system_api.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. // Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <string.h>
  15. #include "esp_system.h"
  16. #include "esp_attr.h"
  17. #include "esp_wifi.h"
  18. #include "esp_wifi_internal.h"
  19. #include "esp_log.h"
  20. #include "sdkconfig.h"
  21. #include "rom/efuse.h"
  22. #include "rom/cache.h"
  23. #include "rom/uart.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/efuse_reg.h"
  26. #include "soc/rtc_cntl_reg.h"
  27. #include "soc/timer_group_reg.h"
  28. #include "soc/timer_group_struct.h"
  29. #include "soc/cpu.h"
  30. #include "soc/rtc.h"
  31. #include "freertos/FreeRTOS.h"
  32. #include "freertos/task.h"
  33. #include "freertos/xtensa_api.h"
  34. #include "esp_heap_caps.h"
  35. static const char* TAG = "system_api";
  36. static uint8_t base_mac_addr[6] = { 0 };
  37. #define SHUTDOWN_HANDLERS_NO 2
  38. static shutdown_handler_t shutdown_handlers[SHUTDOWN_HANDLERS_NO];
  39. void system_init()
  40. {
  41. }
  42. esp_err_t esp_base_mac_addr_set(uint8_t *mac)
  43. {
  44. if (mac == NULL) {
  45. ESP_LOGE(TAG, "Base MAC address is NULL");
  46. abort();
  47. }
  48. memcpy(base_mac_addr, mac, 6);
  49. return ESP_OK;
  50. }
  51. esp_err_t esp_base_mac_addr_get(uint8_t *mac)
  52. {
  53. uint8_t null_mac[6] = {0};
  54. if (memcmp(base_mac_addr, null_mac, 6) == 0) {
  55. ESP_LOGI(TAG, "Base MAC address is not set, read default base MAC address from BLK0 of EFUSE");
  56. return ESP_ERR_INVALID_MAC;
  57. }
  58. memcpy(mac, base_mac_addr, 6);
  59. return ESP_OK;
  60. }
  61. esp_err_t esp_efuse_mac_get_custom(uint8_t *mac)
  62. {
  63. uint32_t mac_low;
  64. uint32_t mac_high;
  65. uint8_t efuse_crc;
  66. uint8_t calc_crc;
  67. uint8_t version = REG_READ(EFUSE_BLK3_RDATA5_REG) >> 24;
  68. if (version != 1) {
  69. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE version error, version = %d", version);
  70. return ESP_ERR_INVALID_VERSION;
  71. }
  72. mac_low = REG_READ(EFUSE_BLK3_RDATA1_REG);
  73. mac_high = REG_READ(EFUSE_BLK3_RDATA0_REG);
  74. mac[0] = mac_high >> 8;
  75. mac[1] = mac_high >> 16;
  76. mac[2] = mac_high >> 24;
  77. mac[3] = mac_low;
  78. mac[4] = mac_low >> 8;
  79. mac[5] = mac_low >> 16;
  80. efuse_crc = mac_high;
  81. calc_crc = esp_crc8(mac, 6);
  82. if (efuse_crc != calc_crc) {
  83. ESP_LOGE(TAG, "Base MAC address from BLK3 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  84. return ESP_ERR_INVALID_CRC;
  85. }
  86. return ESP_OK;
  87. }
  88. esp_err_t esp_efuse_mac_get_default(uint8_t* mac)
  89. {
  90. uint32_t mac_low;
  91. uint32_t mac_high;
  92. uint8_t efuse_crc;
  93. uint8_t calc_crc;
  94. mac_low = REG_READ(EFUSE_BLK0_RDATA1_REG);
  95. mac_high = REG_READ(EFUSE_BLK0_RDATA2_REG);
  96. mac[0] = mac_high >> 8;
  97. mac[1] = mac_high;
  98. mac[2] = mac_low >> 24;
  99. mac[3] = mac_low >> 16;
  100. mac[4] = mac_low >> 8;
  101. mac[5] = mac_low;
  102. efuse_crc = mac_high >> 16;
  103. calc_crc = esp_crc8(mac, 6);
  104. if (efuse_crc != calc_crc) {
  105. // Small range of MAC addresses are accepted even if CRC is invalid.
  106. // These addresses are reserved for Espressif internal use.
