test_ulp.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <stdio.h>
  7. #include <string.h>
  8. #include <freertos/FreeRTOS.h>
  9. #include <freertos/task.h>
  10. #include <freertos/semphr.h>
  11. #include <unity.h>
  12. #include "esp_attr.h"
  13. #include "esp_err.h"
  14. #include "esp_log.h"
  15. #include "esp_sleep.h"
  16. #include "ulp.h"
  17. #include "soc/soc.h"
  18. #include "soc/rtc.h"
  19. #include "soc/rtc_cntl_reg.h"
  20. #include "soc/sens_reg.h"
  21. #include "soc/rtc_io_reg.h"
  22. #include "driver/rtc_io.h"
  23. #include "sdkconfig.h"
  24. #include "esp_rom_sys.h"
  25. #include "ulp_test_app.h"
  26. extern const uint8_t ulp_test_app_bin_start[] asm("_binary_ulp_test_app_bin_start");
  27. extern const uint8_t ulp_test_app_bin_end[] asm("_binary_ulp_test_app_bin_end");
  28. #define HEX_DUMP_DEBUG 0
  29. static void hexdump(const uint32_t* src, size_t count) {
  30. #if HEX_DUMP_DEBUG
  31. for (size_t i = 0; i < count; ++i) {
  32. printf("%08x ", *src);
  33. ++src;
  34. if ((i + 1) % 4 == 0) {
  35. printf("\n");
  36. }
  37. }
  38. #else
  39. (void)src;
  40. (void)count;
  41. #endif
  42. }
  43. TEST_CASE("ULP FSM addition test", "[ulp]")
  44. {
  45. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  46. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  47. /* ULP co-processor program to add data in 2 memory locations using ULP macros */
  48. const ulp_insn_t program[] = {
  49. I_MOVI(R3, 16), // r3 = 16
  50. I_LD(R0, R3, 0), // r0 = mem[r3 + 0]
  51. I_LD(R1, R3, 1), // r1 = mem[r3 + 1]
  52. I_ADDR(R2, R0, R1), // r2 = r0 + r1
  53. I_ST(R2, R3, 2), // mem[r3 + 2] = r2
  54. I_HALT() // halt
  55. };
  56. /* Load the memory regions used by the ULP co-processor */
  57. RTC_SLOW_MEM[16] = 10;
  58. RTC_SLOW_MEM[17] = 11;
  59. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  60. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  61. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  62. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  63. /* Wait for the ULP co-processor to finish up */
  64. esp_rom_delay_us(1000);
  65. hexdump(RTC_SLOW_MEM, 20);
  66. /* Verify the test results */
  67. TEST_ASSERT_EQUAL(10 + 11, RTC_SLOW_MEM[18] & 0xffff);
  68. }
  69. TEST_CASE("ULP FSM subtraction and branch test", "[ulp]")
  70. {
  71. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  72. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  73. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  74. /* ULP co-processor program to perform subtractions and branch to a label */
  75. const ulp_insn_t program[] = {
  76. I_MOVI(R0, 34), // r0 = 34
  77. M_LABEL(1), // define a label with label number as 1
  78. I_MOVI(R1, 32), // r1 = 32
  79. I_LD(R1, R1, 0), // r1 = mem[32 + 0]
  80. I_MOVI(R2, 33), // r2 = 33
  81. I_LD(R2, R2, 0), // r2 = mem[33 + 0]
  82. I_SUBR(R3, R1, R2), // r3 = r1 - r2
  83. I_ST(R3, R0, 0), // mem[r0 + 0] = r3
  84. I_ADDI(R0, R0, 1), // r0 = r0 + 1
  85. M_BL(1, 64), // branch to label 1 if r0 < 64
  86. I_HALT(), // halt
  87. };
  88. /* Load the memory regions used by the ULP co-processor */
  89. RTC_SLOW_MEM[32] = 42;
  90. RTC_SLOW_MEM[33] = 18;
  91. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  92. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  93. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  94. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  95. printf("\n\n");
  96. /* Wait for the ULP co-processor to finish up */
  97. esp_rom_delay_us(1000);
  98. hexdump(RTC_SLOW_MEM, 50);
  99. /* Verify the test results */
  100. for (int i = 34; i < 64; ++i) {
  101. TEST_ASSERT_EQUAL(42 - 18, RTC_SLOW_MEM[i] & 0xffff);
  102. }
  103. TEST_ASSERT_EQUAL(0, RTC_SLOW_MEM[64]);
  104. }
  105. TEST_CASE("ULP FSM JUMPS instruction test", "[ulp]")
  106. {
  107. /*
  108. * Load the ULP binary.
