uart.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/dport_reg.h"
  27. #include "soc/uart_struct.h"
  28. #include "driver/uart.h"
  29. #include "driver/gpio.h"
  30. static const char* UART_TAG = "uart";
  31. #define UART_CHECK(a, str, ret_val) \
  32. if (!(a)) { \
  33. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  34. return (ret_val); \
  35. }
  36. #define UART_EMPTY_THRESH_DEFAULT (10)
  37. #define UART_FULL_THRESH_DEFAULT (120)
  38. #define UART_TOUT_THRESH_DEFAULT (10)
  39. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  40. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  41. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  42. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  43. typedef struct {
  44. uart_event_type_t type; /*!< UART TX data type */
  45. struct {
  46. int brk_len;
  47. size_t size;
  48. uint8_t data[0];
  49. } tx_data;
  50. } uart_tx_data_t;
  51. typedef struct {
  52. uart_port_t uart_num; /*!< UART port number*/
  53. int queue_size; /*!< UART event queue size*/
  54. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  55. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  56. //rx parameters
  57. int rx_buffered_len; /*!< UART cached data length */
  58. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  59. int rx_buf_size; /*!< RX ring buffer size */
  60. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  61. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  62. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  63. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  64. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  65. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  66. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  67. //tx parameters
  68. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  69. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  70. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  71. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  72. int tx_buf_size; /*!< TX ring buffer size */
  73. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  74. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  75. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  76. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  77. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  78. uint32_t tx_len_cur;
  79. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  80. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  81. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  82. } uart_obj_t;
  83. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  84. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  85. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  86. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  87. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  88. {
  89. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  90. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  91. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  92. UART[uart_num]->conf0.bit_num = data_bit;
  93. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  94. return ESP_OK;
  95. }
  96. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  97. {
  98. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  99. *(data_bit) = UART[uart_num]->conf0.bit_num;
  100. return ESP_OK;
  101. }
  102. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  103. {
  104. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  105. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  106. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  107. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  108. if (stop_bit == UART_STOP_BITS_2) {
  109. stop_bit = UART_STOP_BITS_1;
  110. UART[uart_num]->rs485_conf.dl1_en = 1;
  111. } else {
  112. UART[uart_num]->rs485_conf.dl1_en = 0;
  113. }
  114. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  115. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  116. return ESP_OK;
  117. }
  118. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  119. {
  120. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  121. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  122. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  123. (*stop_bit) = UART_STOP_BITS_2;
  124. } else {
  125. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  126. }
  127. return ESP_OK;
  128. }
  129. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  130. {
  131. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  132. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  133. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  134. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  135. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  136. return ESP_OK;
  137. }
  138. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  139. {
  140. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  141. int val = UART[uart_num]->conf0.val;
  142. if(val & UART_PARITY_EN_M) {
  143. if(val & UART_PARITY_M) {
  144. (*parity_mode) = UART_PARITY_ODD;
  145. } else {
  146. (*parity_mode) = UART_PARITY_EVEN;
  147. }
  148. } else {
  149. (*parity_mode) = UART_PARITY_DISABLE;
  150. }
  151. return ESP_OK;
  152. }
  153. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  154. {
  155. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  156. UART_CHECK((baud_rate < UART_BITRATE_MAX), "baud_rate error", ESP_FAIL);
  157. uint32_t clk_div = (((UART_CLK_FREQ) << 4) / baud_rate);
  158. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  159. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  160. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  161. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  162. return ESP_OK;
  163. }
  164. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  165. {
  166. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  167. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  168. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  169. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  170. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  171. return ESP_OK;
