core_dump.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/task.h"
  16. #include "soc/uart_reg.h"
  17. #include "soc/io_mux_reg.h"
  18. #include "soc/timer_group_struct.h"
  19. #include "soc/timer_group_reg.h"
  20. #include "driver/gpio.h"
  21. #include "rom/crc.h"
  22. #include "esp_panic.h"
  23. #include "esp_partition.h"
  24. #if CONFIG_ESP32_ENABLE_COREDUMP
  25. #define LOG_LOCAL_LEVEL CONFIG_ESP32_CORE_DUMP_LOG_LEVEL
  26. #include "esp_log.h"
  27. const static DRAM_ATTR char TAG[] = "esp_core_dump";
  28. #define ESP_COREDUMP_LOG( level, format, ... ) if (LOG_LOCAL_LEVEL >= level) { ets_printf(DRAM_STR(format), esp_log_early_timestamp(), (const char *)TAG, ##__VA_ARGS__); }
  29. #define ESP_COREDUMP_LOGE( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_ERROR, LOG_FORMAT(E, format), ##__VA_ARGS__)
  30. #define ESP_COREDUMP_LOGW( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_WARN, LOG_FORMAT(W, format), ##__VA_ARGS__)
  31. #define ESP_COREDUMP_LOGI( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_INFO, LOG_FORMAT(I, format), ##__VA_ARGS__)
  32. #define ESP_COREDUMP_LOGD( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_DEBUG, LOG_FORMAT(D, format), ##__VA_ARGS__)
  33. #define ESP_COREDUMP_LOGV( format, ... ) ESP_COREDUMP_LOG(ESP_LOG_VERBOSE, LOG_FORMAT(V, format), ##__VA_ARGS__)
  34. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
  35. #define ESP_COREDUMP_LOG_PROCESS( format, ... ) ESP_COREDUMP_LOGD(format, ##__VA_ARGS__)
  36. #else
  37. #define ESP_COREDUMP_LOG_PROCESS( format, ... ) do{/*(__VA_ARGS__);*/}while(0)
  38. #endif
  39. // TODO: allow user to set this in menuconfig or get tasks iteratively
  40. #define COREDUMP_MAX_TASKS_NUM 32
  41. #define COREDUMP_MAX_TASK_STACK_SIZE (64*1024)
  42. typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len);
  43. typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv);
  44. typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv);
  45. typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len);
  46. /** core dump emitter control structure */
  47. typedef struct _core_dump_write_config_t
  48. {
  49. // this function is called before core dump data writing
  50. // used for sanity checks
  51. esp_core_dump_write_prepare_t prepare;
  52. // this function is called at the beginning of data writing
  53. esp_core_dump_write_start_t start;
  54. // this function is called when all dump data are written
  55. esp_core_dump_write_end_t end;
  56. // this function is called to write data chunk
  57. esp_core_dump_flash_write_data_t write;
  58. // number of tasks with corrupted TCBs
  59. uint32_t bad_tasks_num;
  60. // pointer to data which are specific for particular core dump emitter
  61. void * priv;
  62. } core_dump_write_config_t;
  63. /** core dump data header */
  64. typedef struct _core_dump_header_t
  65. {
  66. uint32_t data_len; // data length
  67. uint32_t tasks_num; // number of tasks
  68. uint32_t tcb_sz; // size of TCB
  69. } core_dump_header_t;
  70. /** core dump task data header */
  71. typedef struct _core_dump_task_header_t
  72. {
  73. void * tcb_addr; // TCB address
  74. uint32_t stack_start; // stack start address
  75. uint32_t stack_end; // stack end address
  76. } core_dump_task_header_t;
  77. static inline bool esp_task_stack_start_is_sane(uint32_t sp)
  78. {
  79. return !(sp < 0x3ffae010UL || sp > 0x3fffffffUL);
  80. }
  81. static inline bool esp_tcb_addr_is_sane(uint32_t addr, uint32_t sz)
  82. {
  83. //TODO: currently core dump supports TCBs in DRAM only, external SRAM not supported yet
  84. return !(addr < 0x3ffae000UL || (addr + sz) > 0x40000000UL);
  85. }
  86. static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg)
  87. {
  88. int cur_task_bad = 0;
  89. esp_err_t err;
  90. TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM];
  91. UBaseType_t tcb_sz, tcb_sz_padded, task_num;
  92. uint32_t data_len = 0, i, len;
  93. union
  94. {
  95. core_dump_header_t hdr;
  96. core_dump_task_header_t task_hdr;
