pm_impl.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. // Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <stdbool.h>
  16. #include <string.h>
  17. #include <sys/param.h>
  18. #include "esp_attr.h"
  19. #include "esp_err.h"
  20. #include "esp_pm.h"
  21. #include "esp_log.h"
  22. #include "esp_private/crosscore_int.h"
  23. #include "soc/rtc.h"
  24. #include "hal/cpu_hal.h"
  25. #include "hal/uart_ll.h"
  26. #include "hal/uart_types.h"
  27. #include "freertos/FreeRTOS.h"
  28. #include "freertos/task.h"
  29. #if __XTENSA__
  30. #include "freertos/xtensa_timer.h"
  31. #include "xtensa/core-macros.h"
  32. #endif
  33. #include "esp_private/pm_impl.h"
  34. #include "esp_private/pm_trace.h"
  35. #include "esp_private/esp_timer_private.h"
  36. #include "esp_sleep.h"
  37. #include "sdkconfig.h"
  38. // [refactor-todo] opportunity for further refactor
  39. #if CONFIG_IDF_TARGET_ESP32
  40. #include "esp32/clk.h"
  41. #include "esp32/pm.h"
  42. #include "driver/gpio.h"
  43. #elif CONFIG_IDF_TARGET_ESP32S2
  44. #include "esp32s2/clk.h"
  45. #include "esp32s2/pm.h"
  46. #include "driver/gpio.h"
  47. #elif CONFIG_IDF_TARGET_ESP32S3
  48. #include "esp32s3/clk.h"
  49. #include "esp32s3/pm.h"
  50. #elif CONFIG_IDF_TARGET_ESP32C3
  51. #include "esp32c3/clk.h"
  52. #include "esp32c3/pm.h"
  53. #include "driver/gpio.h"
  54. #include "esp_private/sleep_modes.h"
  55. #endif
  56. #define MHZ (1000000)
  57. #if __XTENSA__
  58. /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
  59. * for the purpose of detecting a deadlock.
  60. */
  61. #define CCOMPARE_UPDATE_TIMEOUT 1000000
  62. /* When changing CCOMPARE, don't allow changes if the difference is less
  63. * than this. This is to prevent setting CCOMPARE below CCOUNT.
  64. */
  65. #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
  66. #endif
  67. /* When light sleep is used, wake this number of microseconds earlier than
  68. * the next tick.
  69. */
  70. #define LIGHT_SLEEP_EARLY_WAKEUP_US 100
  71. #if CONFIG_IDF_TARGET_ESP32
  72. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  73. #define REF_CLK_DIV_MIN 10
  74. #define DEFAULT_CPU_FREQ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
  75. #elif CONFIG_IDF_TARGET_ESP32S2
  76. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  77. #define REF_CLK_DIV_MIN 2
  78. #define DEFAULT_CPU_FREQ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
  79. #elif CONFIG_IDF_TARGET_ESP32S3
  80. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  81. #define REF_CLK_DIV_MIN 2
  82. #define DEFAULT_CPU_FREQ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
  83. #elif CONFIG_IDF_TARGET_ESP32C3
  84. #define REF_CLK_DIV_MIN 2
  85. #define DEFAULT_CPU_FREQ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
  86. #endif
  87. #ifdef CONFIG_PM_PROFILING
  88. #define WITH_PROFILING
  89. #endif
  90. static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
  91. /* The following state variables are protected using s_switch_lock: */
  92. /* Current sleep mode; When switching, contains old mode until switch is complete */
  93. static pm_mode_t s_mode = PM_MODE_CPU_MAX;
  94. /* True when switch is in progress */
  95. static volatile bool s_is_switching;
  96. /* When switch is in progress, this is the mode we are switching into */
  97. static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
  98. /* Number of times each mode was locked */
  99. static size_t s_mode_lock_counts[PM_MODE_COUNT];
  100. /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
  101. static uint32_t s_mode_mask;
  102. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  103. #define PERIPH_SKIP_LIGHT_SLEEP_NO 1
  104. /* Indicates if light sleep shoule be skipped by peripherals. */
  105. static skip_light_sleep_cb_t s_periph_skip_light_sleep_cb[PERIPH_SKIP_LIGHT_SLEEP_NO];
  106. /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
  107. * This in turn gets used in IDLE hook to decide if `waiti` needs
  108. * to be invoked or not.