  172. }
  173. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  174. {
  175. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  176. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) && (inverse_mask != 0)), "inverse_mask error", ESP_FAIL);
  177. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  178. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  179. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  180. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  181. return ESP_OK;
  182. }
  183. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  184. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  185. {
  186. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  187. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  188. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  189. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  190. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  191. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  192. UART[uart_num]->conf1.rx_flow_en = 1;
  193. } else {
  194. UART[uart_num]->conf1.rx_flow_en = 0;
  195. }
  196. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  197. UART[uart_num]->conf0.tx_flow_en = 1;
  198. } else {
  199. UART[uart_num]->conf0.tx_flow_en = 0;
  200. }
  201. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  202. return ESP_OK;
  203. }
  204. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  205. {
  206. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  207. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  208. if(UART[uart_num]->conf1.rx_flow_en) {
  209. val |= UART_HW_FLOWCTRL_RTS;
  210. }
  211. if(UART[uart_num]->conf0.tx_flow_en) {
  212. val |= UART_HW_FLOWCTRL_CTS;
  213. }
  214. (*flow_ctrl) = val;
  215. return ESP_OK;
  216. }
  217. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  218. {
  219. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  220. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  221. UART[uart_num]->conf0.rxfifo_rst = 1;
  222. UART[uart_num]->conf0.rxfifo_rst = 0;
  223. UART[uart_num]->conf0.txfifo_rst = 1;
  224. UART[uart_num]->conf0.txfifo_rst = 0;
  225. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  226. return ESP_OK;
  227. }
  228. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  229. {
  230. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  231. //intr_clr register is write-only
  232. UART[uart_num]->int_clr.val = clr_mask;
  233. return ESP_OK;
  234. }
  235. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  236. {
  237. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  238. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  239. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  240. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  241. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  242. return ESP_OK;
  243. }
  244. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  245. {
  246. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  247. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  248. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  249. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  250. return ESP_OK;
  251. }
  252. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  253. {
  254. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  255. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  256. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  257. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  258. UART[uart_num]->at_cmd_char.data = pattern_chr;
  259. UART[uart_num]->at_cmd_char.char_num = chr_num;
  260. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  261. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  262. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  263. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  264. }
  265. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  266. {
  267. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  268. }
  269. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  270. {
  271. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  272. }
  273. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  274. {
  275. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  276. }
  277. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  278. {
  279. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  280. }
  281. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  285. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  286. UART[uart_num]->int_clr.txfifo_empty = 1;
  287. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  288. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  289. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  290. return ESP_OK;
  291. }
  292. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  293. {
  294. int ret;
  295. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  296. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  297. switch(uart_num) {
  298. case UART_NUM_1:
  299. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  300. break;
  301. case UART_NUM_2:
  302. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  303. break;
  304. case UART_NUM_0:
  305. default:
  306. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  307. break;
  308. }
  309. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  310. return ret;
  311. }
  312. esp_err_t uart_isr_free(uart_port_t uart_num)
  313. {
  314. esp_err_t ret;
  315. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  316. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  317. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  318. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  319. p_uart_obj[uart_num]->intr_handle=NULL;
  320. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  321. return ret;
  322. }
  323. //internal signal can be output to multiple GPIO pads
  324. //only one GPIO pad can connect with input signal
