test_i2c.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. // Copyright 2020 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "unity.h"
  15. #include "unity_cxx.hpp"
  16. #include <limits>
  17. #include <stdio.h>
  18. #include <iostream>
  19. #include "test_utils.h" // unity_send_signal
  20. #ifdef __cpp_exceptions
  21. #include "i2c_cxx.hpp"
  22. using namespace std;
  23. using namespace idf;
  24. #define TAG "I2C Test"
  25. #define ADDR 0x47
  26. #define MAGIC_TEST_NUMBER 47
  27. #define I2C_SLAVE_NUM I2C_NUM_0 /*!<I2C port number for slave dev */
  28. #if CONFIG_IDF_TARGET_ESP32C3
  29. #define I2C_SLAVE_SCL_IO 5 /*!<gpio number for i2c slave clock */
  30. #define I2C_SLAVE_SDA_IO 6 /*!<gpio number for i2c slave data */
  31. #else
  32. #define I2C_SLAVE_SCL_IO 19 /*!<gpio number for i2c slave clock */
  33. #define I2C_SLAVE_SDA_IO 18 /*!<gpio number for i2c slave data */
  34. #endif
  35. #if CONFIG_IDF_TARGET_ESP32C3
  36. #define I2C_MASTER_NUM I2C_NUM_0 /*!< I2C port number for master dev */
  37. #define I2C_MASTER_SCL_IO 5 /*!<gpio number for i2c master clock */
  38. #define I2C_MASTER_SDA_IO 6 /*!<gpio number for i2c master data */
  39. #else
  40. #define I2C_MASTER_NUM I2C_NUM_1 /*!< I2C port number for master dev */
  41. #define I2C_MASTER_SCL_IO 19 /*!< gpio number for I2C master clock */
  42. #define I2C_MASTER_SDA_IO 18 /*!< gpio number for I2C master data */
  43. #endif
  44. struct MasterFixture {
  45. MasterFixture(const vector<uint8_t> &data_arg = {47u}) :
  46. master(new I2CMaster(I2C_MASTER_NUM, I2C_MASTER_SCL_IO, I2C_MASTER_SDA_IO, 400000)),
  47. data(data_arg) { }
  48. std::shared_ptr<I2CMaster> master;
  49. vector<uint8_t> data;
  50. };
  51. TEST_CASE("I2CMaster GPIO out of range", "[cxx i2c][leaks=300]")
  52. {
  53. TEST_THROW(I2CMaster(0, 255, 255, 400000), I2CException);
  54. }
  55. TEST_CASE("I2CMaster SDA and SCL equal", "[cxx i2c][leaks=300]")
  56. {
  57. TEST_THROW(I2CMaster(0, 0, 0, 400000), I2CException);
  58. }
  59. // TODO The I2C driver tests are disabled, so disable them here, too. Probably due to no runners.
  60. #if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
  61. static void i2c_slave_read_raw_byte(void)
  62. {
  63. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  64. uint8_t buffer = 0;
  65. unity_send_signal("slave init");
  66. unity_wait_for_signal("master write");
  67. TEST_ASSERT_EQUAL(1, slave.read_raw(&buffer, 1, chrono::milliseconds(1000)));
  68. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, buffer);
  69. }
  70. static void i2c_slave_write_raw_byte(void)
  71. {
  72. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  73. uint8_t WRITE_BUFFER = MAGIC_TEST_NUMBER;
  74. unity_wait_for_signal("master init");
  75. TEST_ASSERT_EQUAL(1, slave.write_raw(&WRITE_BUFFER, 1, chrono::milliseconds(1000)));
  76. unity_send_signal("slave write");
  77. // This last synchronization is necessary to prevent slave from going out of scope hence de-initializing already
  78. // before master has read
  79. unity_wait_for_signal("master read done");
  80. }
  81. static void i2c_slave_read_multiple_raw_bytes(void)
  82. {
  83. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  84. uint8_t buffer [8] = {};
  85. unity_send_signal("slave init");
  86. unity_wait_for_signal("master write");
  87. TEST_ASSERT_EQUAL(8, slave.read_raw(buffer, 8, chrono::milliseconds(1000)));
  88. for (int i = 0; i < 8; i++) {
