST_ASSERT( err == ESP_OK );
  809. TaskHandle_t handle_slave;
  810. xTaskCreate( spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  811. //initial slave, mode 0, no dma
  812. int dma_chan = 0;
  813. int slave_mode = 0;
  814. spi_bus_config_t slv_buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  815. spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  816. slvcfg.mode = slave_mode;
  817. //Initialize SPI slave interface
  818. TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
  819. test_cmd_addr(&slave_context, false);
  820. test_cmd_addr(&slave_context, true);
  821. vTaskDelete( handle_slave );
  822. handle_slave = 0;
  823. deinit_slave_context(&slave_context);
  824. TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
  825. ESP_LOGI(MASTER_TAG, "test passed.");
  826. }
  827. void test_dummy(spi_device_handle_t spi, int dummy_n, uint8_t *data_to_send, int len)
  828. {
  829. ESP_LOGI(TAG, "testing dummy n=%d", dummy_n);
  830. WORD_ALIGNED_ATTR uint8_t slave_buffer[len + (dummy_n + 7) / 8];
  831. spi_slave_transaction_t slave_t = {
  832. .tx_buffer = slave_buffer,
  833. .rx_buffer = slave_buffer,
  834. .length = len * 8 + ((dummy_n + 7) & (~8)) + 32, //receive more bytes to avoid slave discarding data
  835. };
  836. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_t, portMAX_DELAY));
  837. vTaskDelay(50);
  838. spi_transaction_ext_t t = {
  839. .base = {
  840. .tx_buffer = data_to_send,
  841. .length = (len + 1) * 8, //send one more byte force slave receive all data
  842. .flags = SPI_TRANS_VARIABLE_DUMMY,
  843. },
  844. .dummy_bits = dummy_n,
  845. };
  846. TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t *)&t));
  847. spi_slave_transaction_t *ret_slave;
  848. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  849. TEST_ASSERT(ret_slave == &slave_t);
  850. ESP_LOG_BUFFER_HEXDUMP("rcv", slave_buffer, len + 4, ESP_LOG_INFO);
  851. int skip_cnt = dummy_n / 8;
  852. int dummy_remain = dummy_n % 8;
  853. uint8_t *slave_ptr = slave_buffer;
  854. if (dummy_remain > 0) {
  855. for (int i = 0; i < len; i++) {
  856. slave_ptr[0] = (slave_ptr[skip_cnt] << dummy_remain) | (slave_ptr[skip_cnt + 1] >> (8 - dummy_remain));
  857. slave_ptr++;
  858. }
  859. } else {
  860. for (int i = 0; i < len; i++) {
  861. slave_ptr[0] = slave_ptr[skip_cnt];
  862. slave_ptr++;
  863. }
  864. }
  865. TEST_ASSERT_EQUAL_HEX8_ARRAY(data_to_send, slave_buffer, len);
  866. }
  867. TEST_CASE("SPI master variable dummy test", "[spi]")
  868. {
  869. spi_device_handle_t spi;
  870. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  871. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  872. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  873. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, 0));
  874. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  875. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  876. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, 0));
  877. spitest_gpio_output_sel(bus_cfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out);
  878. spitest_gpio_output_sel(bus_cfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out);
  879. spitest_gpio_output_sel(dev_cfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]);
  880. spitest_gpio_output_sel(bus_cfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out);
  881. uint8_t data_to_send[] = {0x12, 0x34, 0x56, 0x78};
  882. test_dummy(spi, 0, data_to_send, sizeof(data_to_send));
  883. test_dummy(spi, 1, data_to_send, sizeof(data_to_send));
  884. test_dummy(spi, 2, data_to_send, sizeof(data_to_send));
  885. test_dummy(spi, 3, data_to_send, sizeof(data_to_send));
  886. test_dummy(spi, 4, data_to_send, sizeof(data_to_send));
  887. test_dummy(spi, 8, data_to_send, sizeof(data_to_send));
  888. test_dummy(spi, 12, data_to_send, sizeof(data_to_send));
  889. test_dummy(spi, 16, data_to_send, sizeof(data_to_send));
  890. spi_slave_free(TEST_SLAVE_HOST);
  891. master_free_device_bus(spi);
  892. }
  893. /**
  894. * This test is to check when the first transaction of the HD master is to send data without receiving data via DMA,
  895. * then if the master could receive data correctly.