  109. *
  110. * This ULP program is written in assembly. Please refer associated .S file.
  111. */
  112. esp_err_t err = ulp_load_binary(0, ulp_test_app_bin_start,
  113. (ulp_test_app_bin_end - ulp_test_app_bin_start) / sizeof(uint32_t));
  114. TEST_ESP_OK(err);
  115. /* Clear ULP FSM raw interrupt */
  116. REG_CLR_BIT(RTC_CNTL_INT_RAW_REG, RTC_CNTL_ULP_CP_INT_RAW);
  117. /* Run the ULP coprocessor */
  118. TEST_ESP_OK(ulp_run(&ulp_test_jumps - RTC_SLOW_MEM));
  119. /* Wait for the ULP co-processor to finish up */
  120. esp_rom_delay_us(1000);
  121. /* Verify that ULP FSM issued an interrupt to wake up the main CPU */
  122. TEST_ASSERT_NOT_EQUAL(0, REG_GET_BIT(RTC_CNTL_INT_RAW_REG, RTC_CNTL_ULP_CP_INT_RAW));
  123. /* Verify the test results */
  124. TEST_ASSERT_EQUAL(0, ulp_jumps_fail & UINT16_MAX);
  125. TEST_ASSERT_EQUAL(1, ulp_jumps_pass & UINT16_MAX);
  126. }
  127. TEST_CASE("ULP FSM light-sleep wakeup test", "[ulp]")
  128. {
  129. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  130. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  131. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  132. /* ULP co-processor program to perform some activities and wakeup the main CPU from deep-sleep */
  133. const ulp_insn_t program[] = {
  134. I_MOVI(R1, 1024), // r1 = 1024
  135. M_LABEL(1), // define label 1
  136. I_DELAY(32000), // add a delay (NOP for 32000 cycles)
  137. I_SUBI(R1, R1, 1), // r1 = r1 - 1
  138. M_BXZ(3), // branch to label 3 if ALU value is 0. (r1 = 0)
  139. I_RSHI(R3, R1, 5), // r3 = r1 / 32
  140. I_ST(R1, R3, 16), // mem[r3 + 16] = r1
  141. M_BX(1), // loop to label 1
  142. M_LABEL(3), // define label 3
  143. I_MOVI(R2, 42), // r2 = 42
  144. I_MOVI(R3, 15), // r3 = 15
  145. I_ST(R2, R3, 0), // mem[r3 + 0] = r2
  146. I_WAKE(), // wake the SoC from deep-sleep
  147. I_END(), // stop ULP timer
  148. I_HALT() // halt
  149. };
  150. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  151. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  152. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  153. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  154. /* Setup wakeup triggers */
  155. TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
  156. /* Enter Light Sleep */
  157. TEST_ASSERT(esp_light_sleep_start() == ESP_OK);
  158. /* Wait for wakeup from ULP FSM Coprocessor */
  159. printf("cause %d\r\n", esp_sleep_get_wakeup_cause());
  160. TEST_ASSERT(esp_sleep_get_wakeup_cause() == ESP_SLEEP_WAKEUP_ULP);
  161. }
  162. TEST_CASE("ULP FSM deep-sleep wakeup test", "[ulp][reset=SW_CPU_RESET][ignore]")
  163. {
  164. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  165. /* Clearout the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  166. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  167. /* ULP co-processor program to perform some activities and wakeup the main CPU from deep-sleep */
  168. const ulp_insn_t program[] = {
  169. I_MOVI(R1, 1024), // r1 = 1024
  170. M_LABEL(1), // define label 1
  171. I_DELAY(32000), // add a delay (NOP for 32000 cycles)
  172. I_SUBI(R1, R1, 1), // r1 = r1 - 1
  173. M_BXZ(3), // branch to label 3 if ALU value is 0. (r1 = 0)