  109. */
  110. static bool s_skipped_light_sleep[portNUM_PROCESSORS];
  111. #if portNUM_PROCESSORS == 2
  112. /* When light sleep is finished on one CPU, it is possible that the other CPU
  113. * will enter light sleep again very soon, before interrupts on the first CPU
  114. * get a chance to run. To avoid such situation, set a flag for the other CPU to
  115. * skip light sleep attempt.
  116. */
  117. static bool s_skip_light_sleep[portNUM_PROCESSORS];
  118. #endif // portNUM_PROCESSORS == 2
  119. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  120. /* A flag indicating that Idle hook has run on a given CPU;
  121. * Next interrupt on the same CPU will take s_rtos_lock_handle.
  122. */
  123. static bool s_core_idle[portNUM_PROCESSORS];
  124. /* When no RTOS tasks are active, these locks are released to allow going into
  125. * a lower power mode. Used by ISR hook and idle hook.
  126. */
  127. static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
  128. /* Lookup table of CPU frequency configs to be used in each mode.
  129. * Initialized by esp_pm_impl_init and modified by esp_pm_configure.
  130. */
  131. static rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
  132. /* Whether automatic light sleep is enabled */
  133. static bool s_light_sleep_en = false;
  134. /* When configuration is changed, current frequency may not match the
  135. * newly configured frequency for the current mode. This is an indicator
  136. * to the mode switch code to get the actual current frequency instead of
  137. * relying on the current mode.
  138. */
  139. static bool s_config_changed = false;
  140. #ifdef WITH_PROFILING
  141. /* Time, in microseconds, spent so far in each mode */
  142. static pm_time_t s_time_in_mode[PM_MODE_COUNT];
  143. /* Timestamp, in microseconds, when the mode switch last happened */
  144. static pm_time_t s_last_mode_change_time;
  145. /* User-readable mode names, used by esp_pm_impl_dump_stats */
  146. static const char* s_mode_names[] = {
  147. "SLEEP",
  148. "APB_MIN",
  149. "APB_MAX",
  150. "CPU_MAX"
  151. };
  152. #endif // WITH_PROFILING
  153. #if __XTENSA__
  154. /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
  155. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
  156. */
  157. static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
  158. /* Divider and multiplier used to adjust (ccompare - ccount) duration.
  159. * Only set to non-zero values when switch is in progress.
  160. */
  161. static uint32_t s_ccount_div;
  162. static uint32_t s_ccount_mul;
  163. static void update_ccompare(void);
  164. #endif // __XTENSA__
  165. static const char* TAG = "pm";
  166. static void do_switch(pm_mode_t new_mode);
  167. static void leave_idle(void);
  168. static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
  169. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  170. static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz);
  171. #endif
  172. pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
  173. {
  174. (void) arg;
  175. if (type == ESP_PM_CPU_FREQ_MAX) {
  176. return PM_MODE_CPU_MAX;
  177. } else if (type == ESP_PM_APB_FREQ_MAX) {
  178. return PM_MODE_APB_MAX;
  179. } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
  180. return PM_MODE_APB_MIN;
  181. } else {
  182. // unsupported mode
  183. abort();
  184. }
  185. }
  186. esp_err_t esp_pm_configure(const void* vconfig)
  187. {
  188. #ifndef CONFIG_PM_ENABLE
  189. return ESP_ERR_NOT_SUPPORTED;
  190. #endif
  191. #if CONFIG_IDF_TARGET_ESP32
  192. const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
  193. #elif CONFIG_IDF_TARGET_ESP32S2
  194. const esp_pm_config_esp32s2_t* config = (const esp_pm_config_esp32s2_t*) vconfig;
  195. #elif CONFIG_IDF_TARGET_ESP32S3
  196. const esp_pm_config_esp32s3_t* config = (const esp_pm_config_esp32s3_t*) vconfig;
  197. #elif CONFIG_IDF_TARGET_ESP32C3
  198. const esp_pm_config_esp32c3_t* config = (const esp_pm_config_esp32c3_t*) vconfig;
  199. #endif
  200. #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  201. if (config->light_sleep_enable) {
  202. return ESP_ERR_NOT_SUPPORTED;
  203. }
  204. #endif
  205. int min_freq_mhz = config->min_freq_mhz;
  206. int max_freq_mhz = config->max_freq_mhz;
  207. if (min_freq_mhz > max_freq_mhz) {
  208. return ESP_ERR_INVALID_ARG;
  209. }
  210. rtc_cpu_freq_config_t freq_config;
  211. if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
  212. ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
  213. return ESP_ERR_INVALID_ARG;
  214. }
  215. int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get();
  216. if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
  217. ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
  218. return ESP_ERR_INVALID_ARG;
  219. }
  220. if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
  221. ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
  222. return ESP_ERR_INVALID_ARG;
  223. }
  224. #if CONFIG_IDF_TARGET_ESP32
  225. int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
  226. if (max_freq_mhz == 240) {
  227. /* We can't switch between 240 and 80/160 without disabling PLL,
  228. * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
  229. */
  230. apb_max_freq = 240;
  231. } else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
  232. /* Otherwise, can use 80MHz
  233. * CPU frequency when 80MHz APB frequency is requested.
