uart.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "esp_attr.h"
  9. #include "esp_intr_alloc.h"
  10. #include "esp_log.h"
  11. #include "esp_err.h"
  12. #include "malloc.h"
  13. #include "freertos/FreeRTOS.h"
  14. #include "freertos/semphr.h"
  15. #include "freertos/ringbuf.h"
  16. #include "hal/uart_hal.h"
  17. #include "hal/gpio_hal.h"
  18. #include "soc/uart_periph.h"
  19. #include "soc/rtc_cntl_reg.h"
  20. #include "driver/uart.h"
  21. #include "driver/gpio.h"
  22. #include "driver/uart_select.h"
  23. #include "driver/periph_ctrl.h"
  24. #include "sdkconfig.h"
  25. #include "esp_rom_gpio.h"
  26. #if CONFIG_IDF_TARGET_ESP32
  27. #include "esp32/clk.h"
  28. #elif CONFIG_IDF_TARGET_ESP32S2
  29. #include "esp32s2/clk.h"
  30. #elif CONFIG_IDF_TARGET_ESP32S3
  31. #include "esp32s3/clk.h"
  32. #elif CONFIG_IDF_TARGET_ESP32C3
  33. #include "esp32c3/clk.h"
  34. #endif
  35. #ifdef CONFIG_UART_ISR_IN_IRAM
  36. #define UART_ISR_ATTR IRAM_ATTR
  37. #else
  38. #define UART_ISR_ATTR
  39. #endif
  40. #define XOFF (0x13)
  41. #define XON (0x11)
  42. static const char* UART_TAG = "uart";
  43. #define UART_CHECK(a, str, ret_val) \
  44. if (!(a)) { \
  45. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  46. return (ret_val); \
  47. }
  48. #define UART_EMPTY_THRESH_DEFAULT (10)
  49. #define UART_FULL_THRESH_DEFAULT (120)
  50. #define UART_TOUT_THRESH_DEFAULT (10)
  51. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  52. #define UART_TX_IDLE_NUM_DEFAULT (0)
  53. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  54. #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH)
  55. #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
  56. | (UART_INTR_RXFIFO_TOUT) \
  57. | (UART_INTR_RXFIFO_OVF) \
  58. | (UART_INTR_BRK_DET) \
  59. | (UART_INTR_PARITY_ERR))
  60. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  61. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  62. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  63. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  64. // Check actual UART mode set
  65. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  66. #define UART_CONTEX_INIT_DEF(uart_num) {\
  67. .hal.dev = UART_LL_GET_HW(uart_num),\
  68. .spinlock = portMUX_INITIALIZER_UNLOCKED,\
  69. .hw_enabled = false,\
  70. }
  71. #if SOC_UART_SUPPORT_RTC_CLK
  72. #define RTC_ENABLED(uart_num) (BIT(uart_num))
  73. #endif
  74. typedef struct {
  75. uart_event_type_t type; /*!< UART TX data type */
  76. struct {
  77. int brk_len;
  78. size_t size;
  79. uint8_t data[0];
  80. } tx_data;
  81. } uart_tx_data_t;
  82. typedef struct {
  83. int wr;
  84. int rd;
  85. int len;
  86. int* data;
  87. } uart_pat_rb_t;
  88. typedef struct {
  89. uart_port_t uart_num; /*!< UART port number*/
  90. int queue_size; /*!< UART event queue size*/
  91. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  92. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  93. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  94. bool coll_det_flg; /*!< UART collision detection flag */
  95. bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */
  96. //rx parameters
  97. int rx_buffered_len; /*!< UART cached data length */
  98. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  99. int rx_buf_size; /*!< RX ring buffer size */
  100. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  101. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  102. uint32_t rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  103. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  104. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  105. uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  106. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  107. uart_pat_rb_t rx_pattern_pos;
  108. //tx parameters
  109. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  110. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  111. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  112. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  113. int tx_buf_size; /*!< TX ring buffer size */
  114. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  115. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  116. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  117. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  118. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  119. uint32_t tx_len_cur;
  120. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  121. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  122. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  123. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  124. } uart_obj_t;
  125. typedef struct {
  126. uart_hal_context_t hal; /*!< UART hal context*/
  127. portMUX_TYPE spinlock;
  128. bool hw_enabled;
  129. } uart_context_t;
  130. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  131. static uart_context_t uart_context[UART_NUM_MAX] = {
  132. UART_CONTEX_INIT_DEF(UART_NUM_0),
  133. UART_CONTEX_INIT_DEF(UART_NUM_1),
  134. #if UART_NUM_MAX > 2
  135. UART_CONTEX_INIT_DEF(UART_NUM_2),
  136. #endif
  137. };
  138. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  139. #if SOC_UART_SUPPORT_RTC_CLK
  140. static uint8_t rtc_enabled = 0;
  141. static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED;
  142. static void rtc_clk_enable(uart_port_t uart_num)
  143. {
  144. portENTER_CRITICAL(&rtc_num_spinlock);
  145. if (!(rtc_enabled & RTC_ENABLED(uart_num))) {
  146. rtc_enabled |= RTC_ENABLED(uart_num);
  147. }
  148. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  149. portEXIT_CRITICAL(&rtc_num_spinlock);
  150. }
  151. static void rtc_clk_disable(uart_port_t uart_num)
  152. {
  153. assert(rtc_enabled & RTC_ENABLED(uart_num));
  154. portENTER_CRITICAL(&rtc_num_spinlock);
  155. rtc_enabled &= ~RTC_ENABLED(uart_num);
  156. if (rtc_enabled == 0) {
  157. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
  158. }
  159. portEXIT_CRITICAL(&rtc_num_spinlock);
  160. }
  161. #endif
  162. static void uart_module_enable(uart_port_t uart_num)
  163. {
  164. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  165. if (uart_context[uart_num].hw_enabled != true) {
  166. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  167. periph_module_reset(uart_periph_signal[uart_num].module);
  168. }
  169. periph_module_enable(uart_periph_signal[uart_num].module);
  170. uart_context[uart_num].hw_enabled = true;
  171. }
  172. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  173. }
  174. static void uart_module_disable(uart_port_t uart_num)
  175. {
  176. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  177. if (uart_context[uart_num].hw_enabled != false) {
  178. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
  179. periph_module_disable(uart_periph_signal[uart_num].module);
  180. }
  181. uart_context[uart_num].hw_enabled = false;
  182. }
  183. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  184. }
  185. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  186. {
  187. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  188. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  189. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  190. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  191. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  192. return ESP_OK;