  174. I_RSHI(R3, R1, 5), // r3 = r1 / 32
  175. I_ST(R1, R3, 16), // mem[r3 + 16] = r1
  176. M_BX(1), // loop to label 1
  177. M_LABEL(3), // define label 3
  178. I_MOVI(R2, 42), // r2 = 42
  179. I_MOVI(R3, 15), // r3 = 15
  180. I_ST(R2, R3, 0), // mem[r3 + 0] = r2
  181. I_WAKE(), // wake the SoC from deep-sleep
  182. I_END(), // stop ULP timer
  183. I_HALT() // halt
  184. };
  185. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  186. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  187. TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size));
  188. TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0));
  189. /* Setup wakeup triggers */
  190. TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
  191. /* Enter Deep Sleep */
  192. esp_deep_sleep_start();
  193. UNITY_TEST_FAIL(__LINE__, "Should not get here!");
  194. }
  195. TEST_CASE("ULP FSM can write and read peripheral registers", "[ulp]")
  196. {
  197. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  198. /* Clear ULP timer */
  199. CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN);
  200. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  201. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  202. /* ULP co-processor program to read from and write to peripheral registers */
  203. const ulp_insn_t program[] = {
  204. I_MOVI(R1, 64), // r1 = 64
  205. I_RD_REG(RTC_CNTL_STORE1_REG, 0, 15), // r0 = REG_READ(RTC_CNTL_STORE1_REG[15:0])
  206. I_ST(R0, R1, 0), // mem[r1 + 0] = r0
  207. I_RD_REG(RTC_CNTL_STORE1_REG, 4, 11), // r0 = REG_READ(RTC_CNTL_STORE1_REG[11:4])
  208. I_ST(R0, R1, 1), // mem[r1 + 1] = r0
  209. I_RD_REG(RTC_CNTL_STORE1_REG, 16, 31), // r0 = REG_READ(RTC_CNTL_STORE1_REG[31:16])
  210. I_ST(R0, R1, 2), // mem[r1 + 2] = r0
  211. I_RD_REG(RTC_CNTL_STORE1_REG, 20, 27), // r0 = REG_READ(RTC_CNTL_STORE1_REG[27:20])
  212. I_ST(R0, R1, 3), // mem[r1 + 3] = r0
  213. I_WR_REG(RTC_CNTL_STORE0_REG, 0, 7, 0x89), // REG_WRITE(RTC_CNTL_STORE0_REG[7:0], 0x89)
  214. I_WR_REG(RTC_CNTL_STORE0_REG, 8, 15, 0xab), // REG_WRITE(RTC_CNTL_STORE0_REG[15:8], 0xab)
  215. I_WR_REG(RTC_CNTL_STORE0_REG, 16, 23, 0xcd), // REG_WRITE(RTC_CNTL_STORE0_REG[23:16], 0xcd)
  216. I_WR_REG(RTC_CNTL_STORE0_REG, 24, 31, 0xef), // REG_WRITE(RTC_CNTL_STORE0_REG[31:24], 0xef)
  217. I_LD(R0, R1, 4), // r0 = mem[r1 + 4]
  218. I_ADDI(R0, R0, 1), // r0 = r0 + 1
  219. I_ST(R0, R1, 4), // mem[r1 + 4] = r0
  220. I_END(), // stop ULP timer
  221. I_HALT() // halt
  222. };
  223. /* Set data in the peripheral register to be read by the ULP co-processor */
  224. REG_WRITE(RTC_CNTL_STORE1_REG, 0x89abcdef);
  225. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  226. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  227. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  228. TEST_ESP_OK(ulp_run(0));
  229. /* Wait for the ULP co-processor to finish up */
  230. vTaskDelay(100/portTICK_PERIOD_MS);
  231. /* Verify the test results */
  232. TEST_ASSERT_EQUAL_HEX32(0xefcdab89, REG_READ(RTC_CNTL_STORE0_REG));
  233. TEST_ASSERT_EQUAL_HEX16(0xcdef, RTC_SLOW_MEM[64] & 0xffff);
  234. TEST_ASSERT_EQUAL_HEX16(0xde, RTC_SLOW_MEM[65] & 0xffff);
