uart.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_log.h"
  18. #include "malloc.h"
  19. #include "freertos/FreeRTOS.h"
  20. #include "freertos/semphr.h"
  21. #include "freertos/xtensa_api.h"
  22. #include "freertos/task.h"
  23. #include "freertos/ringbuf.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/uart_struct.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. static const char* UART_TAG = "UART";
  29. #define UART_CHECK(a, str, ret) if (!(a)) { \
  30. ESP_LOGE(UART_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
  31. return (ret); \
  32. }
  33. #define UART_EMPTY_THRESH_DEFAULT (10)
  34. #define UART_FULL_THRESH_DEFAULT (120)
  35. #define UART_TOUT_THRESH_DEFAULT (10)
  36. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  37. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  38. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  39. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  40. typedef struct {
  41. uart_event_type_t type; /*!< UART TX data type */
  42. struct {
  43. int brk_len;
  44. size_t size;
  45. uint8_t data[0];
  46. } tx_data;
  47. } uart_tx_data_t;
  48. typedef struct {
  49. uart_port_t uart_num; /*!< UART port number*/
  50. int queue_size; /*!< UART event queue size*/
  51. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  52. int intr_num; /*!< UART interrupt number*/
  53. //rx parameters
  54. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  55. int rx_buf_size; /*!< RX ring buffer size */
  56. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  57. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  58. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  59. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  60. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  61. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  62. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  63. //tx parameters
  64. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  65. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  66. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  67. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  68. int tx_buf_size; /*!< TX ring buffer size */
  69. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  70. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  71. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  72. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  73. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  74. uint32_t tx_len_cur;
  75. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  76. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  77. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  78. } uart_obj_t;
  79. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  80. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  81. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  82. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  83. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  84. {
  85. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  86. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  87. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  88. UART[uart_num]->conf0.bit_num = data_bit;
  89. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  90. return ESP_OK;
  91. }
  92. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  93. {
  94. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  95. *(data_bit) = UART[uart_num]->conf0.bit_num;
  96. return ESP_OK;
  97. }
  98. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  99. {
  100. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  101. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  102. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  103. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  104. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  105. return ESP_OK;
  106. }
  107. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  108. {
  109. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  110. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  111. return ESP_OK;
  112. }
  113. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  114. {
  115. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  116. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  117. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  118. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  119. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  120. return ESP_OK;
  121. }
  122. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  123. {
  124. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  125. int val = UART[uart_num]->conf0.val;
  126. if(val & UART_PARITY_EN_M) {
  127. if(val & UART_PARITY_M) {
  128. (*parity_mode) = UART_PARITY_ODD;
  129. } else {
  130. (*parity_mode) = UART_PARITY_EVEN;
  131. }
  132. } else {
  133. (*parity_mode) = UART_PARITY_DISABLE;
  134. }
  135. return ESP_OK;
  136. }
  137. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  138. {
  139. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  140. UART_CHECK((baud_rate < UART_BITRATE_MAX), "baud_rate error", ESP_FAIL);
  141. uint32_t clk_div = (((UART_CLK_FREQ) << 4) / baud_rate);
  142. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  143. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  144. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  145. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  146. return ESP_OK;
  147. }
  148. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  149. {
  150. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  151. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  152. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  153. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  154. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. UART_CHECK((((inverse_mask & UART_LINE_INV_MASK) == 0) && (inverse_mask != 0)), "inverse_mask error", ESP_FAIL);