  89. TEST_ASSERT_EQUAL(i, buffer[i]);
  90. }
  91. }
  92. static void i2c_slave_write_multiple_raw_bytes(void)
  93. {
  94. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  95. uint8_t WRITE_BUFFER [8] = {0, 1, 2, 3, 4, 5, 6, 7};
  96. unity_wait_for_signal("master init");
  97. TEST_ASSERT_EQUAL(8, slave.write_raw(WRITE_BUFFER, 8, chrono::milliseconds(1000)));
  98. unity_send_signal("slave write");
  99. unity_wait_for_signal("master read done");
  100. }
  101. static void i2c_slave_composed_trans(void)
  102. {
  103. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  104. size_t BUF_SIZE = 2;
  105. const uint8_t SLAVE_WRITE_BUFFER [BUF_SIZE] = {0xde, 0xad};
  106. uint8_t slave_read_buffer = 0;
  107. unity_send_signal("slave init");
  108. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
  109. unity_wait_for_signal("master transfer");
  110. TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
  111. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
  112. }
  113. static void i2c_I2CRead(void)
  114. {
  115. // here only to install/uninstall driver
  116. MasterFixture fix;
  117. unity_send_signal("master init");
  118. unity_wait_for_signal("slave write");
  119. I2CRead reader(1);
  120. vector<uint8_t> data = reader.do_transfer(I2C_MASTER_NUM, ADDR);
  121. unity_send_signal("master read done");
  122. TEST_ASSERT_EQUAL(1, data.size());
  123. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
  124. }
  125. TEST_CASE_MULTIPLE_DEVICES("I2CRead do_transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  126. i2c_I2CRead, i2c_slave_write_raw_byte);
  127. static void i2c_I2CWrite(void)
  128. {
  129. MasterFixture fix;
  130. I2CWrite writer(fix.data);
  131. unity_wait_for_signal("slave init");
  132. writer.do_transfer(I2C_MASTER_NUM, ADDR);
  133. unity_send_signal("master write");
  134. }
  135. TEST_CASE_MULTIPLE_DEVICES("I2CWrite do_transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  136. i2c_I2CWrite, i2c_slave_read_raw_byte);
  137. static void i2c_master_read_raw_byte(void)
  138. {
  139. MasterFixture fix;
  140. unity_send_signal("master init");
  141. unity_wait_for_signal("slave write");
  142. std::shared_ptr<I2CRead> reader(new I2CRead(1));
  143. future<vector<uint8_t> > fut = fix.master->transfer(reader, ADDR);
  144. vector<uint8_t> data;
  145. data = fut.get();
  146. unity_send_signal("master read done");
  147. TEST_ASSERT_EQUAL(1, data.size());
  148. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
  149. }
  150. TEST_CASE_MULTIPLE_DEVICES("I2CMaster read one byte", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  151. i2c_master_read_raw_byte, i2c_slave_write_raw_byte);
  152. static void i2c_master_write_raw_byte(void)
  153. {
  154. MasterFixture fix;
  155. unity_wait_for_signal("slave init");
  156. std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
  157. future<void> fut = fix.master->transfer(writer, ADDR);
  158. fut.get();
  159. unity_send_signal("master write");
  160. }
  161. TEST_CASE_MULTIPLE_DEVICES("I2CMaster write one byte", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  162. i2c_master_write_raw_byte, i2c_slave_read_raw_byte);
  163. static void i2c_master_read_multiple_raw_bytes(void)
  164. {
  165. MasterFixture fix;
  166. unity_send_signal("master init");
  167. unity_wait_for_signal("slave write");
  168. std::shared_ptr<I2CRead> reader(new I2CRead(8));