  235. TEST_ASSERT_EQUAL_HEX16(0x89ab, RTC_SLOW_MEM[66] & 0xffff);
  236. TEST_ASSERT_EQUAL_HEX16(0x9a, RTC_SLOW_MEM[67] & 0xffff);
  237. TEST_ASSERT_EQUAL_HEX16(1, RTC_SLOW_MEM[68] & 0xffff);
  238. }
  239. TEST_CASE("ULP FSM I_WR_REG instruction test", "[ulp]")
  240. {
  241. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  242. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  243. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  244. /* Define the test set */
  245. typedef struct {
  246. int low;
  247. int width;
  248. } wr_reg_test_item_t;
  249. const wr_reg_test_item_t test_items[] = {
  250. {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8},
  251. {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8},
  252. {15, 1}, {15, 2}, {15, 3}, {15, 4}, {15, 5}, {15, 6}, {15, 7}, {15, 8},
  253. {16, 1}, {16, 2}, {16, 3}, {16, 4}, {16, 5}, {16, 6}, {16, 7}, {16, 8},
  254. {18, 1}, {18, 2}, {18, 3}, {18, 4}, {18, 5}, {18, 6}, {18, 7}, {18, 8},
  255. {24, 1}, {24, 2}, {24, 3}, {24, 4}, {24, 5}, {24, 6}, {24, 7}, {24, 8},
  256. };
  257. const size_t test_items_count =
  258. sizeof(test_items)/sizeof(test_items[0]);
  259. for (size_t i = 0; i < test_items_count; ++i) {
  260. const uint32_t mask = (uint32_t) (((1ULL << test_items[i].width) - 1) << test_items[i].low);
  261. const uint32_t not_mask = ~mask;
  262. printf("#%2d: low: %2d width: %2d mask: %08x expected: %08x ", i,
  263. test_items[i].low, test_items[i].width,
  264. mask, not_mask);
  265. /* Set all bits in RTC_CNTL_STORE0_REG and reset all bits in RTC_CNTL_STORE1_REG */
  266. REG_WRITE(RTC_CNTL_STORE0_REG, 0xffffffff);
  267. REG_WRITE(RTC_CNTL_STORE1_REG, 0x00000000);
  268. /* ULP co-processor program to write to peripheral registers */
  269. const ulp_insn_t program[] = {
  270. I_WR_REG(RTC_CNTL_STORE0_REG,
  271. test_items[i].low,
  272. test_items[i].low + test_items[i].width - 1,
  273. 0),
  274. I_WR_REG(RTC_CNTL_STORE1_REG,
  275. test_items[i].low,
  276. test_items[i].low + test_items[i].width - 1,
  277. 0xff & ((1 << test_items[i].width) - 1)),
  278. I_END(),
  279. I_HALT()
  280. };
  281. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  282. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  283. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  284. TEST_ESP_OK(ulp_run(0));
  285. /* Wait for the ULP co-processor to finish up */
  286. vTaskDelay(10/portTICK_PERIOD_MS);
  287. /* Verify the test results */
  288. uint32_t clear = REG_READ(RTC_CNTL_STORE0_REG);
  289. uint32_t set = REG_READ(RTC_CNTL_STORE1_REG);
  290. printf("clear: %08x set: %08x\n", clear, set);
  291. TEST_ASSERT_EQUAL_HEX32(not_mask, clear);
  292. TEST_ASSERT_EQUAL_HEX32(mask, set);
  293. }
  294. }
  295. TEST_CASE("ULP FSM controls RTC_IO", "[ulp][ignore]")
  296. {
  297. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  298. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  299. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  300. /* ULP co-processor program to toggle LED */
  301. const ulp_insn_t program[] = {
  302. I_MOVI(R0, 0), // r0 is LED state
  303. I_MOVI(R2, 16), // loop r2 from 16 down to 0
  304. M_LABEL(4), // define label 4