  161. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  162. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  163. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  164. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  165. return ESP_OK;
  166. }
  167. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  168. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  169. {
  170. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  171. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  172. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  173. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  174. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  175. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  176. UART[uart_num]->conf1.rx_flow_en = 1;
  177. } else {
  178. UART[uart_num]->conf1.rx_flow_en = 0;
  179. }
  180. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  181. UART[uart_num]->conf0.tx_flow_en = 1;
  182. } else {
  183. UART[uart_num]->conf0.tx_flow_en = 0;
  184. }
  185. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  186. return ESP_OK;
  187. }
  188. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  189. {
  190. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  191. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  192. if(UART[uart_num]->conf1.rx_flow_en) {
  193. val |= UART_HW_FLOWCTRL_RTS;
  194. }
  195. if(UART[uart_num]->conf0.tx_flow_en) {
  196. val |= UART_HW_FLOWCTRL_CTS;
  197. }
  198. (*flow_ctrl) = val;
  199. return ESP_OK;
  200. }
  201. static esp_err_t uart_reset_fifo(uart_port_t uart_num)
  202. {
  203. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  204. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  205. UART[uart_num]->conf0.rxfifo_rst = 1;
  206. UART[uart_num]->conf0.rxfifo_rst = 0;
  207. UART[uart_num]->conf0.txfifo_rst = 1;
  208. UART[uart_num]->conf0.txfifo_rst = 0;
  209. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  210. return ESP_OK;
  211. }
  212. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  213. {
  214. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  215. //intr_clr register is write-only
  216. UART[uart_num]->int_clr.val = clr_mask;
  217. return ESP_OK;
  218. }
  219. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  220. {
  221. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  222. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  223. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  224. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  225. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  226. return ESP_OK;
  227. }
  228. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  229. {
  230. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  231. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  232. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  233. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  234. return ESP_OK;
  235. }
  236. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  237. {
  238. uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  239. return ESP_OK;
  240. }
  241. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  242. {
  243. uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  244. return ESP_OK;
  245. }
  246. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  247. {
  248. uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  249. return ESP_OK;
  250. }
  251. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  252. {
  253. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  254. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  255. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  256. UART[uart_num]->int_clr.txfifo_empty = 1;
  257. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  258. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  259. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  260. ESP_INTR_ENABLE(p_uart_obj[uart_num]->intr_num);
  261. return ESP_OK;
  262. }
  263. esp_err_t uart_isr_register(uart_port_t uart_num, uint8_t uart_intr_num, void (*fn)(void*), void * arg)
  264. {
  265. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  266. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  267. ESP_INTR_DISABLE(uart_intr_num);
  268. switch(uart_num) {
  269. case UART_NUM_1:
  270. intr_matrix_set(xPortGetCoreID(), ETS_UART1_INTR_SOURCE, uart_intr_num);
  271. break;
  272. case UART_NUM_2:
  273. intr_matrix_set(xPortGetCoreID(), ETS_UART2_INTR_SOURCE, uart_intr_num);
  274. break;
  275. case UART_NUM_0:
  276. default:
  277. intr_matrix_set(xPortGetCoreID(), ETS_UART0_INTR_SOURCE, uart_intr_num);
  278. break;
  279. }
  280. xt_set_interrupt_handler(uart_intr_num, fn, arg);
  281. ESP_INTR_ENABLE(uart_intr_num);
  282. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  283. return ESP_OK;
  284. }
  285. //internal signal can be output to multiple GPIO pads
  286. //only one GPIO pad can connect with input signal
  287. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  288. {
  289. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  290. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  291. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  292. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  293. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  294. int tx_sig, rx_sig, rts_sig, cts_sig;
  295. switch(uart_num) {
  296. case UART_NUM_0:
  297. tx_sig = U0TXD_OUT_IDX;
  298. rx_sig = U0RXD_IN_IDX;
  299. rts_sig = U0RTS_OUT_IDX;
  300. cts_sig = U0CTS_IN_IDX;
  301. break;
  302. case UART_NUM_1:
  303. tx_sig = U1TXD_OUT_IDX;
  304. rx_sig = U1RXD_IN_IDX;
  305. rts_sig = U1RTS_OUT_IDX;
  306. cts_sig = U1CTS_IN_IDX;
  307. break;
  308. case UART_NUM_2:
  309. tx_sig = U2TXD_OUT_IDX;
  310. rx_sig = U2RXD_IN_IDX;
  311. rts_sig = U2RTS_OUT_IDX;
  312. cts_sig = U2CTS_IN_IDX;
  313. break;