  193. }
  194. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  195. {
  196. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  197. uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
  198. return ESP_OK;
  199. }
  200. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  201. {
  202. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  203. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  204. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  205. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  206. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  207. return ESP_OK;
  208. }
  209. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  210. {
  211. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  212. uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
  213. return ESP_OK;
  214. }
  215. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  216. {
  217. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  218. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  219. uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
  220. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  221. return ESP_OK;
  222. }
  223. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  224. {
  225. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  226. uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
  227. return ESP_OK;
  228. }
  229. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  230. {
  231. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  232. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  233. uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate);
  234. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  235. return ESP_OK;
  236. }
  237. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  238. {
  239. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  240. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  241. uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
  242. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  243. return ESP_OK;
  244. }
  245. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  246. {
  247. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  248. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  249. uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
  250. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  251. return ESP_OK;
  252. }
  253. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  254. {
  255. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  256. UART_CHECK((rx_thresh_xon < SOC_UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  257. UART_CHECK((rx_thresh_xoff < SOC_UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  258. uart_sw_flowctrl_t sw_flow_ctl = {
  259. .xon_char = XON,
  260. .xoff_char = XOFF,
  261. .xon_thrd = rx_thresh_xon,
  262. .xoff_thrd = rx_thresh_xoff,
  263. };
  264. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  265. uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
  266. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  267. return ESP_OK;
  268. }
  269. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  270. {
  271. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  272. UART_CHECK((rx_thresh < SOC_UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  273. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  274. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  275. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
  276. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  277. return ESP_OK;
  278. }
  279. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  280. {
  281. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL)
  282. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  283. uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
  284. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  285. return ESP_OK;
  286. }
  287. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  288. {
  289. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  290. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
  291. return ESP_OK;
  292. }
  293. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  294. {
  295. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  296. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  297. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
  298. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
  299. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  300. return ESP_OK;
  301. }
  302. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  303. {
  304. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  305. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  306. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
  307. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  308. return ESP_OK;
  309. }
  310. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  311. {
  312. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  313. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  314. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  315. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  316. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  317. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  318. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  319. free(pdata);
  320. }
  321. return ESP_OK;
  322. }
  323. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  324. {
  325. esp_err_t ret = ESP_OK;
  326. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  327. int next = p_pos->wr + 1;
  328. if (next >= p_pos->len) {
  329. next = 0;
  330. }
  331. if (next == p_pos->rd) {
  332. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  333. ret = ESP_FAIL;
  334. } else {
  335. p_pos->data[p_pos->wr] = pos;
  336. p_pos->wr = next;
  337. ret = ESP_OK;
  338. }
  339. return ret;
  340. }
  341. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  342. {
  343. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  344. return ESP_ERR_INVALID_STATE;
  345. } else {
  346. esp_err_t ret = ESP_OK;
  347. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  348. if (p_pos->rd == p_pos->wr) {
  349. ret = ESP_FAIL;
  350. } else {
  351. p_pos->rd++;
  352. }
  353. if (p_pos->rd >= p_pos->len) {
  354. p_pos->rd = 0;
  355. }
  356. return ret;
  357. }
  358. }
  359. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  360. {
  361. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  362. int rd = p_pos->rd;
  363. while(rd != p_pos->wr) {
  364. p_pos->data[rd] -= diff_len;
  365. int rd_rec = rd;
  366. rd ++;
  367. if (rd >= p_pos->len) {
  368. rd = 0;
  369. }
  370. if (p_pos->data[rd_rec] < 0) {
  371. p_pos->rd = rd;
  372. }
  373. }
  374. return ESP_OK;
  375. }
  376. int uart_pattern_pop_pos(uart_port_t uart_num)
  377. {
  378. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  379. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  380. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  381. int pos = -1;
  382. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  383. pos = pat_pos->data[pat_pos->rd];
  384. uart_pattern_dequeue(uart_num);
  385. }
  386. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  387. return pos;
  388. }
  389. int uart_pattern_get_pos(uart_port_t uart_num)
  390. {
