bt.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <stddef.h>
  14. #include <stdlib.h>
  15. #include <stdio.h>
  16. #include <string.h>
  17. #include "sdkconfig.h"
  18. #include "esp_heap_caps.h"
  19. #include "esp_heap_caps_init.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/task.h"
  22. #include "freertos/queue.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/portmacro.h"
  26. #include "xtensa/core-macros.h"
  27. #include "esp_types.h"
  28. #include "esp_system.h"
  29. #include "esp_task.h"
  30. #include "esp_intr_alloc.h"
  31. #include "esp_attr.h"
  32. #include "esp_phy_init.h"
  33. #include "esp_bt.h"
  34. #include "esp_err.h"
  35. #include "esp_log.h"
  36. #include "esp_pm.h"
  37. #include "driver/periph_ctrl.h"
  38. #include "soc/rtc.h"
  39. #include "soc/soc_memory_layout.h"
  40. #include "esp32/clk.h"
  41. #include "esp_coexist_internal.h"
  42. #if !CONFIG_FREERTOS_UNICORE
  43. #include "esp_ipc.h"
  44. #endif
  45. #if CONFIG_BT_ENABLED
  46. /* Macro definition
  47. ************************************************************************
  48. */
  49. #define BTDM_LOG_TAG "BTDM_INIT"
  50. #define BTDM_INIT_PERIOD (5000) /* ms */
  51. /* Bluetooth system and controller config */
  52. #define BTDM_CFG_BT_DATA_RELEASE (1<<0)
  53. #define BTDM_CFG_HCI_UART (1<<1)
  54. #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2)
  55. #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3)
  56. #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4)
  57. #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5)
  58. /* Sleep mode */
  59. #define BTDM_MODEM_SLEEP_MODE_NONE (0)
  60. #define BTDM_MODEM_SLEEP_MODE_ORIG (1)
  61. #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test.
  62. /* Low Power Clock Selection */
  63. #define BTDM_LPCLK_SEL_XTAL (0)
  64. #define BTDM_LPCLK_SEL_XTAL32K (1)
  65. #define BTDM_LPCLK_SEL_RTC_SLOW (2)
  66. #define BTDM_LPCLK_SEL_8M (3)
  67. /* Sleep and wakeup interval control */
  68. #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep
  69. #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF
  70. #ifdef CONFIG_PM_ENABLE
  71. #ifndef CONFIG_BTDM_LPCLK_SEL_MAIN_XTAL
  72. #define BTDM_ALLOW_LIGHT_SLEEP 1
  73. #else
  74. #define BTDM_ALLOW_LIGHT_SLEEP 0
  75. #endif
  76. #endif
  77. #define BT_DEBUG(...)
  78. #define BT_API_CALL_CHECK(info, api_call, ret) \
  79. do{\
  80. esp_err_t __err = (api_call);\
  81. if ((ret) != __err) {\
  82. BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
  83. return __err;\
  84. }\
  85. } while(0)
  86. #define OSI_FUNCS_TIME_BLOCKING 0xffffffff
  87. #define OSI_VERSION 0x00010001
  88. #define OSI_MAGIC_VALUE 0xFADEBEAD
  89. /* SPIRAM Configuration */
  90. #if CONFIG_SPIRAM_USE_MALLOC
  91. #define BTDM_MAX_QUEUE_NUM (5)
  92. #endif
  93. /* Types definition
  94. ************************************************************************
  95. */
  96. /* VHCI function interface */
  97. typedef struct vhci_host_callback {
  98. void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */
  99. int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/
  100. } vhci_host_callback_t;
  101. /* Dram region */
  102. typedef struct {
  103. esp_bt_mode_t mode;
  104. intptr_t start;
  105. intptr_t end;
  106. } btdm_dram_available_region_t;
  107. /* PSRAM configuration */
  108. #if CONFIG_SPIRAM_USE_MALLOC
  109. typedef struct {
  110. QueueHandle_t handle;
  111. void *storage;
  112. void *buffer;
  113. } btdm_queue_item_t;
  114. #endif
  115. /* OSI function */
  116. struct osi_funcs_t {
  117. uint32_t _version;
  118. xt_handler (*_set_isr)(int n, xt_handler f, void *arg);
  119. void (*_ints_on)(unsigned int mask);
  120. void (*_interrupt_disable)(void);
  121. void (*_interrupt_restore)(void);
  122. void (*_task_yield)(void);
  123. void (*_task_yield_from_isr)(void);
  124. void *(*_semphr_create)(uint32_t max, uint32_t init);
  125. void (*_semphr_delete)(void *semphr);
  126. int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw);
  127. int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw);
  128. int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms);
  129. int32_t (*_semphr_give)(void *semphr);
  130. void *(*_mutex_create)(void);
  131. void (*_mutex_delete)(void *mutex);
  132. int32_t (*_mutex_lock)(void *mutex);
  133. int32_t (*_mutex_unlock)(void *mutex);
  134. void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
  135. void (* _queue_delete)(void *queue);
  136. int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
  137. int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
  138. int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
  139. int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
  140. int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  141. void (* _task_delete)(void *task_handle);
  142. bool (* _is_in_isr)(void);
  143. int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
  144. void *(* _malloc)(uint32_t size);
  145. void *(* _malloc_internal)(uint32_t size);
  146. void (* _free)(void *p);
  147. int32_t (* _read_efuse_mac)(uint8_t mac[6]);