  896. *
  897. * Because an old version ESP32 silicon issue, there is a workaround to enable and start the RX DMA in FD/HD mode in
  898. * this condition (TX without RX). And if RX DMA is enabled and started in HD mode, because there is no correctly
  899. * linked RX DMA descriptor, there will be an inlink_dscr_error interrupt emerging, which will influence the following
  900. * RX transactions.
  901. *
  902. * This bug is fixed by triggering this workaround only in FD mode.
  903. *
  904. */
  905. TEST_CASE("SPI master hd dma TX without RX test", "[spi]")
  906. {
  907. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  908. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
  909. spi_device_handle_t spi;
  910. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  911. dev_cfg.flags = SPI_DEVICE_HALFDUPLEX;
  912. dev_cfg.clock_speed_hz = 1 * 1000 * 1000;
  913. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  914. spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  915. TEST_ESP_OK(spi_slave_initialize(TEST_SLAVE_HOST, &bus_cfg, &slave_cfg, SPI_DMA_CH_AUTO));
  916. same_pin_func_sel(bus_cfg, dev_cfg, 0);
  917. uint32_t buf_size = 32;
  918. uint8_t *mst_send_buf = heap_caps_malloc(buf_size, MALLOC_CAP_DMA);
  919. uint8_t *mst_recv_buf = heap_caps_calloc(buf_size, 1, MALLOC_CAP_DMA);
  920. uint8_t *slv_send_buf = heap_caps_malloc(buf_size, MALLOC_CAP_DMA);
  921. uint8_t *slv_recv_buf = heap_caps_calloc(buf_size, 1, MALLOC_CAP_DMA);
  922. srand(199);
  923. for (int i = 0; i < buf_size; i++) {
  924. mst_send_buf[i] = rand();
  925. }
  926. //1. Master sends without receiving, no rx_buffer is set
  927. spi_slave_transaction_t slave_trans = {
  928. .rx_buffer = slv_recv_buf,
  929. .length = buf_size * 8,
  930. };
  931. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_trans, portMAX_DELAY));
  932. spi_transaction_t master_trans = {
  933. .tx_buffer = mst_send_buf,
  934. .length = buf_size * 8,
  935. };
  936. TEST_ESP_OK(spi_device_transmit(spi, &master_trans));
  937. spi_slave_transaction_t *ret_slave;
  938. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  939. spitest_cmp_or_dump(mst_send_buf, slv_recv_buf, buf_size);
  940. //2. Master receives data
  941. for (int i = 100; i < 110; i++) {
  942. srand(i);
  943. for (int j = 0; j < buf_size; j++) {
  944. slv_send_buf[j] = rand();
  945. }
  946. slave_trans = (spi_slave_transaction_t) {};
  947. slave_trans.tx_buffer = slv_send_buf;
  948. slave_trans.length = buf_size * 8;
  949. TEST_ESP_OK(spi_slave_queue_trans(TEST_SLAVE_HOST, &slave_trans, portMAX_DELAY));
  950. vTaskDelay(50);
  951. master_trans = (spi_transaction_t) {};
  952. master_trans.rx_buffer = mst_recv_buf;
  953. master_trans.rxlength = buf_size * 8;
  954. TEST_ESP_OK(spi_device_transmit(spi, &master_trans));
  955. TEST_ESP_OK(spi_slave_get_trans_result(TEST_SLAVE_HOST, &ret_slave, portMAX_DELAY));
  956. spitest_cmp_or_dump(slv_send_buf, mst_recv_buf, buf_size);
  957. }
  958. free(mst_send_buf);
  959. free(mst_recv_buf);
  960. free(slv_send_buf);
  961. free(slv_recv_buf);
  962. spi_slave_free(TEST_SLAVE_HOST);
  963. master_free_device_bus(spi);
  964. }
  965. #endif //#if (TEST_SPI_PERIPH_NUM >= 2)
  966. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32) //TODO: IDF-3494
  967. #define FD_TEST_BUF_SIZE 32
  968. #define TEST_NUM 4
  969. #define FD_SEED1 199
  970. #define FD_SEED2 29
  971. #define FD_SEED3 48
  972. #define FD_SEED4 327