  169. future<vector<uint8_t> > fut = fix.master->transfer(reader, ADDR);
  170. vector<uint8_t> data = fut.get();
  171. unity_send_signal("master read done");
  172. TEST_ASSERT_EQUAL(8, data.size());
  173. for (int i = 0; i < 8; i++) {
  174. TEST_ASSERT_EQUAL(i, data[i]);
  175. }
  176. }
  177. TEST_CASE_MULTIPLE_DEVICES("I2CMaster read multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  178. i2c_master_read_multiple_raw_bytes, i2c_slave_write_multiple_raw_bytes);
  179. static void i2c_master_write_multiple_raw_bytes(void)
  180. {
  181. MasterFixture fix({0, 1, 2, 3, 4, 5, 6, 7});
  182. unity_wait_for_signal("slave init");
  183. std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
  184. future<void> fut = fix.master->transfer(writer, ADDR);
  185. fut.get();
  186. unity_send_signal("master write");
  187. }
  188. TEST_CASE_MULTIPLE_DEVICES("I2CMaster write multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  189. i2c_master_write_multiple_raw_bytes, i2c_slave_read_multiple_raw_bytes);
  190. static void i2c_master_sync_read(void)
  191. {
  192. MasterFixture fix;
  193. unity_send_signal("master init");
  194. unity_wait_for_signal("slave write");
  195. vector<uint8_t> data = fix.master->sync_read(ADDR, 1);
  196. unity_send_signal("master read done");
  197. TEST_ASSERT_EQUAL(1, data.size());
  198. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, data[0]);
  199. }
  200. TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync read", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  201. i2c_master_sync_read, i2c_slave_write_raw_byte);
  202. static void i2c_master_sync_write(void)
  203. {
  204. MasterFixture fix;
  205. unity_wait_for_signal("slave init");
  206. fix.master->sync_write(ADDR, fix.data);
  207. unity_send_signal("master write");
  208. }
  209. TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync write", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  210. i2c_master_sync_write, i2c_slave_read_raw_byte);
  211. static void i2c_master_sync_transfer(void)
  212. {
  213. MasterFixture fix;
  214. size_t READ_SIZE = 2;
  215. const uint8_t DESIRED_READ [READ_SIZE] = {0xde, 0xad};
  216. unity_wait_for_signal("slave init");
  217. vector<uint8_t> read_data = fix.master->sync_transfer(ADDR, fix.data, READ_SIZE);
  218. unity_send_signal("master transfer");
  219. TEST_ASSERT_EQUAL(READ_SIZE, read_data.size());
  220. for (int i = 0; i < READ_SIZE; i++) {
  221. TEST_ASSERT_EQUAL(DESIRED_READ[i], read_data[i]);
  222. }
  223. }
  224. TEST_CASE_MULTIPLE_DEVICES("I2CMaster sync transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  225. i2c_master_sync_transfer, i2c_slave_composed_trans);
  226. static void i2c_master_composed_trans(void)
  227. {
  228. MasterFixture fix;
  229. size_t BUF_SIZE = 2;
  230. const uint8_t SLAVE_WRITE_BUFFER [BUF_SIZE] = {0xde, 0xad};
  231. std::shared_ptr<I2CComposed> composed_transfer(new I2CComposed);
  232. composed_transfer->add_write({47u});
  233. composed_transfer->add_read(BUF_SIZE);
  234. unity_wait_for_signal("slave init");
  235. future<vector<vector<uint8_t> > > result = fix.master->transfer(composed_transfer, ADDR);
  236. unity_send_signal("master transfer");
  237. vector<vector<uint8_t> > read_data = result.get();
  238. TEST_ASSERT_EQUAL(1, read_data.size());
  239. TEST_ASSERT_EQUAL(2, read_data[0].size());
  240. for (int i = 0; i < BUF_SIZE; i++) {
  241. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER[i], read_data[0][i]);