  305. I_SUBI(R2, R2, 1), // r2 = r2 - 1
  306. M_BXZ(6), // branch to label 6 if r2 = 0
  307. I_ADDI(R0, R0, 1), // r0 = (r0 + 1) % 2
  308. I_ANDI(R0, R0, 0x1),
  309. M_BL(0, 1), // if r0 < 1 goto 0
  310. M_LABEL(1), // define label 1
  311. I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 1), // RTC_GPIO12 = 1
  312. M_BX(2), // goto 2
  313. M_LABEL(0), // define label 0
  314. I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 0), // RTC_GPIO12 = 0
  315. M_LABEL(2), // define label 2
  316. I_MOVI(R1, 100), // loop R1 from 100 down to 0
  317. M_LABEL(3), // define label 3
  318. I_SUBI(R1, R1, 1), // r1 = r1 - 1
  319. M_BXZ(5), // branch to label 5 if r1 = 0
  320. I_DELAY(32000), // delay for a while
  321. M_BX(3), // goto 3
  322. M_LABEL(5), // define label 5
  323. M_BX(4), // loop back to label 4
  324. M_LABEL(6), // define label 6
  325. I_WAKE(), // wake up the SoC
  326. I_END(), // stop ULP program timer
  327. I_HALT()
  328. };
  329. /* Configure LED GPIOs */
  330. const gpio_num_t led_gpios[] = {
  331. GPIO_NUM_2,
  332. GPIO_NUM_0,
  333. GPIO_NUM_4
  334. };
  335. for (size_t i = 0; i < sizeof(led_gpios)/sizeof(led_gpios[0]); ++i) {
  336. rtc_gpio_init(led_gpios[i]);
  337. rtc_gpio_set_direction(led_gpios[i], RTC_GPIO_MODE_OUTPUT_ONLY);
  338. rtc_gpio_set_level(led_gpios[i], 0);
  339. }
  340. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  341. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  342. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  343. TEST_ESP_OK(ulp_run(0));
  344. /* Setup wakeup triggers */
  345. TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
  346. /* Enter Deep Sleep */
  347. esp_deep_sleep_start();
  348. UNITY_TEST_FAIL(__LINE__, "Should not get here!");
  349. }
  350. TEST_CASE("ULP FSM power consumption in deep sleep", "[ulp][ignore]")
  351. {
  352. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 4 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  353. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  354. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  355. /* Put the ULP coprocessor in halt state */
  356. ulp_insn_t insn = I_HALT();
  357. memcpy(&RTC_SLOW_MEM[0], &insn, sizeof(insn));
  358. /* Set ULP timer */
  359. ulp_set_wakeup_period(0, 0x8000);
  360. /* Run the ULP coprocessor */
  361. TEST_ESP_OK(ulp_run(0));
  362. /* Setup wakeup triggers */
  363. TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
  364. TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK);
  365. /* Enter Deep Sleep */
  366. esp_deep_sleep_start();
  367. UNITY_TEST_FAIL(__LINE__, "Should not get here!");
  368. }
  369. TEST_CASE("ULP FSM timer setting", "[ulp]")
  370. {
  371. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 32 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  372. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  373. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  374. /*
  375. * Run a simple ULP program which increments the counter, for one second.
  376. * Program calls I_HALT each time and gets restarted by the timer.
  377. * Compare the expected number of times the program runs with the actual.