  107. if ((mac_high & 0xFFFF) == 0x18fe) {
  108. if ((mac_low >= 0x346a85c7) && (mac_low <= 0x346a85f8)) {
  109. return ESP_OK;
  110. }
  111. } else {
  112. ESP_LOGE(TAG, "Base MAC address from BLK0 of EFUSE CRC error, efuse_crc = 0x%02x; calc_crc = 0x%02x", efuse_crc, calc_crc);
  113. abort();
  114. }
  115. }
  116. return ESP_OK;
  117. }
  118. esp_err_t system_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  119. esp_err_t esp_efuse_read_mac(uint8_t *mac) __attribute__((alias("esp_efuse_mac_get_default")));
  120. esp_err_t esp_derive_mac(uint8_t* local_mac, const uint8_t* universal_mac)
  121. {
  122. uint8_t idx;
  123. if (local_mac == NULL || universal_mac == NULL) {
  124. ESP_LOGE(TAG, "mac address param is NULL");
  125. return ESP_ERR_INVALID_ARG;
  126. }
  127. memcpy(local_mac, universal_mac, 6);
  128. for (idx = 0; idx < 64; idx++) {
  129. local_mac[0] = universal_mac[0] | 0x02;
  130. local_mac[0] ^= idx << 2;
  131. if (memcmp(local_mac, universal_mac, 6)) {
  132. break;
  133. }
  134. }
  135. return ESP_OK;
  136. }
  137. esp_err_t esp_read_mac(uint8_t* mac, esp_mac_type_t type)
  138. {
  139. uint8_t efuse_mac[6];
  140. if (mac == NULL) {
  141. ESP_LOGE(TAG, "mac address param is NULL");
  142. return ESP_ERR_INVALID_ARG;
  143. }
  144. if (type < ESP_MAC_WIFI_STA || type > ESP_MAC_ETH) {
  145. ESP_LOGE(TAG, "mac type is incorrect");
  146. return ESP_ERR_INVALID_ARG;
  147. }
  148. _Static_assert(UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR \
  149. || UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR, \
  150. "incorrect NUM_MAC_ADDRESS_FROM_EFUSE value");
  151. if (esp_base_mac_addr_get(efuse_mac) != ESP_OK) {
  152. esp_efuse_mac_get_default(efuse_mac);
  153. }
  154. switch (type) {
  155. case ESP_MAC_WIFI_STA:
  156. memcpy(mac, efuse_mac, 6);
  157. break;
  158. case ESP_MAC_WIFI_SOFTAP:
  159. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  160. memcpy(mac, efuse_mac, 6);
  161. mac[5] += 1;
  162. }
  163. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  164. esp_derive_mac(mac, efuse_mac);
  165. }
  166. break;
  167. case ESP_MAC_BT:
  168. memcpy(mac, efuse_mac, 6);
  169. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  170. mac[5] += 2;
  171. }
  172. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  173. mac[5] += 1;
  174. }
  175. break;
  176. case ESP_MAC_ETH:
  177. if (UNIVERSAL_MAC_ADDR_NUM == FOUR_UNIVERSAL_MAC_ADDR) {
  178. memcpy(mac, efuse_mac, 6);
  179. mac[5] += 3;
  180. }
  181. else if (UNIVERSAL_MAC_ADDR_NUM == TWO_UNIVERSAL_MAC_ADDR) {
  182. efuse_mac[5] += 1;
  183. esp_derive_mac(mac, efuse_mac);
  184. }
  185. break;
  186. default:
  187. ESP_LOGW(TAG, "incorrect mac type");
  188. break;
  189. }
  190. return ESP_OK;
  191. }
  192. esp_err_t esp_register_shutdown_handler(shutdown_handler_t handler)
  193. {
  194. int i;
  195. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  196. if (shutdown_handlers[i] == NULL) {
  197. shutdown_handlers[i] = handler;
  198. return ESP_OK;
  199. }
  200. }
  201. return ESP_FAIL;
  202. }
  203. void esp_restart_noos() __attribute__ ((noreturn));
  204. void IRAM_ATTR esp_restart(void)
  205. {
  206. int i;
  207. for (i = 0; i < SHUTDOWN_HANDLERS_NO; i++) {
  208. if (shutdown_handlers[i]) {
  209. shutdown_handlers[i]();
  210. }
  211. }
  212. // Disable scheduler on this core.
  213. vTaskSuspendAll();
  214. esp_restart_noos();
  215. }
  216. /* "inner" restart function for after RTOS, interrupts & anything else on this
  217. * core are already stopped. Stalls other core, resets hardware,
  218. * triggers restart.