  242. }
  243. }
  244. TEST_CASE_MULTIPLE_DEVICES("I2CMaster Composed transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  245. i2c_master_composed_trans, i2c_slave_composed_trans);
  246. static void i2c_slave_write_multiple_raw_bytes_twice(void)
  247. {
  248. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  249. const size_t BUF_SIZE = 8;
  250. uint8_t WRITE_BUFFER [BUF_SIZE] = {0, 1, 2, 3, 4, 5, 6, 7};
  251. unity_wait_for_signal("master init");
  252. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
  253. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(WRITE_BUFFER, BUF_SIZE, chrono::milliseconds(1000)));
  254. unity_send_signal("slave write");
  255. unity_wait_for_signal("master read done");
  256. }
  257. static void i2c_master_reuse_read_multiple_raw_bytes(void)
  258. {
  259. MasterFixture fix;
  260. unity_send_signal("master init");
  261. unity_wait_for_signal("slave write");
  262. const size_t BUF_SIZE = 8;
  263. #if !CONFIG_IDF_TARGET_ESP32C3
  264. std::shared_ptr<I2CRead> reader(new I2CRead(BUF_SIZE));
  265. future<vector<uint8_t> > fut;
  266. fut = fix.master->transfer(reader, ADDR);
  267. vector<uint8_t> data1 = fut.get();
  268. fut = fix.master->transfer(reader, ADDR);
  269. vector<uint8_t> data2 = fut.get();
  270. unity_send_signal("master read done");
  271. TEST_ASSERT_EQUAL(BUF_SIZE, data1.size());
  272. TEST_ASSERT_EQUAL(BUF_SIZE, data2.size());
  273. for (int i = 0; i < BUF_SIZE; i++) {
  274. TEST_ASSERT_EQUAL(i, data1[i]);
  275. TEST_ASSERT_EQUAL(i, data2[i]);
  276. }
  277. #else // Cannot read twice because the `prefetch` behaviour on C3.
  278. std::shared_ptr<I2CRead> reader(new I2CRead(BUF_SIZE * 2));
  279. future<vector<uint8_t> > fut;
  280. fut = fix.master->transfer(reader, ADDR);
  281. vector<uint8_t> data = fut.get();
  282. unity_send_signal("master read done");
  283. TEST_ASSERT_EQUAL(BUF_SIZE * 2, data.size());
  284. for (int i = 0; i < BUF_SIZE; i++) {
  285. TEST_ASSERT_EQUAL((i % BUF_SIZE), data[i]);
  286. }
  287. #endif // !CONFIG_IDF_TARGET_ESP32C3
  288. }
  289. TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse read multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  290. i2c_master_reuse_read_multiple_raw_bytes, i2c_slave_write_multiple_raw_bytes_twice);
  291. static void i2c_slave_read_multiple_raw_bytes_twice(void)
  292. {
  293. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  294. const size_t BUF_SIZE = 8;
  295. uint8_t buffer1 [BUF_SIZE] = {};
  296. uint8_t buffer2 [BUF_SIZE] = {};
  297. unity_send_signal("slave init");
  298. unity_wait_for_signal("master write");
  299. TEST_ASSERT_EQUAL(BUF_SIZE, slave.read_raw(buffer1, BUF_SIZE, chrono::milliseconds(1000)));
  300. TEST_ASSERT_EQUAL(BUF_SIZE, slave.read_raw(buffer2, BUF_SIZE, chrono::milliseconds(1000)));
  301. for (int i = 0; i < BUF_SIZE; i++) {
  302. TEST_ASSERT_EQUAL(i, buffer1[i]);
  303. TEST_ASSERT_EQUAL(i, buffer2[i]);
  304. }
  305. }
  306. static void i2c_master_reuse_write_multiple_raw_bytes(void)
  307. {
  308. MasterFixture fix({0, 1, 2, 3, 4, 5, 6, 7});
  309. unity_wait_for_signal("slave init");
  310. std::shared_ptr<I2CWrite> writer(new I2CWrite(fix.data));
  311. future<void> fut;
  312. fut = fix.master->transfer(writer, ADDR);
  313. fut.get();
  314. fut = fix.master->transfer(writer, ADDR);
  315. fut.get();
  316. unity_send_signal("master write");
  317. }