  148. void (* _srand)(unsigned int seed);
  149. int (* _rand)(void);
  150. uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles);
  151. uint32_t (* _btdm_us_2_lpcycles)(uint32_t us);
  152. bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt);
  153. void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */
  154. void (* _btdm_sleep_enter_phase2)(void);
  155. void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */
  156. void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */
  157. void (* _btdm_sleep_exit_phase3)(void); /* called from task */
  158. int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration);
  159. int (* _coex_bt_release)(uint32_t event);
  160. int (* _coex_register_bt_cb)(coex_func_cb_t cb);
  161. uint32_t (* _coex_bb_reset_lock)(void);
  162. void (* _coex_bb_reset_unlock)(uint32_t restore);
  163. uint32_t _magic;
  164. };
  165. /* External functions or values
  166. ************************************************************************
  167. */
  168. /* not for user call, so don't put to include file */
  169. /* OSI */
  170. extern int btdm_osi_funcs_register(void *osi_funcs);
  171. /* Initialise and De-initialise */
  172. extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts);
  173. extern void btdm_controller_deinit(void);
  174. extern int btdm_controller_enable(esp_bt_mode_t mode);
  175. extern void btdm_controller_disable(void);
  176. extern uint8_t btdm_controller_get_mode(void);
  177. extern const char *btdm_controller_get_compile_version(void);
  178. extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled
  179. /* Sleep */
  180. extern void btdm_controller_enable_sleep(bool enable);
  181. extern void btdm_controller_set_sleep_mode(uint8_t mode);
  182. extern uint8_t btdm_controller_get_sleep_mode(void);
  183. extern bool btdm_power_state_active(void);
  184. extern void btdm_wakeup_request(bool request_lock);
  185. extern void btdm_wakeup_request_end(void);
  186. /* Low Power Clock */
  187. extern bool btdm_lpclk_select_src(uint32_t sel);
  188. extern bool btdm_lpclk_set_div(uint32_t div);
  189. /* VHCI */
  190. extern bool API_vhci_host_check_send_available(void);
  191. extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
  192. extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
  193. /* TX power */
  194. extern int ble_txpwr_set(int power_type, int power_level);
  195. extern int ble_txpwr_get(int power_type);
  196. extern int bredr_txpwr_set(int min_power_level, int max_power_level);
  197. extern int bredr_txpwr_get(int *min_power_level, int *max_power_level);
  198. extern void bredr_sco_datapath_set(uint8_t data_path);
  199. extern void btdm_controller_scan_duplicate_list_clear(void);
  200. /* Coexistence */
  201. extern int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration);
  202. extern int coex_bt_release_wrapper(uint32_t event);
  203. extern int coex_register_bt_cb_wrapper(coex_func_cb_t cb);
  204. extern uint32_t coex_bb_reset_lock_wrapper(void);
  205. extern void coex_bb_reset_unlock_wrapper(uint32_t restore);
  206. extern void coex_ble_adv_priority_high_set(bool high);
  207. extern char _bss_start_btdm;
  208. extern char _bss_end_btdm;
  209. extern char _data_start_btdm;
  210. extern char _data_end_btdm;
  211. extern uint32_t _data_start_btdm_rom;
  212. extern uint32_t _data_end_btdm_rom;
  213. extern uint32_t _bt_bss_start;
  214. extern uint32_t _bt_bss_end;
  215. extern uint32_t _nimble_bss_start;
  216. extern uint32_t _nimble_bss_end;
  217. extern uint32_t _btdm_bss_start;
  218. extern uint32_t _btdm_bss_end;
  219. extern uint32_t _bt_data_start;
  220. extern uint32_t _bt_data_end;
  221. extern uint32_t _nimble_data_start;
  222. extern uint32_t _nimble_data_end;
  223. extern uint32_t _btdm_data_start;
  224. extern uint32_t _btdm_data_end;
  225. /* Local Function Declare
  226. *********************************************************************
  227. */
  228. #if CONFIG_SPIRAM_USE_MALLOC
  229. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue);
  230. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue);
  231. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  232. static void IRAM_ATTR interrupt_disable(void);
  233. static void IRAM_ATTR interrupt_restore(void);
  234. static void IRAM_ATTR task_yield_from_isr(void);
  235. static void *semphr_create_wrapper(uint32_t max, uint32_t init);
  236. static void semphr_delete_wrapper(void *semphr);
  237. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw);
  238. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw);
  239. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
  240. static int32_t semphr_give_wrapper(void *semphr);
  241. static void *mutex_create_wrapper(void);
  242. static void mutex_delete_wrapper(void *mutex);
  243. static int32_t mutex_lock_wrapper(void *mutex);
  244. static int32_t mutex_unlock_wrapper(void *mutex);
  245. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
  246. static void queue_delete_wrapper(void *queue);
  247. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