  973. static void master_only_tx_trans(spi_device_handle_t spi, uint8_t *mst_send_buf, uint32_t length)
  974. {
  975. ESP_LOGI(MASTER_TAG, "FD DMA, Only TX:");
  976. spi_transaction_t trans = {0};
  977. trans.tx_buffer = mst_send_buf;
  978. trans.length = length * 8;
  979. unity_wait_for_signal("Slave ready");
  980. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  981. ESP_LOG_BUFFER_HEX("MASTER TX:", mst_send_buf, length);
  982. }
  983. static void master_only_rx_trans(spi_device_handle_t spi, uint8_t *mst_recv_buf, uint8_t *slv_send_buf, uint32_t length)
  984. {
  985. ESP_LOGI(MASTER_TAG, "FD DMA, Only RX:");
  986. spi_transaction_t trans = {0};
  987. trans.tx_buffer = NULL;
  988. trans.rx_buffer = mst_recv_buf;
  989. trans.length = length * 8;
  990. unity_wait_for_signal("Slave ready");
  991. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  992. ESP_LOG_BUFFER_HEX("MASTER RX:", mst_recv_buf, length);
  993. TEST_ASSERT_EQUAL_HEX8_ARRAY(slv_send_buf, mst_recv_buf, length);
  994. }
  995. static void master_both_trans(spi_device_handle_t spi, uint8_t *mst_send_buf, uint8_t *mst_recv_buf, uint8_t *slv_send_buf, uint32_t length)
  996. {
  997. ESP_LOGI(MASTER_TAG, "FD DMA, Both TX and RX:");
  998. spi_transaction_t trans = {0};
  999. trans.tx_buffer = mst_send_buf;
  1000. trans.rx_buffer = mst_recv_buf;
  1001. trans.length = length * 8;
  1002. unity_wait_for_signal("Slave ready");
  1003. TEST_ESP_OK(spi_device_transmit(spi, &trans));
  1004. ESP_LOG_BUFFER_HEX("MASTER TX:", mst_send_buf, length);
  1005. ESP_LOG_BUFFER_HEX("MASTER RX:", mst_recv_buf, length);
  1006. TEST_ASSERT_EQUAL_HEX8_ARRAY(slv_send_buf, mst_recv_buf, length);
  1007. }
  1008. static void fd_master(void)
  1009. {
  1010. spi_bus_config_t bus_cfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1011. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &bus_cfg, SPI_DMA_CH_AUTO));
  1012. spi_device_handle_t spi;
  1013. spi_device_interface_config_t dev_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1014. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &dev_cfg, &spi));
  1015. unity_send_signal("Master ready");
  1016. uint8_t *mst_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1017. uint8_t *mst_recv_buf = heap_caps_calloc(FD_TEST_BUF_SIZE, 1, MALLOC_CAP_DMA);
  1018. uint8_t *slv_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1019. //Master FD DMA, RX without TX Test
  1020. for (int i = 0; i < TEST_NUM; i++) {
  1021. // 1. Master FD DMA, only receive, with NULL tx_buffer
  1022. get_tx_buffer(FD_SEED1+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1023. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1024. master_only_rx_trans(spi, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1025. //2. Master FD DMA with TX and RX
  1026. get_tx_buffer(FD_SEED2+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1027. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1028. master_both_trans(spi, mst_send_buf, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1029. }
  1030. //Master FD DMA, TX without RX Test
  1031. for (int i = 0; i < TEST_NUM; i++) {
  1032. // 1. Master FD DMA, only send, with NULL rx_buffer
  1033. get_tx_buffer(FD_SEED3+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1034. master_only_tx_trans(spi, mst_send_buf, FD_TEST_BUF_SIZE);
  1035. //2. Master FD DMA with TX and RX