  318. TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse write multiple bytes", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  319. i2c_master_reuse_write_multiple_raw_bytes, i2c_slave_read_multiple_raw_bytes_twice);
  320. static void i2c_slave_composed_trans_twice(void)
  321. {
  322. I2CSlave slave(I2C_SLAVE_NUM, I2C_SLAVE_SCL_IO, I2C_SLAVE_SDA_IO, ADDR, 512, 512);
  323. size_t BUF_SIZE = 2;
  324. const uint8_t SLAVE_WRITE_BUFFER1 [BUF_SIZE] = {0xde, 0xad};
  325. const uint8_t SLAVE_WRITE_BUFFER2 [BUF_SIZE] = {0xbe, 0xef};
  326. uint8_t slave_read_buffer = 0;
  327. unity_send_signal("slave init");
  328. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER1, BUF_SIZE, chrono::milliseconds(1000)));
  329. TEST_ASSERT_EQUAL(BUF_SIZE, slave.write_raw(SLAVE_WRITE_BUFFER2, BUF_SIZE, chrono::milliseconds(1000)));
  330. unity_wait_for_signal("master transfer");
  331. TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
  332. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
  333. #if !CONFIG_IDF_TARGET_ESP32C3
  334. TEST_ASSERT_EQUAL(1, slave.read_raw(&slave_read_buffer, 1, chrono::milliseconds(1000)));
  335. TEST_ASSERT_EQUAL(MAGIC_TEST_NUMBER, slave_read_buffer);
  336. #endif // !CONFIG_IDF_TARGET_ESP32C3
  337. }
  338. static void i2c_master_reuse_composed_trans(void)
  339. {
  340. MasterFixture fix;
  341. size_t BUF_SIZE = 2;
  342. const uint8_t SLAVE_WRITE_BUFFER1 [BUF_SIZE] = {0xde, 0xad};
  343. const uint8_t SLAVE_WRITE_BUFFER2 [BUF_SIZE] = {0xbe, 0xef};
  344. std::shared_ptr<I2CComposed> composed_transfer(new I2CComposed);
  345. composed_transfer->add_write({47u});
  346. #if !CONFIG_IDF_TARGET_ESP32C3
  347. composed_transfer->add_read(BUF_SIZE);
  348. unity_wait_for_signal("slave init");
  349. vector<vector<uint8_t> > read_data1 = fix.master->transfer(composed_transfer, ADDR).get();
  350. vector<vector<uint8_t> > read_data2 = fix.master->transfer(composed_transfer, ADDR).get();
  351. unity_send_signal("master transfer");
  352. TEST_ASSERT_EQUAL(1, read_data1.size());
  353. TEST_ASSERT_EQUAL(2, read_data1[0].size());
  354. TEST_ASSERT_EQUAL(1, read_data2.size());
  355. TEST_ASSERT_EQUAL(2, read_data2[0].size());
  356. for (int i = 0; i < BUF_SIZE; i++) {
  357. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER1[i], read_data1[0][i]);
  358. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER2[i], read_data2[0][i]);
  359. }
  360. #else // Cannot read twice because the `prefetch` behaviour on C3.
  361. composed_transfer->add_read(BUF_SIZE * 2);
  362. unity_wait_for_signal("slave init");
  363. vector<vector<uint8_t> > read_data = fix.master->transfer(composed_transfer, ADDR).get();
  364. unity_send_signal("master transfer");
  365. TEST_ASSERT_EQUAL(1, read_data.size());
  366. TEST_ASSERT_EQUAL(4, read_data[0].size());
  367. for (int i = 0; i < BUF_SIZE; i++) {
  368. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER1[i], read_data[0][i]);
  369. }
  370. for (int i = BUF_SIZE; i < BUF_SIZE * 2; i++) {
  371. TEST_ASSERT_EQUAL(SLAVE_WRITE_BUFFER2[i - BUF_SIZE], read_data[0][i]);
  372. }
  373. #endif //!CONFIG_IDF_TARGET_ESP32C3
  374. }
  375. TEST_CASE_MULTIPLE_DEVICES("I2CMaster reuse composed transfer", "[cxx i2c][test_env=UT_T2_I2C][timeout=150]",
  376. i2c_master_reuse_composed_trans, i2c_slave_composed_trans_twice);
  377. #endif //TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32S3)
  378. #endif // __cpp_exceptions