  234. */
  235. apb_max_freq = 80;
  236. }
  237. #else
  238. int apb_max_freq = MIN(max_freq_mhz, 80); /* CPU frequency in APB_MAX mode */
  239. #endif
  240. apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
  241. ESP_LOGI(TAG, "Frequency switching config: "
  242. "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
  243. max_freq_mhz,
  244. apb_max_freq,
  245. min_freq_mhz,
  246. config->light_sleep_enable ? "ENABLED" : "DISABLED");
  247. portENTER_CRITICAL(&s_switch_lock);
  248. bool res = false;
  249. res = rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
  250. assert(res);
  251. res = rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
  252. assert(res);
  253. res = rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
  254. assert(res);
  255. s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
  256. s_light_sleep_en = config->light_sleep_enable;
  257. s_config_changed = true;
  258. portEXIT_CRITICAL(&s_switch_lock);
  259. #if CONFIG_PM_SLP_DISABLE_GPIO && SOC_GPIO_SUPPORT_SLP_SWITCH
  260. esp_sleep_gpio_status_switch_configure(config->light_sleep_enable);
  261. #endif
  262. #if CONFIG_ESP_SYSTEM_PM_POWER_DOWN_CPU && SOC_PM_SUPPORT_CPU_PD
  263. esp_err_t ret = esp_sleep_cpu_pd_low_init(config->light_sleep_enable);
  264. if (config->light_sleep_enable && ret != ESP_OK) {
  265. ESP_LOGW(TAG, "Failed to enable CPU power down during light sleep.");
  266. }
  267. #endif
  268. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  269. if (config->light_sleep_enable) {
  270. esp_pm_light_sleep_default_params_config(min_freq_mhz, max_freq_mhz);
  271. }
  272. #endif
  273. return ESP_OK;
  274. }
  275. static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void)
  276. {
  277. /* TODO: optimize using ffs/clz */
  278. if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
  279. return PM_MODE_CPU_MAX;
  280. } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
  281. return PM_MODE_APB_MAX;
  282. } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
  283. return PM_MODE_APB_MIN;
  284. } else {
  285. return PM_MODE_LIGHT_SLEEP;
  286. }
  287. }
  288. void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
  289. pm_mode_switch_t lock_or_unlock, pm_time_t now)
  290. {
  291. bool need_switch = false;
  292. uint32_t mode_mask = BIT(mode);
  293. portENTER_CRITICAL_SAFE(&s_switch_lock);
  294. uint32_t count;
  295. if (lock_or_unlock == MODE_LOCK) {
  296. count = ++s_mode_lock_counts[mode];
  297. } else {
  298. count = s_mode_lock_counts[mode]--;
  299. }
  300. if (count == 1) {
  301. if (lock_or_unlock == MODE_LOCK) {
  302. s_mode_mask |= mode_mask;
  303. } else {
  304. s_mode_mask &= ~mode_mask;
  305. }
  306. need_switch = true;
  307. }
  308. pm_mode_t new_mode = s_mode;
  309. if (need_switch) {
  310. new_mode = get_lowest_allowed_mode();
  311. #ifdef WITH_PROFILING
  312. if (s_last_mode_change_time != 0) {
  313. pm_time_t diff = now - s_last_mode_change_time;
  314. s_time_in_mode[s_mode] += diff;
  315. }
  316. s_last_mode_change_time = now;
  317. #endif // WITH_PROFILING
  318. }
  319. portEXIT_CRITICAL_SAFE(&s_switch_lock);
  320. if (need_switch && new_mode != s_mode) {
  321. do_switch(new_mode);
  322. }
  323. }
  324. /**
  325. * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
  326. * values on both CPUs.