  314. case UART_NUM_MAX:
  315. default:
  316. tx_sig = U0TXD_OUT_IDX;
  317. rx_sig = U0RXD_IN_IDX;
  318. rts_sig = U0RTS_OUT_IDX;
  319. cts_sig = U0CTS_IN_IDX;
  320. break;
  321. }
  322. if(tx_io_num >= 0) {
  323. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  324. gpio_set_direction(tx_io_num, GPIO_MODE_OUTPUT);
  325. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  326. }
  327. if(rx_io_num >= 0) {
  328. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  329. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  330. gpio_matrix_in(rx_io_num, rx_sig, 0);
  331. }
  332. if(rts_io_num >= 0) {
  333. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  334. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  335. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  336. }
  337. if(cts_io_num >= 0) {
  338. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  339. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  340. gpio_matrix_in(cts_io_num, cts_sig, 0);
  341. }
  342. return ESP_OK;
  343. }
  344. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  345. {
  346. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  347. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  348. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  349. UART[uart_num]->conf0.sw_rts = level & 0x1;
  350. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  351. return ESP_OK;
  352. }
  353. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  354. {
  355. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  356. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  357. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  358. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  359. return ESP_OK;
  360. }
  361. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  362. {
  363. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  364. UART_CHECK((uart_config), "param null", ESP_FAIL);
  365. if(uart_num == UART_NUM_0) {
  366. periph_module_enable(PERIPH_UART0_MODULE);
  367. } else if(uart_num == UART_NUM_1) {
  368. periph_module_enable(PERIPH_UART1_MODULE);
  369. } else if(uart_num == UART_NUM_2) {
  370. periph_module_enable(PERIPH_UART2_MODULE);
  371. }
  372. uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  373. uart_set_baudrate(uart_num, uart_config->baud_rate);
  374. UART[uart_num]->conf0.val = (
  375. (uart_config->parity << UART_PARITY_S)
  376. | (uart_config->stop_bits << UART_STOP_BIT_NUM_S)
  377. | (uart_config->data_bits << UART_BIT_NUM_S)
  378. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  379. | UART_TICK_REF_ALWAYS_ON_M);
  380. return ESP_OK;
  381. }
  382. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  383. {
  384. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  385. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  386. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  387. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  388. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  389. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  390. UART[uart_num]->conf1.rx_tout_en = 1;
  391. } else {
  392. UART[uart_num]->conf1.rx_tout_en = 0;
  393. }
  394. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  395. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  396. }
  397. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  398. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  399. }
  400. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  401. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  402. return ESP_FAIL;
  403. }
  404. //internal isr handler for default driver code.
  405. static void IRAM_ATTR uart_rx_intr_handler_default(void *param)
  406. {
  407. uart_obj_t *p_uart = (uart_obj_t*) param;
  408. uint8_t uart_num = p_uart->uart_num;
  409. uart_dev_t* uart_reg = UART[uart_num];
  410. uint8_t buf_idx = 0;
  411. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  412. int rx_fifo_len = 0;
  413. uart_event_t uart_event;
  414. portBASE_TYPE HPTaskAwoken = 0;
  415. while(uart_intr_status != 0x0) {
  416. buf_idx = 0;
  417. uart_event.type = UART_EVENT_MAX;
  418. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  419. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  420. uart_reg->int_ena.txfifo_empty = 0;
  421. uart_reg->int_clr.txfifo_empty = 1;
  422. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  423. if(p_uart->tx_waiting_brk) {
  424. continue;
  425. }
  426. //TX semaphore will only be used when tx_buf_size is zero.
  427. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  428. p_uart->tx_waiting_fifo = false;
  429. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  430. if(HPTaskAwoken == pdTRUE) {
  431. portYIELD_FROM_ISR() ;
  432. }
  433. }
  434. else {
  435. //We don't use TX ring buffer, because the size is zero.
  436. if(p_uart->tx_buf_size == 0) {
  437. continue;
  438. }
  439. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  440. bool en_tx_flg = false;
  441. //We need to put a loop here, in case all the buffer items are very short.
  442. //That would cause a watch_dog reset because empty interrupt happens so often.
  443. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  444. while(tx_fifo_rem) {
  445. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  446. size_t size;
  447. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  448. if(p_uart->tx_head) {
  449. //The first item is the data description
  450. //Get the first item to get the data information
  451. if(p_uart->tx_len_tot == 0) {
  452. p_uart->tx_ptr = NULL;
  453. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  454. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  455. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  456. p_uart->tx_brk_flg = 1;
  457. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  458. }
  459. //We have saved the data description from the 1st item, return buffer.