  97. } dump_data;
  98. task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz);
  99. // take TCB padding into account, actual TCB size will be stored in header
  100. if (tcb_sz % sizeof(uint32_t))
  101. tcb_sz_padded = (tcb_sz / sizeof(uint32_t) + 1) * sizeof(uint32_t);
  102. else
  103. tcb_sz_padded = tcb_sz;
  104. // header + tasknum*(tcb + stack start/end + tcb addr)
  105. data_len = sizeof(core_dump_header_t) + task_num*(tcb_sz_padded + sizeof(core_dump_task_header_t));
  106. for (i = 0; i < task_num; i++) {
  107. if (!esp_tcb_addr_is_sane((uint32_t)tasks[i].pxTCB, tcb_sz)) {
  108. ESP_COREDUMP_LOG_PROCESS("Bad TCB addr %x!", tasks[i].pxTCB);
  109. write_cfg->bad_tasks_num++;
  110. continue;
  111. }
  112. if (tasks[i].pxTCB == xTaskGetCurrentTaskHandleForCPU(xPortGetCoreID())) {
  113. // set correct stack top for current task
  114. tasks[i].pxTopOfStack = (StackType_t *)frame;
  115. ESP_COREDUMP_LOG_PROCESS("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x",
  116. frame->exit, frame->pc, frame->ps, frame->a0, frame->a1);
  117. }
  118. else {
  119. XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack;
  120. if (task_frame->exit == 0) {
  121. ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x",
  122. task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1);
  123. }
  124. else {
  125. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
  126. XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack;
  127. #endif
  128. ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x",
  129. task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1);
  130. }
  131. }
  132. len = (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack;
  133. // check task's stack
  134. if (!esp_stack_ptr_is_sane((uint32_t)tasks[i].pxTopOfStack) || !esp_task_stack_start_is_sane((uint32_t)tasks[i].pxEndOfStack)
  135. || len > COREDUMP_MAX_TASK_STACK_SIZE) {
  136. if (tasks[i].pxTCB == xTaskGetCurrentTaskHandleForCPU(xPortGetCoreID())) {
  137. cur_task_bad = 1;
  138. }
  139. ESP_COREDUMP_LOG_PROCESS("Corrupted TCB %x: stack len %lu, top %x, end %x!",
  140. tasks[i].pxTCB, len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
  141. tasks[i].pxTCB = 0; // make TCB addr invalid to skip it in dump
  142. write_cfg->bad_tasks_num++;
  143. } else {
  144. ESP_COREDUMP_LOG_PROCESS("Stack len = %lu (%x %x)", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
  145. // take stack padding into account
  146. len = (len + sizeof(uint32_t) - 1) & ~(sizeof(uint32_t) - 1);
  147. data_len += len;
  148. }
  149. }
  150. data_len -= write_cfg->bad_tasks_num*(tcb_sz_padded + sizeof(core_dump_task_header_t));
  151. ESP_COREDUMP_LOG_PROCESS("Core dump len = %lu (%d %d)", data_len, task_num, write_cfg->bad_tasks_num);
  152. // prepare write
  153. if (write_cfg->prepare) {
  154. err = write_cfg->prepare(write_cfg->priv, &data_len);
  155. if (err != ESP_OK) {
  156. ESP_COREDUMP_LOGE("Failed to prepare core dump (%d)!", err);
  157. return;
  158. }
  159. }
  160. // write start
  161. if (write_cfg->start) {
  162. err = write_cfg->start(write_cfg->priv);
  163. if (err != ESP_OK) {
  164. ESP_COREDUMP_LOGE("Failed to start core dump (%d)!", err);
  165. return;
  166. }
  167. }
  168. // write header
  169. dump_data.hdr.data_len = data_len;
  170. dump_data.hdr.tasks_num = task_num - write_cfg->bad_tasks_num;
  171. dump_data.hdr.tcb_sz = tcb_sz;
  172. err = write_cfg->write(write_cfg->priv, &dump_data, sizeof(core_dump_header_t));
  173. if (err != ESP_OK) {
  174. ESP_COREDUMP_LOGE("Failed to write core dump header (%d)!", err);
  175. return;
  176. }
  177. // write tasks
  178. for (i = 0; i < task_num; i++) {
  179. if (!esp_tcb_addr_is_sane((uint32_t)tasks[i].pxTCB, tcb_sz)) {
  180. ESP_COREDUMP_LOG_PROCESS("Skip TCB with bad addr %x!", tasks[i].pxTCB);
  181. continue;
  182. }
  183. ESP_COREDUMP_LOG_PROCESS("Dump task %x", tasks[i].pxTCB);
  184. // save TCB address, stack base and stack top addr