  327. * @param old_ticks_per_us old CPU frequency
  328. * @param ticks_per_us new CPU frequency
  329. */
  330. static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
  331. {
  332. uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
  333. uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
  334. /* Update APB frequency value used by the timer */
  335. if (old_apb_ticks_per_us != apb_ticks_per_us) {
  336. esp_timer_private_update_apb_freq(apb_ticks_per_us);
  337. }
  338. #if __XTENSA__
  339. #if XT_RTOS_TIMER_INT
  340. /* Calculate new tick divisor */
  341. _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
  342. #endif
  343. int core_id = xPortGetCoreID();
  344. if (s_rtos_lock_handle[core_id] != NULL) {
  345. ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
  346. /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
  347. * to calculate new CCOMPARE value.
  348. */
  349. s_ccount_div = old_ticks_per_us;
  350. s_ccount_mul = ticks_per_us;
  351. /* Update CCOMPARE value on this CPU */
  352. update_ccompare();
  353. #if portNUM_PROCESSORS == 2
  354. /* Send interrupt to the other CPU to update CCOMPARE value */
  355. int other_core_id = (core_id == 0) ? 1 : 0;
  356. s_need_update_ccompare[other_core_id] = true;
  357. esp_crosscore_int_send_freq_switch(other_core_id);
  358. int timeout = 0;
  359. while (s_need_update_ccompare[other_core_id]) {
  360. if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
  361. assert(false && "failed to update CCOMPARE, possible deadlock");
  362. }
  363. }
  364. #endif // portNUM_PROCESSORS == 2
  365. s_ccount_mul = 0;
  366. s_ccount_div = 0;
  367. ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
  368. }
  369. #endif // __XTENSA__
  370. }
  371. /**
  372. * Perform the switch to new power mode.
  373. * Currently only changes the CPU frequency and adjusts clock dividers.
  374. * No light sleep yet.
  375. * @param new_mode mode to switch to
  376. */
  377. static void IRAM_ATTR do_switch(pm_mode_t new_mode)
  378. {
  379. const int core_id = xPortGetCoreID();
  380. do {
  381. portENTER_CRITICAL_ISR(&s_switch_lock);
  382. if (!s_is_switching) {
  383. break;
  384. }
  385. if (s_new_mode <= new_mode) {
  386. portEXIT_CRITICAL_ISR(&s_switch_lock);
  387. return;
  388. }
  389. #if __XTENSA__
  390. if (s_need_update_ccompare[core_id]) {
  391. s_need_update_ccompare[core_id] = false;
  392. }
  393. #endif
  394. portEXIT_CRITICAL_ISR(&s_switch_lock);
  395. } while (true);
  396. s_new_mode = new_mode;
  397. s_is_switching = true;
  398. bool config_changed = s_config_changed;
  399. s_config_changed = false;
  400. portEXIT_CRITICAL_ISR(&s_switch_lock);
  401. rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
  402. rtc_cpu_freq_config_t old_config;
  403. if (!config_changed) {
  404. old_config = s_cpu_freq_by_mode[s_mode];
  405. } else {
  406. rtc_clk_cpu_freq_get_config(&old_config);
  407. }
  408. if (new_config.freq_mhz != old_config.freq_mhz) {
  409. uint32_t old_ticks_per_us = old_config.freq_mhz;
  410. uint32_t new_ticks_per_us = new_config.freq_mhz;
  411. bool switch_down = new_ticks_per_us < old_ticks_per_us;
  412. ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
  413. if (switch_down) {
  414. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  415. }
  416. rtc_clk_cpu_freq_set_config_fast(&new_config);
  417. if (!switch_down) {
  418. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  419. }
  420. ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
  421. }
  422. portENTER_CRITICAL_ISR(&s_switch_lock);
  423. s_mode = new_mode;
  424. s_is_switching = false;
  425. portEXIT_CRITICAL_ISR(&s_switch_lock);
  426. }
  427. #if __XTENSA__
  428. /**
  429. * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
  430. *
  431. * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
  432. * would happen without the frequency change.