  460. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  461. if(HPTaskAwoken == pdTRUE) {
  462. portYIELD_FROM_ISR() ;
  463. }
  464. }else if(p_uart->tx_ptr == NULL) {
  465. //Update the TX item pointer, we will need this to return item to buffer.
  466. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  467. en_tx_flg = true;
  468. p_uart->tx_len_cur = size;
  469. }
  470. }
  471. else {
  472. //Can not get data from ring buffer, return;
  473. break;
  474. }
  475. }
  476. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  477. //To fill the TX FIFO.
  478. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  479. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  480. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  481. }
  482. p_uart->tx_len_tot -= send_len;
  483. p_uart->tx_len_cur -= send_len;
  484. tx_fifo_rem -= send_len;
  485. if(p_uart->tx_len_cur == 0) {
  486. //Return item to ring buffer.
  487. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  488. if(HPTaskAwoken == pdTRUE) {
  489. portYIELD_FROM_ISR() ;
  490. }
  491. p_uart->tx_head = NULL;
  492. p_uart->tx_ptr = NULL;
  493. //Sending item done, now we need to send break if there is a record.
  494. //Set TX break signal after FIFO is empty
  495. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  496. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  497. uart_reg->int_ena.tx_brk_done = 0;
  498. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  499. uart_reg->conf0.txd_brk = 1;
  500. uart_reg->int_clr.tx_brk_done = 1;
  501. uart_reg->int_ena.tx_brk_done = 1;
  502. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  503. p_uart->tx_waiting_brk = 1;
  504. } else {
  505. //enable TX empty interrupt
  506. en_tx_flg = true;
  507. }
  508. } else {
  509. //enable TX empty interrupt
  510. en_tx_flg = true;
  511. }
  512. }
  513. }
  514. if(en_tx_flg) {
  515. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  516. uart_reg->int_clr.txfifo_empty = 1;
  517. uart_reg->int_ena.txfifo_empty = 1;
  518. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  519. }
  520. }
  521. }
  522. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  523. if(p_uart->rx_buffer_full_flg == false) {
  524. //Get the buffer from the FIFO
  525. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  526. p_uart->rx_stash_len = rx_fifo_len;
  527. //We have to read out all data in RX FIFO to clear the interrupt signal
  528. while(buf_idx < rx_fifo_len) {
  529. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  530. }
  531. //After Copying the Data From FIFO ,Clear intr_status
  532. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  533. uart_reg->int_clr.rxfifo_tout = 1;
  534. uart_reg->int_clr.rxfifo_full = 1;
  535. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  536. uart_event.type = UART_DATA;
  537. uart_event.size = rx_fifo_len;
  538. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  539. //Mainly for applications that uses flow control or small ring buffer.
  540. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  541. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  542. uart_reg->int_ena.rxfifo_full = 0;
  543. uart_reg->int_ena.rxfifo_tout = 0;
  544. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  545. p_uart->rx_buffer_full_flg = true;
  546. uart_event.type = UART_BUFFER_FULL;
  547. } else {
  548. uart_event.type = UART_DATA;
  549. }
  550. if(HPTaskAwoken == pdTRUE) {
  551. portYIELD_FROM_ISR() ;
  552. }
  553. } else {
  554. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  555. uart_reg->int_ena.rxfifo_full = 0;
  556. uart_reg->int_ena.rxfifo_tout = 0;
  557. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  558. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  559. uart_event.type = UART_BUFFER_FULL;
  560. }
  561. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  562. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  563. uart_reg->conf0.rxfifo_rst = 1;
  564. uart_reg->conf0.rxfifo_rst = 0;
  565. uart_reg->int_clr.rxfifo_ovf = 1;
  566. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  567. uart_event.type = UART_FIFO_OVF;
  568. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  569. uart_reg->int_clr.brk_det = 1;
  570. uart_event.type = UART_BREAK;
  571. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M ) {
  572. uart_reg->int_clr.parity_err = 1;
  573. uart_event.type = UART_FRAME_ERR;
  574. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  575. uart_reg->int_clr.frm_err = 1;
  576. uart_event.type = UART_PARITY_ERR;
  577. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  578. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  579. uart_reg->conf0.txd_brk = 0;
  580. uart_reg->int_ena.tx_brk_done = 0;
  581. uart_reg->int_clr.tx_brk_done = 1;
  582. if(p_uart->tx_brk_flg == 1) {
  583. uart_reg->int_ena.txfifo_empty = 1;
  584. }
  585. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  586. if(p_uart->tx_brk_flg == 1) {
  587. p_uart->tx_brk_flg = 0;