  1036. get_tx_buffer(FD_SEED4+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1037. memset(mst_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1038. master_both_trans(spi, mst_send_buf, mst_recv_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1039. }
  1040. free(mst_send_buf);
  1041. free(mst_recv_buf);
  1042. free(slv_send_buf);
  1043. master_free_device_bus(spi);
  1044. }
  1045. static void slave_only_tx_trans(uint8_t *slv_send_buf, uint32_t length)
  1046. {
  1047. ESP_LOGI(SLAVE_TAG, "FD DMA, Only TX");
  1048. spi_slave_transaction_t trans = {0};
  1049. trans.tx_buffer = slv_send_buf;
  1050. trans.length = length * 8;
  1051. unity_send_signal("Slave ready");
  1052. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1053. ESP_LOG_BUFFER_HEX("SLAVE TX:", slv_send_buf, length);
  1054. }
  1055. static void slave_only_rx_trans(uint8_t *slv_recv_buf, uint8_t *mst_send_buf, uint32_t length)
  1056. {
  1057. ESP_LOGI(SLAVE_TAG, "FD DMA, Only RX");
  1058. spi_slave_transaction_t trans = {};
  1059. trans.tx_buffer = NULL;
  1060. trans.rx_buffer = slv_recv_buf;
  1061. trans.length = length * 8;
  1062. unity_send_signal("Slave ready");
  1063. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1064. ESP_LOG_BUFFER_HEX("SLAVE RX:", slv_recv_buf, length);
  1065. TEST_ASSERT_EQUAL(length * 8, trans.trans_len);
  1066. TEST_ASSERT_EQUAL_HEX8_ARRAY(mst_send_buf, slv_recv_buf, length);
  1067. }
  1068. static void slave_both_trans(uint8_t *slv_send_buf, uint8_t *slv_recv_buf, uint8_t *mst_send_buf, uint32_t length)
  1069. {
  1070. ESP_LOGI(SLAVE_TAG, "FD DMA, Both TX and RX:");
  1071. spi_slave_transaction_t trans = {0};
  1072. trans.tx_buffer = slv_send_buf;
  1073. trans.rx_buffer = slv_recv_buf;
  1074. trans.length = length * 8;
  1075. unity_send_signal("Slave ready");
  1076. TEST_ESP_OK(spi_slave_transmit(SPI2_HOST, &trans, portMAX_DELAY));
  1077. ESP_LOG_BUFFER_HEX("SLAVE TX:", slv_send_buf, length);
  1078. ESP_LOG_BUFFER_HEX("SLAVE RX:", slv_recv_buf, length);
  1079. TEST_ASSERT_EQUAL_HEX8_ARRAY(mst_send_buf, slv_recv_buf, length);
  1080. }
  1081. static void fd_slave(void)
  1082. {
  1083. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1084. spi_slave_interface_config_t slvcfg = SPI_SLAVE_TEST_DEFAULT_CONFIG();
  1085. TEST_ESP_OK(spi_slave_initialize(SPI2_HOST, &buscfg, &slvcfg, SPI_DMA_CH_AUTO));
  1086. unity_wait_for_signal("Master ready");
  1087. uint8_t *slv_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1088. uint8_t *slv_recv_buf = heap_caps_calloc(FD_TEST_BUF_SIZE, 1, MALLOC_CAP_DMA);
  1089. uint8_t *mst_send_buf = heap_caps_malloc(FD_TEST_BUF_SIZE, MALLOC_CAP_DMA);
  1090. for (int i = 0; i < TEST_NUM; i++) {
  1091. //1. Slave TX without RX (rx_buffer == NULL)
  1092. get_tx_buffer(FD_SEED1+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1093. slave_only_tx_trans(slv_send_buf, FD_TEST_BUF_SIZE);
  1094. //2. Slave both TX and RX
  1095. get_tx_buffer(FD_SEED2+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1096. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1097. slave_both_trans(slv_send_buf, slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1098. }
  1099. for (int i = 0; i < TEST_NUM; i++) {
  1100. // 1. Slave RX without TX (tx_buffer == NULL)
  1101. get_tx_buffer(FD_SEED3+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1102. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1103. slave_only_rx_trans(slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1104. //2. Slave both TX and RX