  378. */
  379. const int offset = 6;
  380. const ulp_insn_t program[] = {
  381. I_MOVI(R1, offset), // r1 <- offset
  382. I_LD(R2, R1, 0), // load counter
  383. I_ADDI(R2, R2, 1), // counter += 1
  384. I_ST(R2, R1, 0), // save counter
  385. I_HALT(),
  386. };
  387. /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */
  388. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  389. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  390. assert(offset >= size && "data offset needs to be greater or equal to program size");
  391. TEST_ESP_OK(ulp_run(0));
  392. /* Disable the ULP program timer — we will enable it later */
  393. ulp_timer_stop();
  394. /* Define the test data */
  395. const uint32_t cycles_to_test[] = { 10000, // 10 ms
  396. 20000, // 20 ms
  397. 50000, // 50 ms
  398. 100000, // 100 ms
  399. 200000, // 200 ms
  400. 500000, // 500 ms
  401. 1000000 }; // 1 sec
  402. const size_t tests_count = sizeof(cycles_to_test) / sizeof(cycles_to_test[0]);
  403. for (size_t i = 0; i < tests_count; ++i) {
  404. // zero out the counter
  405. RTC_SLOW_MEM[offset] = 0;
  406. // set the ulp timer period
  407. ulp_set_wakeup_period(0, cycles_to_test[i]);
  408. // enable the timer and wait for a second
  409. ulp_timer_resume();
  410. vTaskDelay(1000 / portTICK_PERIOD_MS);
  411. // stop the timer and get the counter value
  412. ulp_timer_stop();
  413. uint32_t counter = RTC_SLOW_MEM[offset] & 0xffff;
  414. // calculate the expected counter value and allow a tolerance of 15%
  415. uint32_t expected_counter = 1000000 / cycles_to_test[i];
  416. uint32_t tolerance = (expected_counter * 15 / 100);
  417. tolerance = tolerance ? tolerance : 1; // Keep a tolerance of at least 1 count
  418. printf("expected: %u\t tolerance: +/- %u\t actual: %u\n", expected_counter, tolerance, counter);
  419. // Should be within 15%
  420. TEST_ASSERT_INT_WITHIN(tolerance, expected_counter, counter);
  421. }
  422. }
  423. TEST_CASE("ULP FSM can use temperature sensor (TSENS) in deep sleep", "[ulp][ignore]")
  424. {
  425. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  426. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  427. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  428. // Allow TSENS to be controlled by the ULP
  429. SET_PERI_REG_BITS(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_CLK_DIV, 10, SENS_TSENS_CLK_DIV_S);
  430. #if CONFIG_IDF_TARGET_ESP32
  431. SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, SENS_FORCE_XPD_SAR_FSM, SENS_FORCE_XPD_SAR_S);
  432. #elif CONFIG_IDF_TARGET_ESP32S2
  433. SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, SENS_FORCE_XPD_SAR_FSM, SENS_FORCE_XPD_SAR_S);
  434. SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL2_REG, SENS_TSENS_CLKGATE_EN);
  435. #elif CONFIG_IDF_TARGET_ESP32S3
  436. SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
  437. SET_PERI_REG_MASK(SENS_SAR_PERI_CLK_GATE_CONF_REG, SENS_TSENS_CLK_EN);
  438. #endif
  439. CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP);
  440. CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT);
  441. CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP_FORCE);
  442. // data start offset
  443. size_t offset = 20;
  444. // number of samples to collect
  445. RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8;
  446. // sample counter
  447. RTC_SLOW_MEM[offset + 1] = 0;
  448. /* ULP co-processor program to record temperature sensor readings */
  449. const ulp_insn_t program[] = {
  450. I_MOVI(R1, offset), // r1 <- offset
  451. I_LD(R2, R1, 1), // r2 <- counter
  452. I_LD(R3, R1, 0), // r3 <- length
  453. I_SUBI(R3, R3, 1), // end = length - 1
  454. I_SUBR(R3, R3, R2), // r3 = length - counter
  455. M_BXF(1), // if overflow goto 1:
  456. I_TSENS(R0, 16383), // r0 <- tsens
  457. I_ST(R0, R2, offset + 4), // mem[r2 + offset +4] <- r0
  458. I_ADDI(R2, R2, 1), // counter += 1
  459. I_ST(R2, R1, 1), // save counter
  460. I_HALT(), // enter sleep
  461. M_LABEL(1), // done with measurements
  462. I_END(), // stop ULP timer
  463. I_WAKE(), // initiate wakeup
  464. I_HALT()
  465. };
  466. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  467. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  468. assert(offset >= size);
  469. /* Run the ULP coprocessor */
  470. TEST_ESP_OK(ulp_run(0));
  471. /* Setup wakeup triggers */
  472. TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