  588. p_uart->tx_waiting_brk = 0;
  589. } else {
  590. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  591. if(HPTaskAwoken == pdTRUE) {
  592. portYIELD_FROM_ISR() ;
  593. }
  594. }
  595. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  596. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  597. uart_reg->int_ena.tx_brk_idle_done = 0;
  598. uart_reg->int_clr.tx_brk_idle_done = 1;
  599. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  600. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  601. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  602. uart_reg->int_ena.tx_done = 0;
  603. uart_reg->int_clr.tx_done = 1;
  604. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  605. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  606. if(HPTaskAwoken == pdTRUE) {
  607. portYIELD_FROM_ISR() ;
  608. }
  609. }
  610. else {
  611. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  612. uart_event.type = UART_EVENT_MAX;
  613. }
  614. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  615. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  616. if(HPTaskAwoken == pdTRUE) {
  617. portYIELD_FROM_ISR() ;
  618. }
  619. }
  620. uart_intr_status = uart_reg->int_st.val;
  621. }
  622. }
  623. /**************************************************************/
  624. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  625. {
  626. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  627. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  628. BaseType_t res;
  629. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  630. //Take tx_mux
  631. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  632. if(res == pdFALSE) {
  633. return ESP_ERR_TIMEOUT;
  634. }
  635. ticks_to_wait = ticks_end - xTaskGetTickCount();
  636. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  637. ticks_to_wait = ticks_end - xTaskGetTickCount();
  638. if(UART[uart_num]->status.txfifo_cnt == 0) {
  639. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  640. return ESP_OK;
  641. }
  642. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  643. //take 2nd tx_done_sem, wait given from ISR
  644. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  645. if(res == pdFALSE) {
  646. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  647. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  648. return ESP_ERR_TIMEOUT;
  649. }
  650. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  651. return ESP_OK;
  652. }
  653. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  654. {
  655. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  656. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  657. UART[uart_num]->conf0.txd_brk = 1;
  658. UART[uart_num]->int_clr.tx_brk_done = 1;
  659. UART[uart_num]->int_ena.tx_brk_done = 1;
  660. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  661. return ESP_OK;
  662. }
  663. //Fill UART tx_fifo and return a number,
  664. //This function by itself is not thread-safe, always call from within a muxed section.
  665. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  666. {
  667. uint8_t i = 0;
  668. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  669. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  670. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  671. for(i = 0; i < copy_cnt; i++) {
  672. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  673. }
  674. return copy_cnt;
  675. }
  676. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  677. {
  678. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  679. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  680. UART_CHECK(buffer, "buffer null", (-1));
  681. if(len == 0) {
  682. return 0;
  683. }
  684. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  685. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  686. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  687. return tx_len;
  688. }
  689. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  690. {
  691. if(size == 0) {
  692. return 0;
  693. }
  694. size_t original_size = size;
  695. //lock for uart_tx
  696. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  697. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  698. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  699. int offset = 0;
  700. uart_tx_data_t evt;
  701. evt.tx_data.size = size;
  702. evt.tx_data.brk_len = brk_len;
  703. if(brk_en) {
  704. evt.type = UART_DATA_BREAK;
  705. } else {
  706. evt.type = UART_DATA;
  707. }
  708. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  709. while(size > 0) {
  710. int send_size = size > max_size / 2 ? max_size / 2 : size;
  711. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  712. size -= send_size;
  713. offset += send_size;
  714. }
  715. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  716. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  717. } else {
  718. while(size) {
  719. //semaphore for tx_fifo available