  1105. get_tx_buffer(FD_SEED4+i, mst_send_buf, slv_send_buf, FD_TEST_BUF_SIZE);
  1106. memset(slv_recv_buf, 0x0, FD_TEST_BUF_SIZE);
  1107. slave_both_trans(slv_send_buf, slv_recv_buf, mst_send_buf, FD_TEST_BUF_SIZE);
  1108. }
  1109. free(slv_send_buf);
  1110. free(slv_recv_buf);
  1111. free(mst_send_buf);
  1112. TEST_ASSERT(spi_slave_free(SPI2_HOST) == ESP_OK);
  1113. }
  1114. TEST_CASE_MULTIPLE_DEVICES("SPI Master: FD, DMA, Master Single Direction Test", "[spi_ms][test_env=Example_SPI_Multi_device]", fd_master, fd_slave);
  1115. #endif //#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32) //TODO: IDF-3494
  1116. //NOTE: Explained in IDF-1445 | MR !14996
  1117. #if !(CONFIG_SPIRAM) || (CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL >= 16384)
  1118. /********************************************************************************
  1119. * Test SPI transaction interval
  1120. ********************************************************************************/
  1121. //Disabled since the check in portENTER_CRITICAL in esp_intr_enable/disable increase the delay
  1122. #ifndef CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  1123. #define RECORD_TIME_PREPARE() uint32_t __t1, __t2
  1124. #define RECORD_TIME_START() do {__t1 = esp_cpu_get_ccount();}while(0)
  1125. #define RECORD_TIME_END(p_time) do{__t2 = esp_cpu_get_ccount(); *p_time = (__t2-__t1);}while(0)
  1126. #ifdef CONFIG_IDF_TARGET_ESP32
  1127. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ)
  1128. #elif CONFIG_IDF_TARGET_ESP32S2
  1129. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ)
  1130. #elif CONFIG_IDF_TARGET_ESP32S3
  1131. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ)
  1132. #elif CONFIG_IDF_TARGET_ESP32C3
  1133. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ)
  1134. #elif CONFIG_IDF_TARGET_ESP32C2
  1135. #define GET_US_BY_CCOUNT(t) ((double)t/CONFIG_ESP32C2_DEFAULT_CPU_FREQ_MHZ)
  1136. #endif
  1137. static void speed_setup(spi_device_handle_t *spi, bool use_dma)
  1138. {
  1139. spi_bus_config_t buscfg = SPI_BUS_TEST_DEFAULT_CONFIG();
  1140. spi_device_interface_config_t devcfg = SPI_DEVICE_TEST_DEFAULT_CONFIG();
  1141. devcfg.queue_size = 8; //We want to be able to queue 7 transactions at a time
  1142. //Initialize the SPI bus and the device to test
  1143. TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, (use_dma ? SPI_DMA_CH_AUTO : 0)));
  1144. TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, spi));
  1145. }
  1146. static void sorted_array_insert(uint32_t *array, int *size, uint32_t item)
  1147. {
  1148. int pos;
  1149. for (pos = *size; pos > 0; pos--) {
  1150. if (array[pos - 1] < item) {
  1151. break;
  1152. }
  1153. array[pos] = array[pos - 1];
  1154. }
  1155. array[pos] = item;
  1156. (*size)++;
  1157. }
  1158. #define TEST_TIMES 11
  1159. static IRAM_ATTR NOINLINE_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t *trans, uint32_t *t_flight)
  1160. {
  1161. RECORD_TIME_PREPARE();
  1162. spi_device_transmit(spi, trans); // prime the flash cache
  1163. RECORD_TIME_START();
  1164. spi_device_transmit(spi, trans);
  1165. RECORD_TIME_END(t_flight);
  1166. }
  1167. static IRAM_ATTR NOINLINE_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t *trans, uint32_t *t_flight)
  1168. {
  1169. spi_flash_disable_interrupts_caches_and_other_cpu(); //this can test the code are all in the IRAM at the same time
  1170. RECORD_TIME_PREPARE();