  391. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  392. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  393. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  394. int pos = -1;
  395. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  396. pos = pat_pos->data[pat_pos->rd];
  397. }
  398. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  399. return pos;
  400. }
  401. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  402. {
  403. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  404. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  405. int* pdata = (int*) malloc(queue_length * sizeof(int));
  406. if(pdata == NULL) {
  407. return ESP_ERR_NO_MEM;
  408. }
  409. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  410. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  411. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  412. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  413. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  414. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  415. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  416. free(ptmp);
  417. return ESP_OK;
  418. }
  419. #if CONFIG_IDF_TARGET_ESP32
  420. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  421. {
  422. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  423. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  424. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  425. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  426. uart_at_cmd_t at_cmd = {0};
  427. at_cmd.cmd_char = pattern_chr;
  428. at_cmd.char_num = chr_num;
  429. at_cmd.gap_tout = chr_tout;
  430. at_cmd.pre_idle = pre_idle;
  431. at_cmd.post_idle = post_idle;
  432. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  433. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  434. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  435. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  436. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  437. return ESP_OK;
  438. }
  439. #endif
  440. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  441. {
  442. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  443. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  444. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  445. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  446. uart_at_cmd_t at_cmd = {0};
  447. at_cmd.cmd_char = pattern_chr;
  448. at_cmd.char_num = chr_num;
  449. #if CONFIG_IDF_TARGET_ESP32
  450. int apb_clk_freq = 0;
  451. uint32_t uart_baud = 0;
  452. uint32_t uart_div = 0;
  453. uart_get_baudrate(uart_num, &uart_baud);
  454. apb_clk_freq = esp_clk_apb_freq();
  455. uart_div = apb_clk_freq / uart_baud;
  456. at_cmd.gap_tout = chr_tout * uart_div;
  457. at_cmd.pre_idle = pre_idle * uart_div;
  458. at_cmd.post_idle = post_idle * uart_div;
  459. #elif CONFIG_IDF_TARGET_ESP32S2
  460. at_cmd.gap_tout = chr_tout;
  461. at_cmd.pre_idle = pre_idle;
  462. at_cmd.post_idle = post_idle;
  463. #endif
  464. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  465. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  466. uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
  467. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  468. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  469. return ESP_OK;
  470. }
  471. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  472. {
  473. return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
  474. }
  475. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  476. {
  477. return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  478. }
  479. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  480. {
  481. return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL|UART_INTR_RXFIFO_TOUT);
  482. }
  483. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  484. {
  485. return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
  486. }
  487. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  488. {
  489. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  490. UART_CHECK((thresh < SOC_UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  491. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  492. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  493. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
  494. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  495. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  496. return ESP_OK;
  497. }
  498. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  499. {
  500. int ret;
  501. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  502. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  503. ret=esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, handle);
  504. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  505. return ret;
  506. }
  507. esp_err_t uart_isr_free(uart_port_t uart_num)
  508. {
  509. esp_err_t ret;
  510. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  511. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  512. UART_CHECK((p_uart_obj[uart_num]->intr_handle != NULL), "uart driver error", ESP_ERR_INVALID_ARG);
  513. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  514. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  515. p_uart_obj[uart_num]->intr_handle=NULL;
  516. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  517. return ret;
  518. }
  519. //internal signal can be output to multiple GPIO pads
  520. //only one GPIO pad can connect with input signal
  521. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  522. {
  523. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  524. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  525. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  526. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  527. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  528. if(tx_io_num >= 0) {
  529. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  530. gpio_set_level(tx_io_num, 1);
  531. esp_rom_gpio_connect_out_signal(tx_io_num, uart_periph_signal[uart_num].tx_sig, 0, 0);
  532. }
  533. if(rx_io_num >= 0) {
  534. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  535. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  536. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  537. esp_rom_gpio_connect_in_signal(rx_io_num, uart_periph_signal[uart_num].rx_sig, 0);
  538. }
  539. if(rts_io_num >= 0) {
  540. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  541. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  542. esp_rom_gpio_connect_out_signal(rts_io_num, uart_periph_signal[uart_num].rts_sig, 0, 0);
  543. }
  544. if(cts_io_num >= 0) {
  545. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  546. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  547. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  548. esp_rom_gpio_connect_in_signal(cts_io_num, uart_periph_signal[uart_num].cts_sig, 0);
  549. }
  550. return ESP_OK;
  551. }
  552. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  553. {
  554. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  555. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), "disable hw flowctrl before using sw control", ESP_FAIL);
  556. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  557. uart_hal_set_rts(&(uart_context[uart_num].hal), level);