  720. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  721. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  722. if(sent < size) {
  723. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  724. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  725. }
  726. size -= sent;
  727. src += sent;
  728. }
  729. }
  730. if(brk_en) {
  731. uart_set_break(uart_num, brk_len);
  732. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  733. }
  734. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  735. }
  736. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  737. return original_size;
  738. }
  739. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  740. {
  741. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  742. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  743. UART_CHECK(src, "buffer null", (-1));
  744. return uart_tx_all(uart_num, src, size, 0, 0);
  745. }
  746. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  747. {
  748. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  749. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  750. UART_CHECK((size > 0), "uart size error", (-1));
  751. UART_CHECK((src), "uart data null", (-1));
  752. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  753. return uart_tx_all(uart_num, src, size, 1, brk_len);
  754. }
  755. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  756. {
  757. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  758. UART_CHECK((buf), "uart_num error", (-1));
  759. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  760. uint8_t* data = NULL;
  761. size_t size;
  762. size_t copy_len = 0;
  763. int len_tmp;
  764. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  765. return -1;
  766. }
  767. while(length) {
  768. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  769. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  770. if(data) {
  771. p_uart_obj[uart_num]->rx_head_ptr = data;
  772. p_uart_obj[uart_num]->rx_ptr = data;
  773. p_uart_obj[uart_num]->rx_cur_remain = size;
  774. } else {
  775. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  776. return copy_len;
  777. }
  778. }
  779. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  780. len_tmp = length;
  781. } else {
  782. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  783. }
  784. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  785. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  786. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  787. copy_len += len_tmp;
  788. length -= len_tmp;
  789. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  790. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  791. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  792. p_uart_obj[uart_num]->rx_ptr = NULL;
  793. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  794. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  795. if(res == pdTRUE) {
  796. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  797. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  798. }
  799. }
  800. }
  801. }
  802. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  803. return copy_len;
  804. }
  805. esp_err_t uart_flush(uart_port_t uart_num)
  806. {
  807. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  808. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  809. uart_obj_t* p_uart = p_uart_obj[uart_num];
  810. uint8_t* data;
  811. size_t size;
  812. //rx sem protect the ring buffer read related functions
  813. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  814. ESP_INTR_DISABLE(p_uart->intr_num);
  815. while(true) {
  816. if(p_uart->rx_head_ptr) {
  817. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  818. p_uart->rx_ptr = NULL;
  819. p_uart->rx_cur_remain = 0;
  820. p_uart->rx_head_ptr = NULL;
  821. }
  822. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  823. if(data == NULL) {
  824. break;
  825. }
  826. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  827. }
  828. p_uart->rx_ptr = NULL;
  829. p_uart->rx_cur_remain = 0;
  830. p_uart->rx_head_ptr = NULL;
  831. ESP_INTR_ENABLE(p_uart->intr_num);
  832. xSemaphoreGive(p_uart->rx_mux);
  833. if(p_uart->tx_buf_size > 0) {
  834. xSemaphoreTake(p_uart->tx_mux, (portTickType)portMAX_DELAY);
  835. ESP_INTR_DISABLE(p_uart->intr_num);
  836. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  837. UART[uart_num]->int_ena.txfifo_empty = 0;
  838. UART[uart_num]->int_clr.txfifo_empty = 1;
  839. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  840. do {
  841. data = (uint8_t*) xRingbufferReceive(p_uart->tx_ring_buf, &size, (portTickType) 0);
  842. if(data == NULL) {
  843. break;
  844. }
  845. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  846. } while(1);
  847. p_uart->tx_brk_flg = 0;
  848. p_uart->tx_brk_len = 0;
  849. p_uart->tx_head = NULL;
  850. p_uart->tx_len_cur = 0;
  851. p_uart->tx_len_tot = 0;
  852. p_uart->tx_ptr = NULL;
  853. p_uart->tx_waiting_brk = 0;
  854. p_uart->tx_waiting_fifo = false;
  855. ESP_INTR_ENABLE(p_uart->intr_num);
  856. xSemaphoreGive(p_uart->tx_mux);