  325. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  326. {
  327. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  328. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  329. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  330. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  331. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  332. int tx_sig, rx_sig, rts_sig, cts_sig;
  333. switch(uart_num) {
  334. case UART_NUM_0:
  335. tx_sig = U0TXD_OUT_IDX;
  336. rx_sig = U0RXD_IN_IDX;
  337. rts_sig = U0RTS_OUT_IDX;
  338. cts_sig = U0CTS_IN_IDX;
  339. break;
  340. case UART_NUM_1:
  341. tx_sig = U1TXD_OUT_IDX;
  342. rx_sig = U1RXD_IN_IDX;
  343. rts_sig = U1RTS_OUT_IDX;
  344. cts_sig = U1CTS_IN_IDX;
  345. break;
  346. case UART_NUM_2:
  347. tx_sig = U2TXD_OUT_IDX;
  348. rx_sig = U2RXD_IN_IDX;
  349. rts_sig = U2RTS_OUT_IDX;
  350. cts_sig = U2CTS_IN_IDX;
  351. break;
  352. case UART_NUM_MAX:
  353. default:
  354. tx_sig = U0TXD_OUT_IDX;
  355. rx_sig = U0RXD_IN_IDX;
  356. rts_sig = U0RTS_OUT_IDX;
  357. cts_sig = U0CTS_IN_IDX;
  358. break;
  359. }
  360. if(tx_io_num >= 0) {
  361. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  362. gpio_set_direction(tx_io_num, GPIO_MODE_OUTPUT);
  363. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  364. }
  365. if(rx_io_num >= 0) {
  366. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  367. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  368. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  369. gpio_matrix_in(rx_io_num, rx_sig, 0);
  370. }
  371. if(rts_io_num >= 0) {
  372. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  373. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  374. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  375. }
  376. if(cts_io_num >= 0) {
  377. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  378. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  379. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  380. gpio_matrix_in(cts_io_num, cts_sig, 0);
  381. }
  382. return ESP_OK;
  383. }
  384. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  385. {
  386. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  387. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  388. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  389. UART[uart_num]->conf0.sw_rts = level & 0x1;
  390. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  391. return ESP_OK;
  392. }
  393. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  394. {
  395. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  396. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  397. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  398. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  399. return ESP_OK;
  400. }
  401. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  402. {
  403. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  404. UART_CHECK((uart_config), "param null", ESP_FAIL);
  405. if(uart_num == UART_NUM_0) {
  406. periph_module_enable(PERIPH_UART0_MODULE);
  407. } else if(uart_num == UART_NUM_1) {
  408. periph_module_enable(PERIPH_UART1_MODULE);
  409. } else if(uart_num == UART_NUM_2) {
  410. periph_module_enable(PERIPH_UART2_MODULE);
  411. }
  412. uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  413. uart_set_baudrate(uart_num, uart_config->baud_rate);
  414. UART[uart_num]->conf0.val = (
  415. (uart_config->parity << UART_PARITY_S)
  416. | (uart_config->data_bits << UART_BIT_NUM_S)
  417. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  418. | UART_TICK_REF_ALWAYS_ON_M);
  419. uart_set_stop_bits(uart_num, uart_config->stop_bits);
  420. return ESP_OK;
  421. }
  422. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  423. {
  424. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  425. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  426. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  427. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  428. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  429. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  430. UART[uart_num]->conf1.rx_tout_en = 1;
  431. } else {
  432. UART[uart_num]->conf1.rx_tout_en = 0;
  433. }
  434. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  435. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  436. }
  437. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  438. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  439. }
  440. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  441. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  442. return ESP_OK;
  443. }
  444. //internal isr handler for default driver code.
  445. static void uart_rx_intr_handler_default(void *param)
  446. {
  447. uart_obj_t *p_uart = (uart_obj_t*) param;
  448. uint8_t uart_num = p_uart->uart_num;
  449. uart_dev_t* uart_reg = UART[uart_num];
  450. uint8_t buf_idx = 0;
  451. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  452. int rx_fifo_len = 0;
  453. uart_event_t uart_event;
  454. portBASE_TYPE HPTaskAwoken = 0;
  455. while(uart_intr_status != 0x0) {
  456. buf_idx = 0;
  457. uart_event.type = UART_EVENT_MAX;
  458. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  459. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  460. uart_reg->int_ena.txfifo_empty = 0;
  461. uart_reg->int_clr.txfifo_empty = 1;
  462. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  463. if(p_uart->tx_waiting_brk) {
  464. continue;
  465. }
  466. //TX semaphore will only be used when tx_buf_size is zero.
  467. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  468. p_uart->tx_waiting_fifo = false;
  469. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  470. if(HPTaskAwoken == pdTRUE) {
  471. portYIELD_FROM_ISR() ;
  472. }
  473. }
  474. else {
  475. //We don't use TX ring buffer, because the size is zero.
  476. if(p_uart->tx_buf_size == 0) {
  477. continue;
  478. }
  479. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  480. bool en_tx_flg = false;
  481. //We need to put a loop here, in case all the buffer items are very short.