  248. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
  249. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
  250. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
  251. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
  252. static void task_delete_wrapper(void *task_handle);
  253. static bool IRAM_ATTR is_in_isr_wrapper(void);
  254. static void IRAM_ATTR cause_sw_intr(void *arg);
  255. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no);
  256. static void *malloc_internal_wrapper(size_t size);
  257. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]);
  258. static void IRAM_ATTR srand_wrapper(unsigned int seed);
  259. static int IRAM_ATTR rand_wrapper(void);
  260. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles);
  261. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us);
  262. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt);
  263. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
  264. static void btdm_sleep_enter_phase2_wrapper(void);
  265. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void);
  266. static void btdm_sleep_exit_phase3_wrapper(void);
  267. /* Local variable definition
  268. ***************************************************************************
  269. */
  270. /* OSI funcs */
  271. static const struct osi_funcs_t osi_funcs_ro = {
  272. ._version = OSI_VERSION,
  273. ._set_isr = xt_set_interrupt_handler,
  274. ._ints_on = xt_ints_on,
  275. ._interrupt_disable = interrupt_disable,
  276. ._interrupt_restore = interrupt_restore,
  277. ._task_yield = vPortYield,
  278. ._task_yield_from_isr = task_yield_from_isr,
  279. ._semphr_create = semphr_create_wrapper,
  280. ._semphr_delete = semphr_delete_wrapper,
  281. ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
  282. ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
  283. ._semphr_take = semphr_take_wrapper,
  284. ._semphr_give = semphr_give_wrapper,
  285. ._mutex_create = mutex_create_wrapper,
  286. ._mutex_delete = mutex_delete_wrapper,
  287. ._mutex_lock = mutex_lock_wrapper,
  288. ._mutex_unlock = mutex_unlock_wrapper,
  289. ._queue_create = queue_create_wrapper,
  290. ._queue_delete = queue_delete_wrapper,
  291. ._queue_send = queue_send_wrapper,
  292. ._queue_send_from_isr = queue_send_from_isr_wrapper,
  293. ._queue_recv = queue_recv_wrapper,
  294. ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
  295. ._task_create = task_create_wrapper,
  296. ._task_delete = task_delete_wrapper,
  297. ._is_in_isr = is_in_isr_wrapper,
  298. ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper,
  299. ._malloc = malloc,
  300. ._malloc_internal = malloc_internal_wrapper,
  301. ._free = free,
  302. ._read_efuse_mac = read_mac_wrapper,
  303. ._srand = srand_wrapper,
  304. ._rand = rand_wrapper,
  305. ._btdm_lpcycles_2_us = btdm_lpcycles_2_us,
  306. ._btdm_us_2_lpcycles = btdm_us_2_lpcycles,
  307. ._btdm_sleep_check_duration = btdm_sleep_check_duration,
  308. ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
  309. ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
  310. ._btdm_sleep_exit_phase1 = btdm_sleep_exit_phase1_wrapper,
  311. ._btdm_sleep_exit_phase2 = NULL,
  312. ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
  313. ._coex_bt_request = coex_bt_request_wrapper,
  314. ._coex_bt_release = coex_bt_release_wrapper,
  315. ._coex_register_bt_cb = coex_register_bt_cb_wrapper,
  316. ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper,
  317. ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper,
  318. ._magic = OSI_MAGIC_VALUE,
  319. };
  320. /* the mode column will be modified by release function to indicate the available region */
  321. static btdm_dram_available_region_t btdm_dram_available_region[] = {
  322. //following is .data
  323. {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END },
  324. //following is memory which HW will use
  325. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END },
  326. {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END },
  327. {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END },
  328. {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END},
  329. //following is .bss
  330. {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END },
  331. {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END },
  332. };
  333. /* Reserve the full memory region used by Bluetooth Controller,
  334. * some may be released later at runtime. */
  335. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em);
  336. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss);
  337. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc);
  338. SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data);
  339. static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;
  340. #if CONFIG_SPIRAM_USE_MALLOC
  341. static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM];
  342. static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL;
  343. #endif /* #if CONFIG_SPIRAM_USE_MALLOC */
  344. /* Static variable declare */
  345. // timestamp when PHY/RF was switched on
  346. static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0;