  558. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  559. return ESP_OK;
  560. }
  561. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  562. {
  563. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  564. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  565. uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
  566. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  567. return ESP_OK;
  568. }
  569. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  570. {
  571. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  572. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  573. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  574. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
  575. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  576. return ESP_OK;
  577. }
  578. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  579. {
  580. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  581. UART_CHECK((uart_config), "param null", ESP_FAIL);
  582. UART_CHECK((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  583. UART_CHECK((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  584. UART_CHECK((uart_config->data_bits < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  585. uart_module_enable(uart_num);
  586. #if SOC_UART_SUPPORT_RTC_CLK
  587. if (uart_config->source_clk == UART_SCLK_RTC) {
  588. rtc_clk_enable(uart_num);
  589. }
  590. #endif
  591. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  592. uart_hal_init(&(uart_context[uart_num].hal), uart_num);
  593. uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk);
  594. uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate);
  595. uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
  596. uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
  597. uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
  598. uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
  599. uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  600. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  601. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  602. uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
  603. return ESP_OK;
  604. }
  605. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  606. {
  607. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  608. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  609. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  610. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  611. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
  612. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
  613. } else {
  614. //Disable rx_tout intr
  615. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
  616. }
  617. if(intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
  618. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
  619. }
  620. if(intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
  621. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
  622. }
  623. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
  624. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  625. return ESP_OK;
  626. }
  627. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, uint8_t pat_num)
  628. {
  629. int cnt = 0;
  630. int len = length;
  631. while (len >= 0) {
  632. if (buf[len] == pat_chr) {
  633. cnt++;
  634. } else {
  635. cnt = 0;
  636. }
  637. if (cnt >= pat_num) {
  638. break;
  639. }
  640. len --;
  641. }
  642. return len;
  643. }
  644. //internal isr handler for default driver code.
  645. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  646. {
  647. uart_obj_t *p_uart = (uart_obj_t*) param;
  648. uint8_t uart_num = p_uart->uart_num;
  649. int rx_fifo_len = 0;
  650. uint32_t uart_intr_status = 0;
  651. uart_event_t uart_event;
  652. portBASE_TYPE HPTaskAwoken = 0;
  653. static uint8_t pat_flg = 0;
  654. while(1) {
  655. // The `continue statement` may cause the interrupt to loop infinitely
  656. // we exit the interrupt here
  657. uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
  658. //Exit form while loop
  659. if(uart_intr_status == 0){
  660. break;
  661. }
  662. uart_event.type = UART_EVENT_MAX;
  663. if(uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
  664. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  665. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  666. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  667. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  668. if(p_uart->tx_waiting_brk) {
  669. continue;
  670. }
  671. //TX semaphore will only be used when tx_buf_size is zero.
  672. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  673. p_uart->tx_waiting_fifo = false;
  674. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  675. } else {
  676. //We don't use TX ring buffer, because the size is zero.
  677. if(p_uart->tx_buf_size == 0) {
  678. continue;
  679. }
  680. bool en_tx_flg = false;
  681. uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
  682. //We need to put a loop here, in case all the buffer items are very short.
  683. //That would cause a watch_dog reset because empty interrupt happens so often.
  684. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  685. while(tx_fifo_rem) {
  686. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  687. size_t size;
  688. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  689. if(p_uart->tx_head) {
  690. //The first item is the data description
  691. //Get the first item to get the data information
  692. if(p_uart->tx_len_tot == 0) {
  693. p_uart->tx_ptr = NULL;
  694. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  695. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  696. p_uart->tx_brk_flg = 1;
  697. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  698. }
  699. //We have saved the data description from the 1st item, return buffer.
  700. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  701. } else if(p_uart->tx_ptr == NULL) {
  702. //Update the TX item pointer, we will need this to return item to buffer.
  703. p_uart->tx_ptr = (uint8_t*)p_uart->tx_head;
  704. en_tx_flg = true;
  705. p_uart->tx_len_cur = size;
  706. }
  707. } else {
  708. //Can not get data from ring buffer, return;
  709. break;
  710. }
  711. }
  712. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  713. //To fill the TX FIFO.
  714. uint32_t send_len = 0;
  715. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  716. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  717. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  718. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  719. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  720. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  721. }
  722. uart_hal_write_txfifo(&(uart_context[uart_num].hal),
  723. (const uint8_t *)p_uart->tx_ptr,
  724. (p_uart->tx_len_cur > tx_fifo_rem) ? tx_fifo_rem : p_uart->tx_len_cur,
  725. &send_len);
  726. p_uart->tx_ptr += send_len;
  727. p_uart->tx_len_tot -= send_len;
  728. p_uart->tx_len_cur -= send_len;
  729. tx_fifo_rem -= send_len;
  730. if (p_uart->tx_len_cur == 0) {
  731. //Return item to ring buffer.
  732. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  733. p_uart->tx_head = NULL;
  734. p_uart->tx_ptr = NULL;
  735. //Sending item done, now we need to send break if there is a record.