  433. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
  434. */
  435. static void IRAM_ATTR update_ccompare(void)
  436. {
  437. uint32_t ccount = cpu_hal_get_cycle_count();
  438. uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
  439. if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
  440. uint32_t diff = ccompare - ccount;
  441. uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
  442. if (diff_scaled < _xt_tick_divisor) {
  443. uint32_t new_ccompare = ccount + diff_scaled;
  444. XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
  445. }
  446. }
  447. }
  448. #endif // __XTENSA__
  449. static void IRAM_ATTR leave_idle(void)
  450. {
  451. int core_id = xPortGetCoreID();
  452. if (s_core_idle[core_id]) {
  453. // TODO: possible optimization: raise frequency here first
  454. esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
  455. s_core_idle[core_id] = false;
  456. }
  457. }
  458. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  459. esp_err_t esp_pm_register_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  460. {
  461. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  462. if (s_periph_skip_light_sleep_cb[i] == cb) {
  463. return ESP_OK;
  464. } else if (s_periph_skip_light_sleep_cb[i] == NULL) {
  465. s_periph_skip_light_sleep_cb[i] = cb;
  466. return ESP_OK;
  467. }
  468. }
  469. return ESP_ERR_NO_MEM;
  470. }
  471. esp_err_t esp_pm_unregister_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  472. {
  473. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  474. if (s_periph_skip_light_sleep_cb[i] == cb) {
  475. s_periph_skip_light_sleep_cb[i] = NULL;
  476. return ESP_OK;
  477. }
  478. }
  479. return ESP_ERR_INVALID_STATE;
  480. }
  481. static inline bool IRAM_ATTR periph_should_skip_light_sleep(void)
  482. {
  483. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  484. if (s_periph_skip_light_sleep_cb[i]) {
  485. if (s_periph_skip_light_sleep_cb[i]() == true) {
  486. return true;
  487. }
  488. }
  489. }
  490. return false;
  491. }
  492. static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
  493. {
  494. #if portNUM_PROCESSORS == 2
  495. if (s_skip_light_sleep[core_id]) {
  496. s_skip_light_sleep[core_id] = false;
  497. s_skipped_light_sleep[core_id] = true;
  498. return true;
  499. }
  500. #endif // portNUM_PROCESSORS == 2
  501. if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching || periph_should_skip_light_sleep()) {
  502. s_skipped_light_sleep[core_id] = true;
  503. } else {
  504. s_skipped_light_sleep[core_id] = false;
  505. }
  506. return s_skipped_light_sleep[core_id];
  507. }
  508. static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
  509. {
  510. #if portNUM_PROCESSORS == 2
  511. s_skip_light_sleep[!core_id] = true;
  512. #endif
  513. }
  514. void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
  515. {
  516. portENTER_CRITICAL(&s_switch_lock);
  517. int core_id = xPortGetCoreID();
  518. if (!should_skip_light_sleep(core_id)) {
  519. /* Calculate how much we can sleep */
  520. int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
  521. int64_t now = esp_timer_get_time();
  522. int64_t time_until_next_alarm = next_esp_timer_alarm - now;
  523. int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
  524. int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
  525. if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
  526. esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
  527. #ifdef CONFIG_PM_TRACE
  528. /* to force tracing GPIOs to keep state */
  529. esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
  530. #endif
  531. /* Enter sleep */
  532. ESP_PM_TRACE_ENTER(SLEEP, core_id);
  533. int64_t sleep_start = esp_timer_get_time();
  534. esp_light_sleep_start();
  535. int64_t slept_us = esp_timer_get_time() - sleep_start;
  536. ESP_PM_TRACE_EXIT(SLEEP, core_id);
  537. uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
  538. if (slept_ticks > 0) {
  539. /* Adjust RTOS tick count based on the amount of time spent in sleep */
  540. vTaskStepTick(slept_ticks);
  541. #if __XTENSA__
  542. /* Trigger tick interrupt, since sleep time was longer
  543. * than portTICK_PERIOD_MS. Note that setting INTSET does not
  544. * work for timer interrupt, and changing CCOMPARE would clear
  545. * the interrupt flag.