  347. static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  348. static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;
  349. // measured average low power clock period in micro seconds
  350. static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
  351. static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us
  352. #ifdef CONFIG_PM_ENABLE
  353. static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;
  354. static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
  355. static DRAM_ATTR QueueHandle_t s_pm_lock_sem = NULL;
  356. #if !BTDM_ALLOW_LIGHT_SLEEP
  357. // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock
  358. static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
  359. #endif /* #if !BTDM_ALLOW_LIGHT_SLEEP */
  360. static void btdm_slp_tmr_callback(void *arg);
  361. #endif
  362. static inline void btdm_check_and_init_bb(void)
  363. {
  364. /* init BT-BB if PHY/RF has been switched off since last BT-BB init */
  365. int64_t latest_ts = esp_phy_rf_get_on_ts();
  366. if (latest_ts != s_time_phy_rf_just_enabled ||
  367. s_time_phy_rf_just_enabled == 0) {
  368. btdm_rf_bb_init_phase2();
  369. s_time_phy_rf_just_enabled = latest_ts;
  370. }
  371. }
  372. #if CONFIG_SPIRAM_USE_MALLOC
  373. static bool btdm_queue_generic_register(const btdm_queue_item_t *queue)
  374. {
  375. if (!btdm_queue_table_mux || !queue) {
  376. return NULL;
  377. }
  378. bool ret = false;
  379. btdm_queue_item_t *item;
  380. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  381. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  382. item = &btdm_queue_table[i];
  383. if (item->handle == NULL) {
  384. memcpy(item, queue, sizeof(btdm_queue_item_t));
  385. ret = true;
  386. break;
  387. }
  388. }
  389. xSemaphoreGive(btdm_queue_table_mux);
  390. return ret;
  391. }
  392. static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue)
  393. {
  394. if (!btdm_queue_table_mux || !queue) {
  395. return false;
  396. }
  397. bool ret = false;
  398. btdm_queue_item_t *item;
  399. xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY);
  400. for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) {
  401. item = &btdm_queue_table[i];
  402. if (item->handle == queue->handle) {
  403. memcpy(queue, item, sizeof(btdm_queue_item_t));
  404. memset(item, 0, sizeof(btdm_queue_item_t));
  405. ret = true;
  406. break;
  407. }
  408. }
  409. xSemaphoreGive(btdm_queue_table_mux);
  410. return ret;
  411. }
  412. #endif /* CONFIG_SPIRAM_USE_MALLOC */
  413. static void IRAM_ATTR interrupt_disable(void)
  414. {
  415. if (xPortInIsrContext()) {
  416. portENTER_CRITICAL_ISR(&global_int_mux);
  417. } else {
  418. portENTER_CRITICAL(&global_int_mux);
  419. }
  420. }
  421. static void IRAM_ATTR interrupt_restore(void)
  422. {
  423. if (xPortInIsrContext()) {
  424. portEXIT_CRITICAL_ISR(&global_int_mux);
  425. } else {
  426. portEXIT_CRITICAL(&global_int_mux);
  427. }
  428. }
  429. static void IRAM_ATTR task_yield_from_isr(void)
  430. {
  431. portYIELD_FROM_ISR();
  432. }
  433. static void *semphr_create_wrapper(uint32_t max, uint32_t init)
  434. {
  435. #if !CONFIG_SPIRAM_USE_MALLOC
  436. return (void *)xSemaphoreCreateCounting(max, init);
  437. #else
  438. StaticQueue_t *queue_buffer = NULL;
  439. QueueHandle_t handle = NULL;
  440. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  441. if (!queue_buffer) {
  442. goto error;
  443. }
  444. handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer);
  445. if (!handle) {
  446. goto error;
  447. }
  448. btdm_queue_item_t item = {
  449. .handle = handle,
  450. .storage = NULL,
  451. .buffer = queue_buffer,
  452. };
  453. if (!btdm_queue_generic_register(&item)) {
  454. goto error;
  455. }
  456. return handle;
  457. error:
  458. if (handle) {
  459. vSemaphoreDelete(handle);
  460. }
  461. if (queue_buffer) {
  462. free(queue_buffer);
  463. }
  464. return NULL;
  465. #endif
  466. }
  467. static void semphr_delete_wrapper(void *semphr)
  468. {
  469. #if !CONFIG_SPIRAM_USE_MALLOC
  470. vSemaphoreDelete(semphr);
  471. #else
  472. btdm_queue_item_t item = {
  473. .handle = semphr,
  474. .storage = NULL,
  475. .buffer = NULL,
  476. };
  477. if (btdm_queue_generic_deregister(&item)) {
  478. vSemaphoreDelete(item.handle);
  479. free(item.buffer);
  480. }
  481. return;
  482. #endif
  483. }
  484. static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
  485. {
  486. return (int32_t)xSemaphoreTakeFromISR(semphr, hptw);
  487. }
  488. static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
  489. {
  490. return (int32_t)xSemaphoreGiveFromISR(semphr, hptw);
  491. }
  492. static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
  493. {
  494. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  495. return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY);
  496. } else {
  497. return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
  498. }
  499. }
  500. static int32_t semphr_give_wrapper(void *semphr)
  501. {
  502. return (int32_t)xSemaphoreGive(semphr);
  503. }