  185. dump_data.task_hdr.tcb_addr = tasks[i].pxTCB;
  186. dump_data.task_hdr.stack_start = (uint32_t)tasks[i].pxTopOfStack;
  187. dump_data.task_hdr.stack_end = (uint32_t)tasks[i].pxEndOfStack;
  188. err = write_cfg->write(write_cfg->priv, &dump_data, sizeof(core_dump_task_header_t));
  189. if (err != ESP_OK) {
  190. ESP_COREDUMP_LOGE("Failed to write task header (%d)!", err);
  191. return;
  192. }
  193. // save TCB
  194. err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz);
  195. if (err != ESP_OK) {
  196. ESP_COREDUMP_LOGE("Failed to write TCB (%d)!", err);
  197. return;
  198. }
  199. // save task stack
  200. if (tasks[i].pxTopOfStack != 0 && tasks[i].pxEndOfStack != 0) {
  201. err = write_cfg->write(write_cfg->priv, tasks[i].pxTopOfStack,
  202. (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack);
  203. if (err != ESP_OK) {
  204. ESP_COREDUMP_LOGE("Failed to write task stack (%d)!", err);
  205. return;
  206. }
  207. } else {
  208. ESP_COREDUMP_LOG_PROCESS("Skip corrupted task %x stack!", tasks[i].pxTCB);
  209. }
  210. }
  211. // write end
  212. if (write_cfg->end) {
  213. err = write_cfg->end(write_cfg->priv);
  214. if (err != ESP_OK) {
  215. ESP_COREDUMP_LOGE("Failed to end core dump (%d)!", err);
  216. return;
  217. }
  218. }
  219. if (write_cfg->bad_tasks_num) {
  220. ESP_COREDUMP_LOGE("Skipped %d tasks with bad TCB!", write_cfg->bad_tasks_num);
  221. if (cur_task_bad) {
  222. ESP_COREDUMP_LOGE("Crashed task has been skipped!");
  223. }
  224. }
  225. }
  226. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
  227. // magic numbers to control core dump data consistency
  228. #define COREDUMP_FLASH_MAGIC_START 0xE32C04EDUL
  229. #define COREDUMP_FLASH_MAGIC_END 0xE32C04EDUL
  230. typedef struct _core_dump_write_flash_data_t
  231. {
  232. uint32_t off;
  233. } core_dump_write_flash_data_t;
  234. typedef struct _core_dump_partition_t
  235. {
  236. // core dump partition start
  237. uint32_t start;
  238. // core dump partition size
  239. uint32_t size;
  240. } core_dump_partition_t;
  241. typedef struct _core_dump_flash_config_t
  242. {
  243. // core dump partition start
  244. core_dump_partition_t partition;
  245. // core dump partition size
  246. uint32_t crc;
  247. } core_dump_flash_config_t;
  248. // core dump flash data
  249. static core_dump_flash_config_t s_core_flash_config;
  250. static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint32_t data_size)
  251. {
  252. esp_err_t err;
  253. uint32_t data_len = 0, k, len;
  254. union
  255. {
  256. uint8_t data8[4];
  257. uint32_t data32;
  258. } rom_data;
  259. data_len = (data_size / sizeof(uint32_t)) * sizeof(uint32_t);
  260. assert(off >= s_core_flash_config.partition.start);
  261. assert((off + data_len + (data_size % sizeof(uint32_t) ? sizeof(uint32_t) : 0)) <=
  262. s_core_flash_config.partition.start + s_core_flash_config.partition.size);
  263. err = spi_flash_write(off, data, data_len);
  264. if (err != ESP_OK) {
  265. ESP_COREDUMP_LOGE("Failed to write data to flash (%d)!", err);
  266. return 0;
  267. }
  268. len = data_size % sizeof(uint32_t);
  269. if (len) {
  270. // write last bytes with padding, actual TCB len can be retrieved by esptool from core dump header
  271. rom_data.data32 = 0;
  272. for (k = 0; k < len; k++)
  273. rom_data.data8[k] = *(data + data_len + k);
  274. err = spi_flash_write(off + data_len, &rom_data, sizeof(uint32_t));
  275. if (err != ESP_OK) {
  276. ESP_COREDUMP_LOGE("Failed to finish write data to flash (%d)!", err);
  277. return 0;
  278. }
  279. data_len += sizeof(uint32_t);
  280. }
  281. return data_len;
  282. }
  283. static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len)
  284. {
  285. esp_err_t err;
  286. uint32_t sec_num;
  287. core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
  288. // check for available space in partition
  289. // add space for 2 magics. TODO: change to CRC
  290. if ((*data_len + 2*sizeof(uint32_t)) > s_core_flash_config.partition.size) {