  482. //That would cause a watch_dog reset because empty interrupt happens so often.
  483. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  484. while(tx_fifo_rem) {
  485. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  486. size_t size;
  487. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  488. if(p_uart->tx_head) {
  489. //The first item is the data description
  490. //Get the first item to get the data information
  491. if(p_uart->tx_len_tot == 0) {
  492. p_uart->tx_ptr = NULL;
  493. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  494. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  495. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  496. p_uart->tx_brk_flg = 1;
  497. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  498. }
  499. //We have saved the data description from the 1st item, return buffer.
  500. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  501. if(HPTaskAwoken == pdTRUE) {
  502. portYIELD_FROM_ISR() ;
  503. }
  504. }else if(p_uart->tx_ptr == NULL) {
  505. //Update the TX item pointer, we will need this to return item to buffer.
  506. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  507. en_tx_flg = true;
  508. p_uart->tx_len_cur = size;
  509. }
  510. }
  511. else {
  512. //Can not get data from ring buffer, return;
  513. break;
  514. }
  515. }
  516. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  517. //To fill the TX FIFO.
  518. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  519. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  520. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  521. }
  522. p_uart->tx_len_tot -= send_len;
  523. p_uart->tx_len_cur -= send_len;
  524. tx_fifo_rem -= send_len;
  525. if(p_uart->tx_len_cur == 0) {
  526. //Return item to ring buffer.
  527. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  528. if(HPTaskAwoken == pdTRUE) {
  529. portYIELD_FROM_ISR() ;
  530. }
  531. p_uart->tx_head = NULL;
  532. p_uart->tx_ptr = NULL;
  533. //Sending item done, now we need to send break if there is a record.
  534. //Set TX break signal after FIFO is empty
  535. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  536. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  537. uart_reg->int_ena.tx_brk_done = 0;
  538. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  539. uart_reg->conf0.txd_brk = 1;
  540. uart_reg->int_clr.tx_brk_done = 1;
  541. uart_reg->int_ena.tx_brk_done = 1;
  542. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  543. p_uart->tx_waiting_brk = 1;
  544. } else {
  545. //enable TX empty interrupt
  546. en_tx_flg = true;
  547. }
  548. } else {
  549. //enable TX empty interrupt
  550. en_tx_flg = true;
  551. }
  552. }
  553. }
  554. if(en_tx_flg) {
  555. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  556. uart_reg->int_clr.txfifo_empty = 1;
  557. uart_reg->int_ena.txfifo_empty = 1;
  558. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  559. }
  560. }
  561. }
  562. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  563. if(p_uart->rx_buffer_full_flg == false) {
  564. //Get the buffer from the FIFO
  565. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  566. p_uart->rx_stash_len = rx_fifo_len;
  567. //We have to read out all data in RX FIFO to clear the interrupt signal
  568. while(buf_idx < rx_fifo_len) {
  569. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  570. }
  571. //After Copying the Data From FIFO ,Clear intr_status
  572. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  573. uart_reg->int_clr.rxfifo_tout = 1;
  574. uart_reg->int_clr.rxfifo_full = 1;
  575. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  576. uart_event.type = UART_DATA;
  577. uart_event.size = rx_fifo_len;
  578. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  579. //Mainly for applications that uses flow control or small ring buffer.