  504. static void *mutex_create_wrapper(void)
  505. {
  506. #if CONFIG_SPIRAM_USE_MALLOC
  507. StaticQueue_t *queue_buffer = NULL;
  508. QueueHandle_t handle = NULL;
  509. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  510. if (!queue_buffer) {
  511. goto error;
  512. }
  513. handle = xSemaphoreCreateMutexStatic(queue_buffer);
  514. if (!handle) {
  515. goto error;
  516. }
  517. btdm_queue_item_t item = {
  518. .handle = handle,
  519. .storage = NULL,
  520. .buffer = queue_buffer,
  521. };
  522. if (!btdm_queue_generic_register(&item)) {
  523. goto error;
  524. }
  525. return handle;
  526. error:
  527. if (handle) {
  528. vSemaphoreDelete(handle);
  529. }
  530. if (queue_buffer) {
  531. free(queue_buffer);
  532. }
  533. return NULL;
  534. #else
  535. return (void *)xSemaphoreCreateMutex();
  536. #endif
  537. }
  538. static void mutex_delete_wrapper(void *mutex)
  539. {
  540. #if !CONFIG_SPIRAM_USE_MALLOC
  541. vSemaphoreDelete(mutex);
  542. #else
  543. btdm_queue_item_t item = {
  544. .handle = mutex,
  545. .storage = NULL,
  546. .buffer = NULL,
  547. };
  548. if (btdm_queue_generic_deregister(&item)) {
  549. vSemaphoreDelete(item.handle);
  550. free(item.buffer);
  551. }
  552. return;
  553. #endif
  554. }
  555. static int32_t mutex_lock_wrapper(void *mutex)
  556. {
  557. return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY);
  558. }
  559. static int32_t mutex_unlock_wrapper(void *mutex)
  560. {
  561. return (int32_t)xSemaphoreGive(mutex);
  562. }
  563. static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
  564. {
  565. #if CONFIG_SPIRAM_USE_MALLOC
  566. StaticQueue_t *queue_buffer = NULL;
  567. uint8_t *queue_storage = NULL;
  568. QueueHandle_t handle = NULL;
  569. queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  570. if (!queue_buffer) {
  571. goto error;
  572. }
  573. queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  574. if (!queue_storage ) {
  575. goto error;
  576. }
  577. handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer);
  578. if (!handle) {
  579. goto error;
  580. }
  581. btdm_queue_item_t item = {
  582. .handle = handle,
  583. .storage = queue_storage,
  584. .buffer = queue_buffer,
  585. };
  586. if (!btdm_queue_generic_register(&item)) {
  587. goto error;
  588. }
  589. return handle;
  590. error:
  591. if (handle) {
  592. vQueueDelete(handle);
  593. }
  594. if (queue_storage) {
  595. free(queue_storage);
  596. }
  597. if (queue_buffer) {
  598. free(queue_buffer);
  599. }
  600. return NULL;
  601. #else
  602. return (void *)xQueueCreate(queue_len, item_size);
  603. #endif
  604. }
  605. static void queue_delete_wrapper(void *queue)
  606. {
  607. #if !CONFIG_SPIRAM_USE_MALLOC
  608. vQueueDelete(queue);
  609. #else
  610. btdm_queue_item_t item = {
  611. .handle = queue,
  612. .storage = NULL,
  613. .buffer = NULL,
  614. };
  615. if (btdm_queue_generic_deregister(&item)) {
  616. vQueueDelete(item.handle);
  617. free(item.storage);
  618. free(item.buffer);
  619. }
  620. return;
  621. #endif
  622. }
  623. static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
  624. {
  625. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  626. return (int32_t)xQueueSend(queue, item, portMAX_DELAY);
  627. } else {
  628. return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
  629. }
  630. }
  631. static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
  632. {
  633. return (int32_t)xQueueSendFromISR(queue, item, hptw);
  634. }
  635. static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
  636. {
  637. if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
  638. return (int32_t)xQueueReceive(queue, item, portMAX_DELAY);
  639. } else {
  640. return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
  641. }
  642. }
  643. static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
  644. {
  645. return (int32_t)xQueueReceiveFromISR(queue, item, hptw);
  646. }
  647. static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
  648. {
  649. return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
  650. }
  651. static void task_delete_wrapper(void *task_handle)
  652. {
  653. vTaskDelete(task_handle);
  654. }
  655. static bool IRAM_ATTR is_in_isr_wrapper(void)
  656. {
  657. return !xPortCanYield();
  658. }
  659. static void IRAM_ATTR cause_sw_intr(void *arg)
  660. {
  661. /* just convert void * to int, because the width is the same */
  662. uint32_t intr_no = (uint32_t)arg;
  663. XTHAL_SET_INTSET((1<<intr_no));
  664. }
  665. static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no)
  666. {
  667. esp_err_t err = ESP_OK;
  668. #if CONFIG_FREERTOS_UNICORE
  669. cause_sw_intr((void *)intr_no);
  670. #else /* CONFIG_FREERTOS_UNICORE */
  671. if (xPortGetCoreID() == core_id) {
  672. cause_sw_intr((void *)intr_no);
  673. } else {
  674. err = esp_ipc_call(core_id, cause_sw_intr, (void *)intr_no);
  675. }
  676. #endif /* !CONFIG_FREERTOS_UNICORE */
  677. return err;
  678. }
  679. static void *malloc_internal_wrapper(size_t size)
  680. {