  291. ESP_COREDUMP_LOGE("Not enough space to save core dump!");
  292. return ESP_ERR_NO_MEM;
  293. }
  294. *data_len += 2*sizeof(uint32_t);
  295. wr_data->off = 0;
  296. sec_num = *data_len / SPI_FLASH_SEC_SIZE;
  297. if (*data_len % SPI_FLASH_SEC_SIZE)
  298. sec_num++;
  299. assert(sec_num * SPI_FLASH_SEC_SIZE <= s_core_flash_config.partition.size);
  300. err = spi_flash_erase_range(s_core_flash_config.partition.start + 0, sec_num * SPI_FLASH_SEC_SIZE);
  301. if (err != ESP_OK) {
  302. ESP_COREDUMP_LOGE("Failed to erase flash (%d)!", err);
  303. return err;
  304. }
  305. return err;
  306. }
  307. static esp_err_t esp_core_dump_flash_write_word(core_dump_write_flash_data_t *wr_data, uint32_t word)
  308. {
  309. esp_err_t err = ESP_OK;
  310. uint32_t data32 = word;
  311. assert(wr_data->off + sizeof(uint32_t) <= s_core_flash_config.partition.size);
  312. err = spi_flash_write(s_core_flash_config.partition.start + wr_data->off, &data32, sizeof(uint32_t));
  313. if (err != ESP_OK) {
  314. ESP_COREDUMP_LOGE("Failed to write to flash (%d)!", err);
  315. return err;
  316. }
  317. wr_data->off += sizeof(uint32_t);
  318. return err;
  319. }
  320. static esp_err_t esp_core_dump_flash_write_start(void *priv)
  321. {
  322. core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
  323. // save magic 1
  324. return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START);
  325. }
  326. static esp_err_t esp_core_dump_flash_write_end(void *priv)
  327. {
  328. core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
  329. #if LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG
  330. union
  331. {
  332. uint8_t data8[16];
  333. uint32_t data32[4];
  334. } rom_data;
  335. esp_err_t err = spi_flash_read(s_core_flash_config.partition.start + 0, &rom_data, sizeof(rom_data));
  336. if (err != ESP_OK) {
  337. ESP_COREDUMP_LOGE("Failed to read flash (%d)!", err);
  338. return err;
  339. }
  340. else {
  341. ESP_COREDUMP_LOG_PROCESS("Data from flash:");
  342. for (uint32_t i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
  343. ESP_COREDUMP_LOG_PROCESS("%x", rom_data.data32[i]);
  344. }
  345. }
  346. #endif
  347. // save magic 2
  348. return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END);
  349. }
  350. static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len)
  351. {
  352. esp_err_t err = ESP_OK;
  353. core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
  354. uint32_t len = esp_core_dump_write_flash_padded(s_core_flash_config.partition.start + wr_data->off, data, data_len);
  355. if (len != data_len)
  356. return ESP_FAIL;
  357. wr_data->off += len;
  358. return err;
  359. }
  360. void esp_core_dump_to_flash(XtExcFrame *frame)
  361. {
  362. core_dump_write_config_t wr_cfg;
  363. core_dump_write_flash_data_t wr_data;
  364. uint32_t crc = crc32_le(UINT32_MAX, (uint8_t const *)&s_core_flash_config.partition,
  365. sizeof(s_core_flash_config.partition));
  366. if (s_core_flash_config.crc != crc) {
  367. ESP_COREDUMP_LOGE("Core dump flash config is corrupted! CRC=0x%x instead of 0x%x", crc, s_core_flash_config.crc);
  368. return;
  369. }
  370. /* init non-OS flash access critical section */
  371. spi_flash_guard_set(&g_flash_guard_no_os_ops);
  372. memset(&wr_cfg, 0, sizeof(wr_cfg));
  373. wr_cfg.prepare = esp_core_dump_flash_write_prepare;
  374. wr_cfg.start = esp_core_dump_flash_write_start;
  375. wr_cfg.end = esp_core_dump_flash_write_end;
  376. wr_cfg.write = esp_core_dump_flash_write_data;
  377. wr_cfg.priv = &wr_data;
  378. ESP_COREDUMP_LOGI("Save core dump to flash...");
  379. esp_core_dump_write(frame, &wr_cfg);
  380. ESP_COREDUMP_LOGI("Core dump has been saved to flash.");
  381. }
  382. #endif
  383. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
  384. static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) {
  385. const static DRAM_ATTR char b64[] =
  386. "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
  387. int i, j, a, b, c;