  580. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  581. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  582. uart_reg->int_ena.rxfifo_full = 0;
  583. uart_reg->int_ena.rxfifo_tout = 0;
  584. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  585. p_uart->rx_buffer_full_flg = true;
  586. uart_event.type = UART_BUFFER_FULL;
  587. } else {
  588. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  589. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  590. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  591. uart_event.type = UART_DATA;
  592. }
  593. if(HPTaskAwoken == pdTRUE) {
  594. portYIELD_FROM_ISR() ;
  595. }
  596. } else {
  597. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  598. uart_reg->int_ena.rxfifo_full = 0;
  599. uart_reg->int_ena.rxfifo_tout = 0;
  600. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  601. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  602. uart_event.type = UART_BUFFER_FULL;
  603. }
  604. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  605. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  606. uart_reg->conf0.rxfifo_rst = 1;
  607. uart_reg->conf0.rxfifo_rst = 0;
  608. uart_reg->int_clr.rxfifo_ovf = 1;
  609. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  610. uart_event.type = UART_FIFO_OVF;
  611. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  612. uart_reg->int_clr.brk_det = 1;
  613. uart_event.type = UART_BREAK;
  614. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  615. uart_reg->int_clr.frm_err = 1;
  616. uart_event.type = UART_FRAME_ERR;
  617. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  618. uart_reg->int_clr.parity_err = 1;
  619. uart_event.type = UART_PARITY_ERR;
  620. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  621. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  622. uart_reg->conf0.txd_brk = 0;
  623. uart_reg->int_ena.tx_brk_done = 0;
  624. uart_reg->int_clr.tx_brk_done = 1;
  625. if(p_uart->tx_brk_flg == 1) {
  626. uart_reg->int_ena.txfifo_empty = 1;
  627. }
  628. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  629. if(p_uart->tx_brk_flg == 1) {
  630. p_uart->tx_brk_flg = 0;
  631. p_uart->tx_waiting_brk = 0;
  632. } else {
  633. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  634. if(HPTaskAwoken == pdTRUE) {
  635. portYIELD_FROM_ISR() ;
  636. }
  637. }
  638. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  639. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  640. uart_reg->int_ena.tx_brk_idle_done = 0;
  641. uart_reg->int_clr.tx_brk_idle_done = 1;
  642. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  643. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  644. uart_reg->int_clr.at_cmd_char_det = 1;
  645. uart_event.type = UART_PATTERN_DET;
  646. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  647. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  648. uart_reg->int_ena.tx_done = 0;
  649. uart_reg->int_clr.tx_done = 1;
  650. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  651. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  652. if(HPTaskAwoken == pdTRUE) {
  653. portYIELD_FROM_ISR() ;
  654. }
  655. } else {
  656. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  657. uart_event.type = UART_EVENT_MAX;
  658. }
  659. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  660. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  661. if(HPTaskAwoken == pdTRUE) {
  662. portYIELD_FROM_ISR() ;
  663. }
  664. }
  665. uart_intr_status = uart_reg->int_st.val;
  666. }
  667. }
  668. /**************************************************************/
  669. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  670. {
  671. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  672. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  673. BaseType_t res;
  674. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  675. //Take tx_mux
  676. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  677. if(res == pdFALSE) {
  678. return ESP_ERR_TIMEOUT;
  679. }
  680. ticks_to_wait = ticks_end - xTaskGetTickCount();
  681. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  682. ticks_to_wait = ticks_end - xTaskGetTickCount();
  683. if(UART[uart_num]->status.txfifo_cnt == 0) {
  684. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  685. return ESP_OK;
  686. }
  687. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  688. //take 2nd tx_done_sem, wait given from ISR
  689. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  690. if(res == pdFALSE) {
  691. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  692. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  693. return ESP_ERR_TIMEOUT;
  694. }
  695. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  696. return ESP_OK;
  697. }
  698. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  699. {
  700. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  701. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  702. UART[uart_num]->conf0.txd_brk = 1;
  703. UART[uart_num]->int_clr.tx_brk_done = 1;
  704. UART[uart_num]->int_ena.tx_brk_done = 1;
  705. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  706. return ESP_OK;
  707. }
  708. //Fill UART tx_fifo and return a number,
  709. //This function by itself is not thread-safe, always call from within a muxed section.