  681. return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL);
  682. }
  683. static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
  684. {
  685. return esp_read_mac(mac, ESP_MAC_BT);
  686. }
  687. static void IRAM_ATTR srand_wrapper(unsigned int seed)
  688. {
  689. /* empty function */
  690. }
  691. static int IRAM_ATTR rand_wrapper(void)
  692. {
  693. return (int)esp_random();
  694. }
  695. static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles)
  696. {
  697. // The number of lp cycles should not lead to overflow. Thrs: 100s
  698. // clock measurement is conducted
  699. uint64_t us = (uint64_t)btdm_lpcycle_us * cycles;
  700. us = (us + (1 << (btdm_lpcycle_us_frac - 1))) >> btdm_lpcycle_us_frac;
  701. return (uint32_t)us;
  702. }
  703. /*
  704. * @brief Converts a duration in slots into a number of low power clock cycles.
  705. */
  706. static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us)
  707. {
  708. // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
  709. // Compute the sleep duration in us to low power clock cycles, with calibration result applied
  710. // clock measurement is conducted
  711. uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
  712. return (uint32_t)cycles;
  713. }
  714. static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt)
  715. {
  716. if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) {
  717. return false;
  718. }
  719. /* wake up in advance considering the delay in enabling PHY/RF */
  720. *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
  721. return true;
  722. }
  723. static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
  724. {
  725. #ifdef CONFIG_PM_ENABLE
  726. // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
  727. uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles);
  728. #define BTDM_MIN_TIMER_UNCERTAINTY_US (500)
  729. assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
  730. // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
  731. // and set the timer in advance
  732. uint32_t uncertainty = (us_to_sleep >> 11);
  733. if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
  734. uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
  735. }
  736. if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) {
  737. ESP_LOGW(BTDM_LOG_TAG, "timer start failed");
  738. }
  739. #endif
  740. }
  741. static void btdm_sleep_enter_phase2_wrapper(void)
  742. {
  743. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  744. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  745. esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE);
  746. #ifdef CONFIG_PM_ENABLE
  747. esp_pm_lock_release(s_pm_lock);
  748. semphr_give_wrapper(s_pm_lock_sem);
  749. #endif
  750. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  751. esp_modem_sleep_enter(MODEM_BLE_MODULE);
  752. // pause bluetooth baseband
  753. periph_module_disable(PERIPH_BT_BASEBAND_MODULE);
  754. }
  755. }
  756. static void IRAM_ATTR btdm_sleep_exit_phase1_wrapper(void)
  757. {
  758. #ifdef CONFIG_PM_ENABLE
  759. if (semphr_take_from_isr_wrapper(s_pm_lock_sem, NULL) == pdTRUE) {
  760. esp_pm_lock_acquire(s_pm_lock);
  761. }
  762. #endif
  763. }
  764. static void btdm_sleep_exit_phase3_wrapper(void)
  765. {
  766. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  767. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  768. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  769. btdm_check_and_init_bb();
  770. #ifdef CONFIG_PM_ENABLE
  771. esp_timer_stop(s_btdm_slp_tmr);
  772. #endif
  773. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  774. // resume bluetooth baseband
  775. periph_module_enable(PERIPH_BT_BASEBAND_MODULE);
  776. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  777. }
  778. }
  779. #ifdef CONFIG_PM_ENABLE
  780. static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
  781. {
  782. if (semphr_take_wrapper(s_pm_lock_sem, 0) == pdTRUE) {
  783. esp_pm_lock_acquire(s_pm_lock);
  784. }
  785. }
  786. #endif
  787. bool esp_vhci_host_check_send_available(void)
  788. {
  789. return API_vhci_host_check_send_available();
  790. }
  791. void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
  792. {
  793. bool do_wakeup_request = false;
  794. if (!btdm_power_state_active()) {
  795. #if CONFIG_PM_ENABLE
  796. if (semphr_take_wrapper(s_pm_lock_sem, 0)) {
  797. esp_pm_lock_acquire(s_pm_lock);
  798. }
  799. esp_timer_stop(s_btdm_slp_tmr);
  800. #endif
  801. do_wakeup_request = true;
  802. btdm_wakeup_request(true);
  803. }
  804. API_vhci_host_send_packet(data, len);
  805. if (do_wakeup_request) {
  806. btdm_wakeup_request_end();
  807. }
  808. }
  809. esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
  810. {
  811. return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
  812. }
  813. static uint32_t btdm_config_mask_load(void)
  814. {
  815. uint32_t mask = 0x0;
  816. #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4
  817. mask |= BTDM_CFG_HCI_UART;
  818. #endif
  819. #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1
  820. mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU;