  473. TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK);
  474. /* Enter Deep Sleep */
  475. esp_deep_sleep_start();
  476. UNITY_TEST_FAIL(__LINE__, "Should not get here!");
  477. }
  478. TEST_CASE("ULP FSM can use ADC in deep sleep", "[ulp][ignore]")
  479. {
  480. assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig");
  481. const int adc = 0;
  482. const int channel = 0;
  483. const int atten = 0;
  484. /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */
  485. memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM);
  486. #if defined(CONFIG_IDF_TARGET_ESP32)
  487. // Configure SAR ADCn resolution
  488. SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH, 3, SENS_SAR1_BIT_WIDTH_S);
  489. SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR2_BIT_WIDTH, 3, SENS_SAR2_BIT_WIDTH_S);
  490. SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT, 0x3, SENS_SAR1_SAMPLE_BIT_S);
  491. SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_BIT, 0x3, SENS_SAR2_SAMPLE_BIT_S);
  492. // SAR ADCn is started by ULP FSM
  493. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_FORCE);
  494. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE);
  495. // Use ULP FSM to power up SAR ADCn
  496. SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
  497. SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S);
  498. // SAR ADCn invert result
  499. SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV);
  500. SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR2_DATA_INV);
  501. // Set SAR ADCn pad enable bitmap to be controlled by ULP FSM
  502. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M);
  503. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD_FORCE_M);
  504. #elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
  505. // SAR ADCn is started by ULP FSM
  506. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS2_CTRL2_REG, SENS_MEAS2_START_FORCE);
  507. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS1_CTRL2_REG, SENS_MEAS1_START_FORCE);
  508. // Use ULP FSM to power up/down SAR ADCn
  509. SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S);
  510. SET_PERI_REG_BITS(SENS_SAR_MEAS1_CTRL1_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S);
  511. // SAR1 invert result
  512. SET_PERI_REG_MASK(SENS_SAR_READER1_CTRL_REG, SENS_SAR1_DATA_INV);
  513. SET_PERI_REG_MASK(SENS_SAR_READER2_CTRL_REG, SENS_SAR2_DATA_INV);
  514. // Set SAR ADCn pad enable bitmap to be controlled by ULP FSM
  515. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS1_CTRL2_REG, SENS_SAR1_EN_PAD_FORCE_M);
  516. CLEAR_PERI_REG_MASK(SENS_SAR_MEAS2_CTRL2_REG, SENS_SAR2_EN_PAD_FORCE_M);
  517. // Enable SAR ADCn clock gate on esp32s3
  518. #if CONFIG_IDF_TARGET_ESP32S3
  519. SET_PERI_REG_MASK(SENS_SAR_PERI_CLK_GATE_CONF_REG, SENS_SARADC_CLK_EN);
  520. #endif
  521. #endif
  522. SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, 2 * channel); //set SAR1 attenuation
  523. SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, 3, atten, 2 * channel); //set SAR2 attenuation
  524. // data start offset
  525. size_t offset = 20;
  526. // number of samples to collect
  527. RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8;
  528. // sample counter
  529. RTC_SLOW_MEM[offset + 1] = 0;
  530. const ulp_insn_t program[] = {
  531. I_MOVI(R1, offset), // r1 <- offset
  532. I_LD(R2, R1, 1), // r2 <- counter
  533. I_LD(R3, R1, 0), // r3 <- length
  534. I_SUBI(R3, R3, 1), // end = length - 1
  535. I_SUBR(R3, R3, R2), // r3 = length - counter
  536. M_BXF(1), // if overflow goto 1:
  537. I_ADC(R0, adc, channel), // r0 <- ADC
  538. I_ST(R0, R2, offset + 4), // mem[r2 + offset +4] = r0
  539. I_ADDI(R2, R2, 1), // counter += 1
  540. I_ST(R2, R1, 1), // save counter
  541. I_HALT(), // enter sleep
  542. M_LABEL(1), // done with measurements
  543. I_END(), // stop ULP program timer
  544. I_HALT()
  545. };
  546. size_t size = sizeof(program)/sizeof(ulp_insn_t);
  547. TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size));
  548. assert(offset >= size);
  549. /* Run the ULP coprocessor */
  550. TEST_ESP_OK(ulp_run(0));
  551. /* Setup wakeup triggers */
  552. TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK);
  553. TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK);
  554. /* Enter Deep Sleep */
  555. esp_deep_sleep_start();
  556. UNITY_TEST_FAIL(__LINE__, "Should not get here!");
  557. }