  710. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  711. {
  712. uint8_t i = 0;
  713. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  714. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  715. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  716. for(i = 0; i < copy_cnt; i++) {
  717. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  718. }
  719. return copy_cnt;
  720. }
  721. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  722. {
  723. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  724. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  725. UART_CHECK(buffer, "buffer null", (-1));
  726. if(len == 0) {
  727. return 0;
  728. }
  729. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  730. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  731. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  732. return tx_len;
  733. }
  734. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  735. {
  736. if(size == 0) {
  737. return 0;
  738. }
  739. size_t original_size = size;
  740. //lock for uart_tx
  741. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  742. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  743. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  744. int offset = 0;
  745. uart_tx_data_t evt;
  746. evt.tx_data.size = size;
  747. evt.tx_data.brk_len = brk_len;
  748. if(brk_en) {
  749. evt.type = UART_DATA_BREAK;
  750. } else {
  751. evt.type = UART_DATA;
  752. }
  753. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  754. while(size > 0) {
  755. int send_size = size > max_size / 2 ? max_size / 2 : size;
  756. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  757. size -= send_size;
  758. offset += send_size;
  759. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  760. }
  761. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  762. } else {
  763. while(size) {
  764. //semaphore for tx_fifo available
  765. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  766. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  767. if(sent < size) {
  768. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  769. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  770. }
  771. size -= sent;
  772. src += sent;
  773. }
  774. }
  775. if(brk_en) {
  776. uart_set_break(uart_num, brk_len);
  777. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  778. }
  779. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  780. }
  781. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  782. return original_size;
  783. }
  784. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  785. {
  786. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  787. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  788. UART_CHECK(src, "buffer null", (-1));
  789. return uart_tx_all(uart_num, src, size, 0, 0);
  790. }
  791. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  792. {
  793. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  794. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  795. UART_CHECK((size > 0), "uart size error", (-1));
  796. UART_CHECK((src), "uart data null", (-1));
  797. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  798. return uart_tx_all(uart_num, src, size, 1, brk_len);
  799. }
  800. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  801. {
  802. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  803. UART_CHECK((buf), "uart_num error", (-1));
  804. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  805. uint8_t* data = NULL;
  806. size_t size;
  807. size_t copy_len = 0;
  808. int len_tmp;
  809. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  810. return -1;
  811. }
  812. while(length) {
  813. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  814. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  815. if(data) {
  816. p_uart_obj[uart_num]->rx_head_ptr = data;
  817. p_uart_obj[uart_num]->rx_ptr = data;
  818. p_uart_obj[uart_num]->rx_cur_remain = size;
  819. } else {
  820. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  821. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  822. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  823. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  824. return copy_len;
  825. }
  826. }
  827. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  828. len_tmp = length;
  829. } else {
  830. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  831. }
  832. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  833. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  834. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  835. copy_len += len_tmp;
  836. length -= len_tmp;
  837. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  838. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  839. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  840. p_uart_obj[uart_num]->rx_ptr = NULL;
  841. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  842. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  843. if(res == pdTRUE) {
  844. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  845. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  846. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  847. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  848. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  849. }
  850. }
  851. }
  852. }
  853. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  854. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  855. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  856. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  857. return copy_len;
  858. }
  859. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  860. {
  861. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  862. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  863. *size = p_uart_obj[uart_num]->rx_buffered_len;
  864. return ESP_OK;
  865. }
  866. esp_err_t uart_flush(uart_port_t uart_num)
  867. {
  868. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  869. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  870. uart_obj_t* p_uart = p_uart_obj[uart_num];
  871. uint8_t* data;
  872. size_t size;
  873. //rx sem protect the ring buffer read related functions