  821. #endif
  822. #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED
  823. mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED;
  824. #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */
  825. mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS;
  826. mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE;
  827. return mask;
  828. }
  829. static void btdm_controller_mem_init(void)
  830. {
  831. /* initialise .data section */
  832. memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm);
  833. ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom);
  834. //initial em, .bss section
  835. for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  836. if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) {
  837. memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start);
  838. ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end);
  839. }
  840. }
  841. }
  842. static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
  843. {
  844. int ret = heap_caps_add_region(start, end);
  845. /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
  846. * is too small to fit a heap. This cannot be termed as a fatal error and hence
  847. * we replace it by ESP_OK
  848. */
  849. if (ret == ESP_ERR_INVALID_SIZE) {
  850. return ESP_OK;
  851. }
  852. return ret;
  853. }
  854. esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
  855. {
  856. bool update = true;
  857. intptr_t mem_start, mem_end;
  858. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  859. return ESP_ERR_INVALID_STATE;
  860. }
  861. //already released
  862. if (!(mode & btdm_dram_available_region[0].mode)) {
  863. return ESP_ERR_INVALID_STATE;
  864. }
  865. for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) {
  866. //skip the share mode, idle mode and other mode
  867. if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE
  868. || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) {
  869. //clear the bit of the mode which will be released
  870. btdm_dram_available_region[i].mode &= ~mode;
  871. continue;
  872. } else {
  873. //clear the bit of the mode which will be released
  874. btdm_dram_available_region[i].mode &= ~mode;
  875. }
  876. if (update) {
  877. mem_start = btdm_dram_available_region[i].start;
  878. mem_end = btdm_dram_available_region[i].end;
  879. update = false;
  880. }
  881. if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) {
  882. mem_end = btdm_dram_available_region[i].end;
  883. if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE
  884. && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode
  885. && mem_end == btdm_dram_available_region[i+1].start) {
  886. continue;
  887. } else {
  888. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  889. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  890. update = true;
  891. }
  892. } else {
  893. mem_end = btdm_dram_available_region[i].end;
  894. ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end);
  895. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  896. update = true;
  897. }
  898. }
  899. if (mode == ESP_BT_MODE_BTDM) {
  900. mem_start = (intptr_t)&_btdm_bss_start;
  901. mem_end = (intptr_t)&_btdm_bss_end;
  902. if (mem_start != mem_end) {
  903. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  904. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  905. }
  906. mem_start = (intptr_t)&_btdm_data_start;
  907. mem_end = (intptr_t)&_btdm_data_end;
  908. if (mem_start != mem_end) {
  909. ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  910. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  911. }
  912. }
  913. return ESP_OK;
  914. }
  915. esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
  916. {
  917. int ret;
  918. intptr_t mem_start, mem_end;
  919. ret = esp_bt_controller_mem_release(mode);
  920. if (ret != ESP_OK) {
  921. return ret;
  922. }
  923. if (mode == ESP_BT_MODE_BTDM) {
  924. mem_start = (intptr_t)&_bt_bss_start;
  925. mem_end = (intptr_t)&_bt_bss_end;
  926. if (mem_start != mem_end) {
  927. ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  928. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  929. }
  930. mem_start = (intptr_t)&_bt_data_start;
  931. mem_end = (intptr_t)&_bt_data_end;
  932. if (mem_start != mem_end) {
  933. ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  934. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  935. }
  936. mem_start = (intptr_t)&_nimble_bss_start;
  937. mem_end = (intptr_t)&_nimble_bss_end;
  938. if (mem_start != mem_end) {
  939. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end);
  940. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  941. }
  942. mem_start = (intptr_t)&_nimble_data_start;
  943. mem_end = (intptr_t)&_nimble_data_end;
  944. if (mem_start != mem_end) {
  945. ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end);
  946. ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end));
  947. }
  948. }
  949. return ESP_OK;
  950. }
  951. esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
  952. {
  953. esp_err_t err;