  1171. spi_device_polling_transmit(spi, trans); // prime the flash cache
  1172. RECORD_TIME_START();
  1173. spi_device_polling_transmit(spi, trans);
  1174. RECORD_TIME_END(t_flight);
  1175. spi_flash_enable_interrupts_caches_and_other_cpu();
  1176. }
  1177. TEST_CASE("spi_speed", "[spi]")
  1178. {
  1179. uint32_t t_flight;
  1180. //to get rid of the influence of randomly interrupts, we measured the performance by median value
  1181. uint32_t t_flight_sorted[TEST_TIMES];
  1182. esp_err_t ret;
  1183. int t_flight_num = 0;
  1184. spi_device_handle_t spi;
  1185. const bool use_dma = true;
  1186. WORD_ALIGNED_ATTR spi_transaction_t trans = {
  1187. .length = 1 * 8,
  1188. .flags = SPI_TRANS_USE_TXDATA,
  1189. };
  1190. //first work with DMA
  1191. speed_setup(&spi, use_dma);
  1192. //record flight time by isr, with DMA
  1193. t_flight_num = 0;
  1194. for (int i = 0; i < TEST_TIMES; i++) {
  1195. spi_transmit_measure(spi, &trans, &t_flight);
  1196. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1197. }
  1198. for (int i = 0; i < TEST_TIMES; i++) {
  1199. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1200. }
  1201. #ifndef CONFIG_SPIRAM
  1202. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1203. #endif
  1204. //acquire the bus to send polling transactions faster
  1205. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  1206. TEST_ESP_OK(ret);
  1207. //record flight time by polling and with DMA
  1208. t_flight_num = 0;
  1209. for (int i = 0; i < TEST_TIMES; i++) {
  1210. spi_transmit_polling_measure(spi, &trans, &t_flight);
  1211. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1212. }
  1213. for (int i = 0; i < TEST_TIMES; i++) {
  1214. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1215. }
  1216. #ifndef CONFIG_SPIRAM
  1217. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1218. #endif
  1219. //release the bus
  1220. spi_device_release_bus(spi);
  1221. master_free_device_bus(spi);
  1222. speed_setup(&spi, !use_dma);
  1223. //record flight time by isr, without DMA
  1224. t_flight_num = 0;
  1225. for (int i = 0; i < TEST_TIMES; i++) {
  1226. spi_transmit_measure(spi, &trans, &t_flight);
  1227. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1228. }
  1229. for (int i = 0; i < TEST_TIMES; i++) {
  1230. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1231. }
  1232. #ifndef CONFIG_SPIRAM
  1233. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1234. #endif
  1235. //acquire the bus to send polling transactions faster
  1236. ret = spi_device_acquire_bus(spi, portMAX_DELAY);
  1237. TEST_ESP_OK(ret);
  1238. //record flight time by polling, without DMA
  1239. t_flight_num = 0;
  1240. for (int i = 0; i < TEST_TIMES; i++) {
  1241. spi_transmit_polling_measure(spi, &trans, &t_flight);
  1242. sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight);
  1243. }
  1244. for (int i = 0; i < TEST_TIMES; i++) {
  1245. ESP_LOGI(TAG, "%.2lf", GET_US_BY_CCOUNT(t_flight_sorted[i]));
  1246. }
  1247. #ifndef CONFIG_SPIRAM
  1248. TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", (int)GET_US_BY_CCOUNT(t_flight_sorted[(TEST_TIMES + 1) / 2]));
  1249. #endif
  1250. //release the bus
  1251. spi_device_release_bus(spi);
  1252. master_free_device_bus(spi);
  1253. }
  1254. #endif // CONFIG_FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE
  1255. #endif // !(CONFIG_SPIRAM) || (CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL >= 16384)