  736. //Set TX break signal after FIFO is empty
  737. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  738. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  739. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  740. uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
  741. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  742. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  743. p_uart->tx_waiting_brk = 1;
  744. //do not enable TX empty interrupt
  745. en_tx_flg = false;
  746. } else {
  747. //enable TX empty interrupt
  748. en_tx_flg = true;
  749. }
  750. } else {
  751. //enable TX empty interrupt
  752. en_tx_flg = true;
  753. }
  754. }
  755. }
  756. if (en_tx_flg) {
  757. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  758. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  759. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  760. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  761. }
  762. }
  763. }
  764. else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
  765. || (uart_intr_status & UART_INTR_RXFIFO_FULL)
  766. || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
  767. ) {
  768. if(pat_flg == 1) {
  769. uart_intr_status |= UART_INTR_CMD_CHAR_DET;
  770. pat_flg = 0;
  771. }
  772. if (p_uart->rx_buffer_full_flg == false) {
  773. rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
  774. if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
  775. rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
  776. }
  777. uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
  778. uint8_t pat_chr = 0;
  779. uint8_t pat_num = 0;
  780. int pat_idx = -1;
  781. uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
  782. //Get the buffer from the FIFO
  783. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  784. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  785. uart_event.type = UART_PATTERN_DET;
  786. uart_event.size = rx_fifo_len;
  787. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  788. } else {
  789. //After Copying the Data From FIFO ,Clear intr_status
  790. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  791. uart_event.type = UART_DATA;
  792. uart_event.size = rx_fifo_len;
  793. uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
  794. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  795. if (p_uart->uart_select_notif_callback) {
  796. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  797. }
  798. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  799. }
  800. p_uart->rx_stash_len = rx_fifo_len;
  801. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  802. //Mainly for applications that uses flow control or small ring buffer.
  803. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  804. p_uart->rx_buffer_full_flg = true;
  805. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  806. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
  807. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  808. if (uart_event.type == UART_PATTERN_DET) {
  809. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  810. if (rx_fifo_len < pat_num) {
  811. //some of the characters are read out in last interrupt
  812. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  813. } else {
  814. uart_pattern_enqueue(uart_num,
  815. pat_idx <= -1 ?
  816. //can not find the pattern in buffer,
  817. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  818. // find the pattern in buffer
  819. p_uart->rx_buffered_len + pat_idx);
  820. }
  821. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  822. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  823. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  824. }
  825. }
  826. uart_event.type = UART_BUFFER_FULL;
  827. } else {
  828. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  829. if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  830. if (rx_fifo_len < pat_num) {
  831. //some of the characters are read out in last interrupt
  832. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  833. } else if(pat_idx >= 0) {
  834. // find the pattern in stash buffer.
  835. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  836. }
  837. }
  838. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  839. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  840. }
  841. } else {
  842. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  843. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  844. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  845. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
  846. if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  847. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  848. uart_event.type = UART_PATTERN_DET;
  849. uart_event.size = rx_fifo_len;
  850. pat_flg = 1;
  851. }
  852. }
  853. } else if(uart_intr_status & UART_INTR_RXFIFO_OVF) {
  854. // When fifo overflows, we reset the fifo.
  855. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  856. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  857. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  858. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  859. if (p_uart->uart_select_notif_callback) {
  860. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  861. }
  862. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  863. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
  864. uart_event.type = UART_FIFO_OVF;
  865. } else if(uart_intr_status & UART_INTR_BRK_DET) {
  866. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
  867. uart_event.type = UART_BREAK;
  868. } else if(uart_intr_status & UART_INTR_FRAM_ERR) {
  869. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  870. if (p_uart->uart_select_notif_callback) {
  871. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  872. }
  873. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  874. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
  875. uart_event.type = UART_FRAME_ERR;
  876. } else if(uart_intr_status & UART_INTR_PARITY_ERR) {
  877. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  878. if (p_uart->uart_select_notif_callback) {
  879. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  880. }
  881. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  882. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
  883. uart_event.type = UART_PARITY_ERR;
  884. } else if(uart_intr_status & UART_INTR_TX_BRK_DONE) {
  885. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  886. uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
  887. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  888. if(p_uart->tx_brk_flg == 1) {
  889. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
  890. }
  891. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  892. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  893. if(p_uart->tx_brk_flg == 1) {
  894. p_uart->tx_brk_flg = 0;
  895. p_uart->tx_waiting_brk = 0;
  896. } else {
  897. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  898. }
  899. } else if(uart_intr_status & UART_INTR_TX_BRK_IDLE) {
  900. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  901. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  902. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  903. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
  904. } else if(uart_intr_status & UART_INTR_CMD_CHAR_DET) {
  905. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
  906. uart_event.type = UART_PATTERN_DET;
  907. } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
  908. || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
  909. || (uart_intr_status & UART_INTR_RS485_CLASH)) {
  910. // RS485 collision or frame error interrupt triggered
  911. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  912. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  913. // Set collision detection flag
  914. p_uart_obj[uart_num]->coll_det_flg = true;
  915. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  916. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
  917. uart_event.type = UART_EVENT_MAX;
  918. } else if(uart_intr_status & UART_INTR_TX_DONE) {
  919. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
  920. // The TX_DONE interrupt is triggered but transmit is active
  921. // then postpone interrupt processing for next interrupt