  546. */
  547. cpu_hal_set_cycle_count(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
  548. while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
  549. ;
  550. }
  551. #elif __riscv
  552. portYIELD_WITHIN_API();
  553. #endif
  554. }
  555. other_core_should_skip_light_sleep(core_id);
  556. }
  557. }
  558. portEXIT_CRITICAL(&s_switch_lock);
  559. }
  560. #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
  561. #ifdef WITH_PROFILING
  562. void esp_pm_impl_dump_stats(FILE* out)
  563. {
  564. pm_time_t time_in_mode[PM_MODE_COUNT];
  565. portENTER_CRITICAL_ISR(&s_switch_lock);
  566. memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
  567. pm_time_t last_mode_change_time = s_last_mode_change_time;
  568. pm_mode_t cur_mode = s_mode;
  569. pm_time_t now = pm_get_time();
  570. portEXIT_CRITICAL_ISR(&s_switch_lock);
  571. time_in_mode[cur_mode] += now - last_mode_change_time;
  572. fprintf(out, "Mode stats:\n");
  573. for (int i = 0; i < PM_MODE_COUNT; ++i) {
  574. if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
  575. /* don't display light sleep mode if it's not enabled */
  576. continue;
  577. }
  578. fprintf(out, "%8s %3dM %12lld %2d%%\n",
  579. s_mode_names[i],
  580. s_cpu_freq_by_mode[i].freq_mhz,
  581. time_in_mode[i],
  582. (int) (time_in_mode[i] * 100 / now));
  583. }
  584. }
  585. #endif // WITH_PROFILING
  586. int esp_pm_impl_get_cpu_freq(pm_mode_t mode)
  587. {
  588. int freq_mhz;
  589. if (mode >= PM_MODE_LIGHT_SLEEP && mode < PM_MODE_COUNT) {
  590. portENTER_CRITICAL(&s_switch_lock);
  591. freq_mhz = s_cpu_freq_by_mode[mode].freq_mhz;
  592. portEXIT_CRITICAL(&s_switch_lock);
  593. } else {
  594. abort();
  595. }
  596. return freq_mhz;
  597. }
  598. void esp_pm_impl_init(void)
  599. {
  600. #if defined(CONFIG_ESP_CONSOLE_UART)
  601. //This clock source should be a source which won't be affected by DFS
  602. uint32_t clk_source;
  603. #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
  604. clk_source = UART_SCLK_REF_TICK;
  605. #else
  606. clk_source = UART_SCLK_XTAL;
  607. #endif
  608. while(!uart_ll_is_tx_idle(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM)));
  609. /* When DFS is enabled, override system setting and use REFTICK as UART clock source */
  610. uart_ll_set_sclk(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), clk_source);
  611. uart_ll_set_baudrate(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), CONFIG_ESP_CONSOLE_UART_BAUDRATE);
  612. #endif // CONFIG_ESP_CONSOLE_UART
  613. #ifdef CONFIG_PM_TRACE
  614. esp_pm_trace_init();
  615. #endif
  616. #if CONFIG_PM_SLP_DISABLE_GPIO && SOC_GPIO_SUPPORT_SLP_SWITCH
  617. esp_sleep_gpio_status_init();
  618. #endif
  619. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
  620. &s_rtos_lock_handle[0]));
  621. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
  622. #if portNUM_PROCESSORS == 2
  623. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
  624. &s_rtos_lock_handle[1]));
  625. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
  626. #endif // portNUM_PROCESSORS == 2
  627. /* Configure all modes to use the default CPU frequency.
  628. * This will be modified later by a call to esp_pm_configure.
  629. */
  630. rtc_cpu_freq_config_t default_config;
  631. if (!rtc_clk_cpu_freq_mhz_to_config(DEFAULT_CPU_FREQ, &default_config)) {
  632. assert(false && "unsupported frequency");
  633. }
  634. for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
  635. s_cpu_freq_by_mode[i] = default_config;
  636. }
  637. #ifdef CONFIG_PM_DFS_INIT_AUTO
  638. int xtal_freq = (int) rtc_clk_xtal_freq_get();
  639. #if CONFIG_IDF_TARGET_ESP32
  640. esp_pm_config_esp32_t cfg = {
  641. #elif CONFIG_IDF_TARGET_ESP32S2
  642. esp_pm_config_esp32s2_t cfg = {
  643. #elif CONFIG_IDF_TARGET_ESP32S3
  644. esp_pm_config_esp32s3_t cfg = {
  645. #elif CONFIG_IDF_TARGET_ESP32C3
  646. esp_pm_config_esp32c3_t cfg = {
  647. #endif
  648. .max_freq_mhz = DEFAULT_CPU_FREQ,
  649. .min_freq_mhz = xtal_freq,
  650. };
  651. esp_pm_configure(&cfg);
  652. #endif //CONFIG_PM_DFS_INIT_AUTO
  653. }
  654. void esp_pm_impl_idle_hook(void)
  655. {
  656. int core_id = xPortGetCoreID();
  657. uint32_t state = portENTER_CRITICAL_NESTED();
  658. if (!s_core_idle[core_id]
  659. #ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  660. && !periph_should_skip_light_sleep()
  661. #endif
  662. ) {
  663. esp_pm_lock_release(s_rtos_lock_handle[core_id]);
  664. s_core_idle[core_id] = true;
  665. }
  666. portEXIT_CRITICAL_NESTED(state);
  667. ESP_PM_TRACE_ENTER(IDLE, core_id);
  668. }
  669. void IRAM_ATTR esp_pm_impl_isr_hook(void)
  670. {
  671. int core_id = xPortGetCoreID();
  672. ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
  673. /* Prevent higher level interrupts (than the one this function was called from)
  674. * from happening in this section, since they will also call into esp_pm_impl_isr_hook.