  219. */
  220. void IRAM_ATTR esp_restart_noos()
  221. {
  222. const uint32_t core_id = xPortGetCoreID();
  223. const uint32_t other_core_id = core_id == 0 ? 1 : 0;
  224. esp_cpu_stall(other_core_id);
  225. // other core is now stalled, can access DPORT registers directly
  226. esp_dport_access_int_deinit();
  227. // We need to disable TG0/TG1 watchdogs
  228. // First enable RTC watchdog for 1 second
  229. REG_WRITE(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
  230. REG_WRITE(RTC_CNTL_WDTCONFIG0_REG,
  231. RTC_CNTL_WDT_FLASHBOOT_MOD_EN_M |
  232. (RTC_WDT_STG_SEL_RESET_SYSTEM << RTC_CNTL_WDT_STG0_S) |
  233. (RTC_WDT_STG_SEL_RESET_RTC << RTC_CNTL_WDT_STG1_S) |
  234. (1 << RTC_CNTL_WDT_SYS_RESET_LENGTH_S) |
  235. (1 << RTC_CNTL_WDT_CPU_RESET_LENGTH_S) );
  236. REG_WRITE(RTC_CNTL_WDTCONFIG1_REG, rtc_clk_slow_freq_get_hz() * 1);
  237. // Disable TG0/TG1 watchdogs
  238. TIMERG0.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  239. TIMERG0.wdt_config0.en = 0;
  240. TIMERG0.wdt_wprotect=0;
  241. TIMERG1.wdt_wprotect=TIMG_WDT_WKEY_VALUE;
  242. TIMERG1.wdt_config0.en = 0;
  243. TIMERG1.wdt_wprotect=0;
  244. // Disable all interrupts
  245. xt_ints_off(0xFFFFFFFF);
  246. // Disable cache
  247. Cache_Read_Disable(0);
  248. Cache_Read_Disable(1);
  249. // Flush any data left in UART FIFOs
  250. uart_tx_wait_idle(0);
  251. uart_tx_wait_idle(1);
  252. uart_tx_wait_idle(2);
  253. // Reset wifi/bluetooth/ethernet/sdio (bb/mac)
  254. DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG,
  255. DPORT_BB_RST | DPORT_FE_RST | DPORT_MAC_RST |
  256. DPORT_BT_RST | DPORT_BTMAC_RST | DPORT_SDIO_RST |
  257. DPORT_SDIO_HOST_RST | DPORT_EMAC_RST | DPORT_MACPWR_RST |
  258. DPORT_RW_BTMAC_RST | DPORT_RW_BTLP_RST);
  259. DPORT_REG_WRITE(DPORT_CORE_RST_EN_REG, 0);
  260. // Reset timer/spi/uart
  261. DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG,
  262. DPORT_TIMERS_RST | DPORT_SPI_RST_1 | DPORT_UART_RST);
  263. DPORT_REG_WRITE(DPORT_PERIP_RST_EN_REG, 0);
  264. // Set CPU back to XTAL source, no PLL, same as hard reset
  265. rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
  266. // Clear entry point for APP CPU
  267. DPORT_REG_WRITE(DPORT_APPCPU_CTRL_D_REG, 0);
  268. // Reset CPUs
  269. if (core_id == 0) {
  270. // Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
  271. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
  272. RTC_CNTL_SW_PROCPU_RST_M | RTC_CNTL_SW_APPCPU_RST_M);
  273. } else {
  274. // Running on APP CPU: need to reset PRO CPU and unstall it,
  275. // then reset APP CPU
  276. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_PROCPU_RST_M);
  277. esp_cpu_unstall(0);
  278. SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_APPCPU_RST_M);
  279. }
  280. while(true) {
  281. ;
  282. }
  283. }
  284. void system_restart(void) __attribute__((alias("esp_restart")));
  285. void system_restore(void)
  286. {
  287. esp_wifi_restore();
  288. }
  289. uint32_t esp_get_free_heap_size( void )
  290. {
  291. return heap_caps_get_free_size( MALLOC_CAP_8BIT );
  292. }
  293. uint32_t esp_get_minimum_free_heap_size( void )
  294. {
  295. return heap_caps_get_minimum_free_size( MALLOC_CAP_8BIT );
  296. }
  297. uint32_t system_get_free_heap_size(void) __attribute__((alias("esp_get_free_heap_size")));
  298. const char* system_get_sdk_version(void)
  299. {
  300. return "master";
  301. }
  302. const char* esp_get_idf_version(void)
  303. {
  304. return IDF_VER;
  305. }
  306. static void get_chip_info_esp32(esp_chip_info_t* out_info)
  307. {
  308. out_info->model = CHIP_ESP32;
  309. uint32_t reg = REG_READ(EFUSE_BLK0_RDATA3_REG);
  310. memset(out_info, 0, sizeof(*out_info));
  311. if ((reg & EFUSE_RD_CHIP_VER_REV1_M) != 0) {
  312. out_info->revision = 1;
  313. }
  314. if ((reg & EFUSE_RD_CHIP_VER_DIS_APP_CPU_M) == 0) {
  315. out_info->cores = 2;
  316. } else {
  317. out_info->cores = 1;
  318. }
  319. out_info->features = CHIP_FEATURE_WIFI_BGN;
  320. if ((reg & EFUSE_RD_CHIP_VER_DIS_BT_M) == 0) {
  321. out_info->features |= CHIP_FEATURE_BT | CHIP_FEATURE_BLE;
  322. }
  323. if (((reg & EFUSE_RD_CHIP_VER_PKG_M) >> EFUSE_RD_CHIP_VER_PKG_S) ==
  324. EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
  325. out_info->features |= CHIP_FEATURE_EMB_FLASH;
  326. }
  327. }
  328. void esp_chip_info(esp_chip_info_t* out_info)
  329. {
  330. // Only ESP32 is supported now, in the future call one of the
  331. // chip-specific functions based on sdkconfig choice
  332. return get_chip_info_esp32(out_info);
  333. }