  922. uart_event.type = UART_EVENT_MAX;
  923. } else {
  924. // Workaround for RS485: If the RS485 half duplex mode is active
  925. // and transmitter is in idle state then reset received buffer and reset RTS pin
  926. // skip this behavior for other UART modes
  927. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  928. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  929. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  930. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  931. uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
  932. }
  933. UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
  934. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  935. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  936. }
  937. } else {
  938. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
  939. uart_event.type = UART_EVENT_MAX;
  940. }
  941. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  942. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  943. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  944. }
  945. }
  946. }
  947. if(HPTaskAwoken == pdTRUE) {
  948. portYIELD_FROM_ISR();
  949. }
  950. }
  951. /**************************************************************/
  952. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  953. {
  954. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  955. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  956. BaseType_t res;
  957. portTickType ticks_start = xTaskGetTickCount();
  958. //Take tx_mux
  959. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  960. if(res == pdFALSE) {
  961. return ESP_ERR_TIMEOUT;
  962. }
  963. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  964. if(uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
  965. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  966. return ESP_OK;
  967. }
  968. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  969. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  970. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  971. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  972. TickType_t ticks_end = xTaskGetTickCount();
  973. if (ticks_end - ticks_start > ticks_to_wait) {
  974. ticks_to_wait = 0;
  975. } else {
  976. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  977. }
  978. //take 2nd tx_done_sem, wait given from ISR
  979. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  980. if(res == pdFALSE) {
  981. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  982. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  983. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  984. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  985. return ESP_ERR_TIMEOUT;
  986. }
  987. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  988. return ESP_OK;
  989. }
  990. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  991. {
  992. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  993. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  994. UART_CHECK(buffer, "buffer null", (-1));
  995. if(len == 0) {
  996. return 0;
  997. }
  998. int tx_len = 0;
  999. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1000. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1001. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1002. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1003. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1004. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1005. }
  1006. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*) buffer, len, (uint32_t *)&tx_len);
  1007. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1008. return tx_len;
  1009. }
  1010. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1011. {
  1012. if(size == 0) {
  1013. return 0;
  1014. }
  1015. size_t original_size = size;
  1016. //lock for uart_tx
  1017. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1018. p_uart_obj[uart_num]->coll_det_flg = false;
  1019. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1020. size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1021. int offset = 0;
  1022. uart_tx_data_t evt;
  1023. evt.tx_data.size = size;
  1024. evt.tx_data.brk_len = brk_len;
  1025. if(brk_en) {
  1026. evt.type = UART_DATA_BREAK;
  1027. } else {
  1028. evt.type = UART_DATA;
  1029. }
  1030. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1031. while(size > 0) {
  1032. size_t send_size = size > max_size / 2 ? max_size / 2 : size;
  1033. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1034. size -= send_size;
  1035. offset += send_size;
  1036. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1037. }
  1038. } else {
  1039. while(size) {
  1040. //semaphore for tx_fifo available
  1041. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1042. uint32_t sent = 0;
  1043. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1044. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1045. uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
  1046. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
  1047. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1048. }
  1049. uart_hal_write_txfifo(&(uart_context[uart_num].hal), (const uint8_t*)src, size, &sent);
  1050. if(sent < size) {
  1051. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1052. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1053. }
  1054. size -= sent;
  1055. src += sent;
  1056. }
  1057. }
  1058. if(brk_en) {
  1059. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1060. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1061. uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
  1062. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
  1063. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1064. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1065. }
  1066. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1067. }
  1068. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1069. return original_size;
  1070. }
  1071. int uart_write_bytes(uart_port_t uart_num, const void* src, size_t size)
  1072. {
  1073. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1074. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1075. UART_CHECK(src, "buffer null", (-1));
  1076. return uart_tx_all(uart_num, src, size, 0, 0);
  1077. }
  1078. int uart_write_bytes_with_break(uart_port_t uart_num, const void* src, size_t size, int brk_len)
  1079. {
  1080. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1081. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1082. UART_CHECK((size > 0), "uart size error", (-1));
  1083. UART_CHECK((src), "uart data null", (-1));
  1084. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1085. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1086. }
  1087. static bool uart_check_buf_full(uart_port_t uart_num)
  1088. {
  1089. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1090. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1091. if(res == pdTRUE) {
  1092. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1093. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1094. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1095. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1096. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1097. return true;
  1098. }
  1099. }
  1100. return false;
  1101. }
  1102. int uart_read_bytes(uart_port_t uart_num, void* buf, uint32_t length, TickType_t ticks_to_wait)
  1103. {
  1104. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1105. UART_CHECK((buf), "uart data null", (-1));
  1106. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1107. uint8_t* data = NULL;
  1108. size_t size;
  1109. size_t copy_len = 0;
  1110. int len_tmp;
  1111. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1112. return -1;
  1113. }
  1114. while(length) {
  1115. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1116. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1117. if(data) {
  1118. p_uart_obj[uart_num]->rx_head_ptr = data;
  1119. p_uart_obj[uart_num]->rx_ptr = data;
  1120. p_uart_obj[uart_num]->rx_cur_remain = size;
  1121. } else {
  1122. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1123. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1124. //to solve the possible asynchronous issues.