  675. */
  676. uint32_t state = portENTER_CRITICAL_NESTED();
  677. #if __XTENSA__ && (portNUM_PROCESSORS == 2)
  678. if (s_need_update_ccompare[core_id]) {
  679. update_ccompare();
  680. s_need_update_ccompare[core_id] = false;
  681. } else {
  682. leave_idle();
  683. }
  684. #else
  685. leave_idle();
  686. #endif // portNUM_PROCESSORS == 2
  687. portEXIT_CRITICAL_NESTED(state);
  688. ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
  689. }
  690. void esp_pm_impl_waiti(void)
  691. {
  692. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  693. int core_id = xPortGetCoreID();
  694. if (s_skipped_light_sleep[core_id]) {
  695. cpu_hal_waiti();
  696. /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
  697. * is now taken. However since we are back to idle task, we can release
  698. * the lock so that vApplicationSleep can attempt to enter light sleep.
  699. */
  700. esp_pm_impl_idle_hook();
  701. s_skipped_light_sleep[core_id] = false;
  702. }
  703. #else
  704. cpu_hal_waiti();
  705. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  706. }
  707. #define PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO 1
  708. /* Inform peripherals of light sleep wakeup overhead time */
  709. static inform_out_light_sleep_overhead_cb_t s_periph_inform_out_light_sleep_overhead_cb[PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO];
  710. esp_err_t esp_pm_register_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  711. {
  712. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  713. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  714. return ESP_OK;
  715. } else if (s_periph_inform_out_light_sleep_overhead_cb[i] == NULL) {
  716. s_periph_inform_out_light_sleep_overhead_cb[i] = cb;
  717. return ESP_OK;
  718. }
  719. }
  720. return ESP_ERR_NO_MEM;
  721. }
  722. esp_err_t esp_pm_unregister_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  723. {
  724. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  725. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  726. s_periph_inform_out_light_sleep_overhead_cb[i] = NULL;
  727. return ESP_OK;
  728. }
  729. }
  730. return ESP_ERR_INVALID_STATE;
  731. }
  732. void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time)
  733. {
  734. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  735. if (s_periph_inform_out_light_sleep_overhead_cb[i]) {
  736. s_periph_inform_out_light_sleep_overhead_cb[i](out_light_sleep_time);
  737. }
  738. }
  739. }
  740. static update_light_sleep_default_params_config_cb_t s_light_sleep_default_params_config_cb = NULL;
  741. void esp_pm_register_light_sleep_default_params_config_callback(update_light_sleep_default_params_config_cb_t cb)
  742. {
  743. if (s_light_sleep_default_params_config_cb == NULL) {
  744. s_light_sleep_default_params_config_cb = cb;
  745. }
  746. }
  747. void esp_pm_unregister_light_sleep_default_params_config_callback(void)
  748. {
  749. if (s_light_sleep_default_params_config_cb) {
  750. s_light_sleep_default_params_config_cb = NULL;
  751. }
  752. }
  753. #if CONFIG_PM_SLP_DEFAULT_PARAMS_OPT
  754. static void esp_pm_light_sleep_default_params_config(int min_freq_mhz, int max_freq_mhz)
  755. {
  756. if (s_light_sleep_default_params_config_cb) {
  757. (*s_light_sleep_default_params_config_cb)(min_freq_mhz, max_freq_mhz);
  758. }
  759. }
  760. #endif