  388. for (i = j = 0; i < src_len; i += 3) {
  389. a = src[i];
  390. b = i + 1 >= src_len ? 0 : src[i + 1];
  391. c = i + 2 >= src_len ? 0 : src[i + 2];
  392. dst[j++] = b64[a >> 2];
  393. dst[j++] = b64[((a & 3) << 4) | (b >> 4)];
  394. if (i + 1 < src_len) {
  395. dst[j++] = b64[(b & 0x0F) << 2 | (c >> 6)];
  396. }
  397. if (i + 2 < src_len) {
  398. dst[j++] = b64[c & 0x3F];
  399. }
  400. }
  401. while (j % 4 != 0) {
  402. dst[j++] = '=';
  403. }
  404. dst[j++] = '\0';
  405. }
  406. static esp_err_t esp_core_dump_uart_write_start(void *priv)
  407. {
  408. esp_err_t err = ESP_OK;
  409. ets_printf(DRAM_STR("================= CORE DUMP START =================\r\n"));
  410. return err;
  411. }
  412. static esp_err_t esp_core_dump_uart_write_end(void *priv)
  413. {
  414. esp_err_t err = ESP_OK;
  415. ets_printf(DRAM_STR("================= CORE DUMP END =================\r\n"));
  416. return err;
  417. }
  418. static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len)
  419. {
  420. esp_err_t err = ESP_OK;
  421. char buf[64 + 4], *addr = data;
  422. char *end = addr + data_len;
  423. while (addr < end) {
  424. size_t len = end - addr;
  425. if (len > 48) len = 48;
  426. /* Copy to stack to avoid alignment restrictions. */
  427. char *tmp = buf + (sizeof(buf) - len);
  428. memcpy(tmp, addr, len);
  429. esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf);
  430. addr += len;
  431. ets_printf(DRAM_STR("%s\r\n"), buf);
  432. }
  433. return err;
  434. }
  435. static int esp_core_dump_uart_get_char() {
  436. int i;
  437. uint32_t reg = (READ_PERI_REG(UART_STATUS_REG(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
  438. if (reg)
  439. i = READ_PERI_REG(UART_FIFO_REG(0));
  440. else
  441. i = -1;
  442. return i;
  443. }
  444. void esp_core_dump_to_uart(XtExcFrame *frame)
  445. {
  446. core_dump_write_config_t wr_cfg;
  447. uint32_t tm_end, tm_cur;
  448. int ch;
  449. memset(&wr_cfg, 0, sizeof(wr_cfg));
  450. wr_cfg.prepare = NULL;
  451. wr_cfg.start = esp_core_dump_uart_write_start;
  452. wr_cfg.end = esp_core_dump_uart_write_end;
  453. wr_cfg.write = esp_core_dump_uart_write_data;
  454. wr_cfg.priv = NULL;
  455. //Make sure txd/rxd are enabled
  456. // use direct reg access instead of gpio_pullup_dis which can cause exception when flash cache is disabled
  457. REG_CLR_BIT(GPIO_PIN_REG_1, FUN_PU);
  458. PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
  459. PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
  460. ESP_COREDUMP_LOGI("Press Enter to print core dump to UART...");
  461. tm_end = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000) + CONFIG_ESP32_CORE_DUMP_UART_DELAY;
  462. ch = esp_core_dump_uart_get_char();
  463. while (!(ch == '\n' || ch == '\r')) {
  464. tm_cur = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000);
  465. if (tm_cur >= tm_end)
  466. break;
  467. ch = esp_core_dump_uart_get_char();
  468. }
  469. ESP_COREDUMP_LOGI("Print core dump to uart...");
  470. esp_core_dump_write(frame, &wr_cfg);
  471. ESP_COREDUMP_LOGI("Core dump has been written to uart.");
  472. }
  473. #endif
  474. void esp_core_dump_init()
  475. {
  476. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
  477. const esp_partition_t *core_part;
  478. ESP_COREDUMP_LOGI("Init core dump to flash");
  479. core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL);
  480. if (!core_part) {
  481. ESP_COREDUMP_LOGE("No core dump partition found!");
  482. return;
  483. }
  484. ESP_COREDUMP_LOGI("Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size);
  485. s_core_flash_config.partition.start = core_part->address;
  486. s_core_flash_config.partition.size = core_part->size;
  487. s_core_flash_config.crc = crc32_le(UINT32_MAX, (uint8_t const *)&s_core_flash_config.partition,
  488. sizeof(s_core_flash_config.partition));
  489. #endif
  490. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
  491. ESP_COREDUMP_LOGI("Init core dump to UART");
  492. #endif
  493. }
  494. #endif