  1125. if(uart_check_buf_full(uart_num)) {
  1126. //This condition will never be true if `uart_read_bytes`
  1127. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1128. continue;
  1129. } else {
  1130. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1131. return copy_len;
  1132. }
  1133. }
  1134. }
  1135. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1136. len_tmp = length;
  1137. } else {
  1138. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1139. }
  1140. memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1141. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1142. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1143. uart_pattern_queue_update(uart_num, len_tmp);
  1144. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1145. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1146. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1147. copy_len += len_tmp;
  1148. length -= len_tmp;
  1149. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1150. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1151. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1152. p_uart_obj[uart_num]->rx_ptr = NULL;
  1153. uart_check_buf_full(uart_num);
  1154. }
  1155. }
  1156. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1157. return copy_len;
  1158. }
  1159. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1160. {
  1161. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1162. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1163. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1164. return ESP_OK;
  1165. }
  1166. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1167. esp_err_t uart_flush_input(uart_port_t uart_num)
  1168. {
  1169. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1170. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1171. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1172. uint8_t* data;
  1173. size_t size;
  1174. //rx sem protect the ring buffer read related functions
  1175. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1176. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1177. while(true) {
  1178. if(p_uart->rx_head_ptr) {
  1179. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1180. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1181. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1182. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1183. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1184. p_uart->rx_ptr = NULL;
  1185. p_uart->rx_cur_remain = 0;
  1186. p_uart->rx_head_ptr = NULL;
  1187. }
  1188. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1189. if(data == NULL) {
  1190. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1191. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1192. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1193. }
  1194. //We also need to clear the `rx_buffer_full_flg` here.
  1195. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1196. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1197. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1198. break;
  1199. }
  1200. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1201. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1202. uart_pattern_queue_update(uart_num, size);
  1203. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1204. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1205. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1206. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1207. if(res == pdTRUE) {
  1208. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1209. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1210. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1211. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1212. }
  1213. }
  1214. }
  1215. p_uart->rx_ptr = NULL;
  1216. p_uart->rx_cur_remain = 0;
  1217. p_uart->rx_head_ptr = NULL;
  1218. uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
  1219. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1220. xSemaphoreGive(p_uart->rx_mux);
  1221. return ESP_OK;
  1222. }
  1223. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1224. {
  1225. esp_err_t r;
  1226. #ifdef CONFIG_ESP_GDBSTUB_ENABLED
  1227. UART_CHECK((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), "UART used by GDB-stubs! Please disable GDB in menuconfig.", ESP_FAIL);
  1228. #endif // CONFIG_ESP_GDBSTUB_ENABLED
  1229. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1230. UART_CHECK((rx_buffer_size > SOC_UART_FIFO_LEN), "uart rx buffer length error", ESP_FAIL);
  1231. UART_CHECK((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error", ESP_FAIL);
  1232. #if CONFIG_UART_ISR_IN_IRAM
  1233. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
  1234. ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
  1235. intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
  1236. }
  1237. #else
  1238. if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
  1239. ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
  1240. intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
  1241. }
  1242. #endif
  1243. if(p_uart_obj[uart_num] == NULL) {
  1244. p_uart_obj[uart_num] = (uart_obj_t*) heap_caps_calloc(1, sizeof(uart_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  1245. if(p_uart_obj[uart_num] == NULL) {
  1246. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1247. return ESP_FAIL;
  1248. }
  1249. p_uart_obj[uart_num]->uart_num = uart_num;
  1250. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1251. p_uart_obj[uart_num]->coll_det_flg = false;
  1252. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1253. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1254. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1255. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1256. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1257. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1258. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1259. p_uart_obj[uart_num]->queue_size = queue_size;
  1260. p_uart_obj[uart_num]->tx_ptr = NULL;
  1261. p_uart_obj[uart_num]->tx_head = NULL;
  1262. p_uart_obj[uart_num]->tx_len_tot = 0;
  1263. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1264. p_uart_obj[uart_num]->tx_brk_len = 0;
  1265. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1266. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1267. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1268. if(uart_queue) {
  1269. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1270. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1271. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1272. } else {
  1273. p_uart_obj[uart_num]->xQueueUart = NULL;
  1274. }
  1275. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1276. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1277. p_uart_obj[uart_num]->rx_ptr = NULL;
  1278. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1279. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1280. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1281. if(tx_buffer_size > 0) {
  1282. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1283. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1284. } else {
  1285. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1286. p_uart_obj[uart_num]->tx_buf_size = 0;
  1287. }
  1288. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1289. } else {
  1290. ESP_LOGE(UART_TAG, "UART driver already installed");
  1291. return ESP_FAIL;
  1292. }
  1293. uart_intr_config_t uart_intr = {
  1294. .intr_enable_mask = UART_INTR_CONFIG_FLAG,
  1295. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1296. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1297. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
  1298. };
  1299. uart_module_enable(uart_num);
  1300. uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1301. uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
  1302. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1303. if (r!=ESP_OK) goto err;
  1304. r=uart_intr_config(uart_num, &uart_intr);
  1305. if (r!=ESP_OK) goto err;