  874. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  875. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  876. while(true) {
  877. if(p_uart->rx_head_ptr) {
  878. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  879. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  880. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  881. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  882. p_uart->rx_ptr = NULL;
  883. p_uart->rx_cur_remain = 0;
  884. p_uart->rx_head_ptr = NULL;
  885. }
  886. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  887. if(data == NULL) {
  888. break;
  889. }
  890. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  891. p_uart_obj[uart_num]->rx_buffered_len -= size;
  892. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  893. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  894. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  895. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  896. if(res == pdTRUE) {
  897. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  898. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  899. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  900. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  901. }
  902. }
  903. }
  904. p_uart->rx_ptr = NULL;
  905. p_uart->rx_cur_remain = 0;
  906. p_uart->rx_head_ptr = NULL;
  907. uart_reset_fifo(uart_num);
  908. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  909. xSemaphoreGive(p_uart->rx_mux);
  910. return ESP_OK;
  911. }
  912. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  913. {
  914. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  915. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  916. if(p_uart_obj[uart_num] == NULL) {
  917. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  918. if(p_uart_obj[uart_num] == NULL) {
  919. ESP_LOGE(UART_TAG, "UART driver malloc error");
  920. return ESP_FAIL;
  921. }
  922. p_uart_obj[uart_num]->uart_num = uart_num;
  923. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  924. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  925. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  926. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  927. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  928. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  929. p_uart_obj[uart_num]->queue_size = queue_size;
  930. p_uart_obj[uart_num]->tx_ptr = NULL;
  931. p_uart_obj[uart_num]->tx_head = NULL;
  932. p_uart_obj[uart_num]->tx_len_tot = 0;
  933. p_uart_obj[uart_num]->tx_brk_flg = 0;
  934. p_uart_obj[uart_num]->tx_brk_len = 0;
  935. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  936. p_uart_obj[uart_num]->rx_buffered_len = 0;
  937. if(uart_queue) {
  938. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  939. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  940. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  941. } else {
  942. p_uart_obj[uart_num]->xQueueUart = NULL;
  943. }
  944. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  945. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  946. p_uart_obj[uart_num]->rx_ptr = NULL;
  947. p_uart_obj[uart_num]->rx_cur_remain = 0;
  948. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  949. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  950. if(tx_buffer_size > 0) {
  951. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  952. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  953. } else {
  954. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  955. p_uart_obj[uart_num]->tx_buf_size = 0;
  956. }
  957. } else {
  958. ESP_LOGE(UART_TAG, "UART driver already installed");
  959. return ESP_FAIL;
  960. }
  961. assert((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0); /* uart_rx_intr_handler_default is not in IRAM */
  962. uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  963. uart_intr_config_t uart_intr = {
  964. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  965. | UART_RXFIFO_TOUT_INT_ENA_M
  966. | UART_FRM_ERR_INT_ENA_M
  967. | UART_RXFIFO_OVF_INT_ENA_M
  968. | UART_BRK_DET_INT_ENA_M
  969. | UART_PARITY_ERR_INT_ENA_M,
  970. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  971. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  972. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  973. };
  974. uart_intr_config(uart_num, &uart_intr);
  975. return ESP_OK;
  976. }
  977. //Make sure no other tasks are still using UART before you call this function
  978. esp_err_t uart_driver_delete(uart_port_t uart_num)
  979. {
  980. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  981. if(p_uart_obj[uart_num] == NULL) {
  982. ESP_LOGI(UART_TAG, "ALREADY NULL");
  983. return ESP_OK;
  984. }
  985. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  986. uart_disable_rx_intr(uart_num);
  987. uart_disable_tx_intr(uart_num);
  988. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  989. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  990. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  991. }
  992. if(p_uart_obj[uart_num]->tx_done_sem) {
  993. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  994. p_uart_obj[uart_num]->tx_done_sem = NULL;
  995. }
  996. if(p_uart_obj[uart_num]->tx_brk_sem) {
  997. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  998. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  999. }
  1000. if(p_uart_obj[uart_num]->tx_mux) {
  1001. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1002. p_uart_obj[uart_num]->tx_mux = NULL;
  1003. }
  1004. if(p_uart_obj[uart_num]->rx_mux) {
  1005. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1006. p_uart_obj[uart_num]->rx_mux = NULL;
  1007. }
  1008. if(p_uart_obj[uart_num]->xQueueUart) {
  1009. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1010. p_uart_obj[uart_num]->xQueueUart = NULL;
  1011. }
  1012. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1013. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1014. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1015. }
  1016. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1017. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1018. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1019. }
  1020. free(p_uart_obj[uart_num]);
  1021. p_uart_obj[uart_num] = NULL;
  1022. return ESP_OK;
  1023. }