  857. }
  858. uart_reset_fifo(uart_num);
  859. return ESP_OK;
  860. }
  861. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, int uart_intr_num, void* uart_queue)
  862. {
  863. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  864. UART_CHECK((rx_buffer_size > 0), "uart rx buffer length error", ESP_FAIL);
  865. if(p_uart_obj[uart_num] == NULL) {
  866. ESP_INTR_DISABLE(uart_intr_num);
  867. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  868. if(p_uart_obj[uart_num] == NULL) {
  869. ESP_LOGE(UART_TAG, "UART driver malloc error");
  870. return ESP_FAIL;
  871. }
  872. p_uart_obj[uart_num]->uart_num = uart_num;
  873. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  874. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  875. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  876. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  877. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  878. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  879. p_uart_obj[uart_num]->intr_num = uart_intr_num;
  880. p_uart_obj[uart_num]->queue_size = queue_size;
  881. p_uart_obj[uart_num]->tx_ptr = NULL;
  882. p_uart_obj[uart_num]->tx_head = NULL;
  883. p_uart_obj[uart_num]->tx_len_tot = 0;
  884. p_uart_obj[uart_num]->tx_brk_flg = 0;
  885. p_uart_obj[uart_num]->tx_brk_len = 0;
  886. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  887. if(uart_queue) {
  888. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  889. *((QueueHandle_t*) uart_queue) = p_uart_obj[uart_num]->xQueueUart;
  890. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  891. } else {
  892. p_uart_obj[uart_num]->xQueueUart = NULL;
  893. }
  894. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  895. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  896. p_uart_obj[uart_num]->rx_ptr = NULL;
  897. p_uart_obj[uart_num]->rx_cur_remain = 0;
  898. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  899. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  900. if(tx_buffer_size > 0) {
  901. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  902. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  903. } else {
  904. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  905. p_uart_obj[uart_num]->tx_buf_size = 0;
  906. }
  907. } else {
  908. ESP_LOGE(UART_TAG, "UART driver already installed");
  909. return ESP_FAIL;
  910. }
  911. uart_isr_register(uart_num, uart_intr_num, uart_rx_intr_handler_default, p_uart_obj[uart_num]);
  912. uart_intr_config_t uart_intr = {
  913. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  914. | UART_RXFIFO_TOUT_INT_ENA_M
  915. | UART_FRM_ERR_INT_ENA_M
  916. | UART_RXFIFO_OVF_INT_ENA_M
  917. | UART_BRK_DET_INT_ENA_M
  918. | UART_PARITY_ERR_INT_ENA_M,
  919. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  920. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  921. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  922. };
  923. uart_intr_config(uart_num, &uart_intr);
  924. ESP_INTR_ENABLE(uart_intr_num);
  925. return ESP_OK;
  926. }
  927. //Make sure no other tasks are still using UART before you call this function
  928. esp_err_t uart_driver_delete(uart_port_t uart_num)
  929. {
  930. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  931. if(p_uart_obj[uart_num] == NULL) {
  932. ESP_LOGI(UART_TAG, "ALREADY NULL");
  933. return ESP_OK;
  934. }
  935. ESP_INTR_DISABLE(p_uart_obj[uart_num]->intr_num);
  936. uart_disable_rx_intr(uart_num);
  937. uart_disable_tx_intr(uart_num);
  938. uart_isr_register(uart_num, p_uart_obj[uart_num]->intr_num, NULL, NULL);
  939. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  940. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  941. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  942. }
  943. if(p_uart_obj[uart_num]->tx_done_sem) {
  944. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  945. p_uart_obj[uart_num]->tx_done_sem = NULL;
  946. }
  947. if(p_uart_obj[uart_num]->tx_brk_sem) {
  948. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  949. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  950. }
  951. if(p_uart_obj[uart_num]->tx_mux) {
  952. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  953. p_uart_obj[uart_num]->tx_mux = NULL;
  954. }
  955. if(p_uart_obj[uart_num]->rx_mux) {
  956. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  957. p_uart_obj[uart_num]->rx_mux = NULL;
  958. }
  959. if(p_uart_obj[uart_num]->xQueueUart) {
  960. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  961. p_uart_obj[uart_num]->xQueueUart = NULL;
  962. }
  963. if(p_uart_obj[uart_num]->rx_ring_buf) {
  964. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  965. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  966. }
  967. if(p_uart_obj[uart_num]->tx_ring_buf) {
  968. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  969. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  970. }
  971. free(p_uart_obj[uart_num]);
  972. p_uart_obj[uart_num] = NULL;
  973. return ESP_OK;
  974. }