  1306. return r;
  1307. err:
  1308. uart_driver_delete(uart_num);
  1309. return r;
  1310. }
  1311. //Make sure no other tasks are still using UART before you call this function
  1312. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1313. {
  1314. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1315. if(p_uart_obj[uart_num] == NULL) {
  1316. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1317. return ESP_OK;
  1318. }
  1319. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1320. uart_disable_rx_intr(uart_num);
  1321. uart_disable_tx_intr(uart_num);
  1322. uart_pattern_link_free(uart_num);
  1323. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1324. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1325. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1326. }
  1327. if(p_uart_obj[uart_num]->tx_done_sem) {
  1328. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1329. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1330. }
  1331. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1332. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1333. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1334. }
  1335. if(p_uart_obj[uart_num]->tx_mux) {
  1336. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1337. p_uart_obj[uart_num]->tx_mux = NULL;
  1338. }
  1339. if(p_uart_obj[uart_num]->rx_mux) {
  1340. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1341. p_uart_obj[uart_num]->rx_mux = NULL;
  1342. }
  1343. if(p_uart_obj[uart_num]->xQueueUart) {
  1344. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1345. p_uart_obj[uart_num]->xQueueUart = NULL;
  1346. }
  1347. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1348. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1349. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1350. }
  1351. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1352. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1353. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1354. }
  1355. heap_caps_free(p_uart_obj[uart_num]);
  1356. p_uart_obj[uart_num] = NULL;
  1357. #if SOC_UART_SUPPORT_RTC_CLK
  1358. uart_sclk_t sclk = 0;
  1359. uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
  1360. if (sclk == UART_SCLK_RTC) {
  1361. rtc_clk_disable(uart_num);
  1362. }
  1363. #endif
  1364. uart_module_disable(uart_num);
  1365. return ESP_OK;
  1366. }
  1367. bool uart_is_driver_installed(uart_port_t uart_num)
  1368. {
  1369. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1370. }
  1371. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1372. {
  1373. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1374. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1375. }
  1376. }
  1377. portMUX_TYPE *uart_get_selectlock(void)
  1378. {
  1379. return &uart_selectlock;
  1380. }
  1381. // Set UART mode
  1382. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1383. {
  1384. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1385. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1386. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1387. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1388. UART_CHECK((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))),
  1389. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1390. }
  1391. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1392. uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
  1393. if(mode == UART_MODE_RS485_COLLISION_DETECT) {
  1394. // This mode allows read while transmitting that allows collision detection
  1395. p_uart_obj[uart_num]->coll_det_flg = false;
  1396. // Enable collision detection interrupts
  1397. uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
  1398. | UART_INTR_RXFIFO_FULL
  1399. | UART_INTR_RS485_CLASH
  1400. | UART_INTR_RS485_FRM_ERR
  1401. | UART_INTR_RS485_PARITY_ERR);
  1402. }
  1403. p_uart_obj[uart_num]->uart_mode = mode;
  1404. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1405. return ESP_OK;
  1406. }
  1407. esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
  1408. {
  1409. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1410. UART_CHECK((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0),
  1411. "rx fifo full threshold value error", ESP_ERR_INVALID_ARG);
  1412. if (p_uart_obj[uart_num] == NULL) {
  1413. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1414. return ESP_ERR_INVALID_STATE;
  1415. }
  1416. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1417. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
  1418. uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
  1419. }
  1420. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1421. return ESP_OK;
  1422. }
  1423. esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
  1424. {
  1425. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1426. UART_CHECK((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0),
  1427. "tx fifo empty threshold value error", ESP_ERR_INVALID_ARG);
  1428. if (p_uart_obj[uart_num] == NULL) {
  1429. ESP_LOGE(UART_TAG, "call uart_driver_install API first");
  1430. return ESP_ERR_INVALID_STATE;
  1431. }
  1432. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1433. if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
  1434. uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
  1435. }
  1436. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1437. return ESP_OK;
  1438. }
  1439. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1440. {
  1441. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1442. // get maximum timeout threshold
  1443. uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
  1444. if (tout_thresh > tout_max_thresh) {
  1445. ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
  1446. return ESP_ERR_INVALID_ARG;
  1447. }
  1448. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1449. uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
  1450. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1451. return ESP_OK;
  1452. }
  1453. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1454. {
  1455. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1456. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1457. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1458. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1459. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1460. "wrong mode", ESP_ERR_INVALID_ARG);
  1461. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1462. return ESP_OK;
  1463. }
  1464. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1465. {
  1466. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1467. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1468. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1469. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1470. UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
  1471. uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
  1472. UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
  1473. return ESP_OK;
  1474. }
  1475. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1476. {
  1477. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1478. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1479. uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
  1480. return ESP_OK;
  1481. }
  1482. esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
  1483. {
  1484. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1485. while(!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
  1486. return ESP_OK;
  1487. }
  1488. esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
  1489. {
  1490. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1491. uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
  1492. return ESP_OK;
  1493. }
  1494. void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
  1495. {
  1496. uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
  1497. if (rx_tout) {
  1498. p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
  1499. } else {
  1500. p_uart_obj[uart_num]->rx_always_timeout_flg = false;
  1501. }
  1502. }