  954. uint32_t btdm_cfg_mask = 0;
  955. osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
  956. if (osi_funcs_p == NULL) {
  957. return ESP_ERR_NO_MEM;
  958. }
  959. memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
  960. if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
  961. return ESP_ERR_INVALID_ARG;
  962. }
  963. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
  964. return ESP_ERR_INVALID_STATE;
  965. }
  966. //if all the bt available memory was already released, cannot initialize bluetooth controller
  967. if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) {
  968. return ESP_ERR_INVALID_STATE;
  969. }
  970. if (cfg == NULL) {
  971. return ESP_ERR_INVALID_ARG;
  972. }
  973. if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
  974. || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
  975. return ESP_ERR_INVALID_ARG;
  976. }
  977. //overwrite some parameters
  978. cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF;
  979. cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL;
  980. if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT))
  981. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT))
  982. || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) {
  983. return ESP_ERR_INVALID_ARG;
  984. }
  985. ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());
  986. #if CONFIG_SPIRAM_USE_MALLOC
  987. btdm_queue_table_mux = xSemaphoreCreateMutex();
  988. if (btdm_queue_table_mux == NULL) {
  989. return ESP_ERR_NO_MEM;
  990. }
  991. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  992. #endif
  993. #ifdef CONFIG_PM_ENABLE
  994. #if !BTDM_ALLOW_LIGHT_SLEEP
  995. if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
  996. goto error;
  997. }
  998. #endif /* #if !BTDM_ALLOW_LIGHT_SLEEP */
  999. if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
  1000. goto error;
  1001. }
  1002. esp_timer_create_args_t create_args = {
  1003. .callback = btdm_slp_tmr_callback,
  1004. .arg = NULL,
  1005. .name = "btSlp"
  1006. };
  1007. if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
  1008. goto error;
  1009. }
  1010. s_pm_lock_sem = semphr_create_wrapper(1, 0);
  1011. if (s_pm_lock_sem == NULL) {
  1012. err = ESP_ERR_NO_MEM;
  1013. goto error;
  1014. }
  1015. #endif
  1016. btdm_controller_mem_init();
  1017. periph_module_enable(PERIPH_BT_MODULE);
  1018. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1019. btdm_lpcycle_us = 32 << btdm_lpcycle_us_frac;
  1020. #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG
  1021. bool select_src_ret = false;
  1022. bool set_div_ret = false;
  1023. #if CONFIG_BTDM_LPCLK_SEL_MAIN_XTAL
  1024. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
  1025. set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1);
  1026. assert(select_src_ret && set_div_ret);
  1027. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1028. btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
  1029. #elif CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL
  1030. select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
  1031. set_div_ret = btdm_lpclk_set_div(0);
  1032. assert(select_src_ret && set_div_ret);
  1033. btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
  1034. btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
  1035. (1000000 >> (15 - RTC_CLK_CAL_FRACT));
  1036. assert(btdm_lpcycle_us != 0);
  1037. #endif // CONFIG_BTDM_LPCLK_SEL_XX
  1038. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG);
  1039. #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED
  1040. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED);
  1041. #else
  1042. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1043. #endif
  1044. btdm_cfg_mask = btdm_config_mask_load();
  1045. if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) {
  1046. err = ESP_ERR_NO_MEM;
  1047. goto error;
  1048. }
  1049. #ifdef CONFIG_BTDM_COEX_BLE_ADV_HIGH_PRIORITY
  1050. coex_ble_adv_priority_high_set(true);
  1051. #else
  1052. coex_ble_adv_priority_high_set(false);
  1053. #endif
  1054. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1055. return ESP_OK;
  1056. error:
  1057. #ifdef CONFIG_PM_ENABLE
  1058. #if !BTDM_ALLOW_LIGHT_SLEEP
  1059. if (s_light_sleep_pm_lock != NULL) {
  1060. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1061. s_light_sleep_pm_lock = NULL;
  1062. }
  1063. #endif /* #if !BTDM_ALLOW_LIGHT_SLEEP */
  1064. if (s_pm_lock != NULL) {
  1065. esp_pm_lock_delete(s_pm_lock);
  1066. s_pm_lock = NULL;
  1067. }
  1068. if (s_btdm_slp_tmr != NULL) {
  1069. esp_timer_delete(s_btdm_slp_tmr);
  1070. s_btdm_slp_tmr = NULL;
  1071. }
  1072. if (s_pm_lock_sem) {
  1073. semphr_delete_wrapper(s_pm_lock_sem);
  1074. s_pm_lock_sem = NULL;
  1075. }
  1076. #endif
  1077. return err;
  1078. }
  1079. esp_err_t esp_bt_controller_deinit(void)
  1080. {
  1081. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1082. return ESP_ERR_INVALID_STATE;
  1083. }
  1084. btdm_controller_deinit();
  1085. periph_module_disable(PERIPH_BT_MODULE);
  1086. #ifdef CONFIG_PM_ENABLE
  1087. #if !BTDM_ALLOW_LIGHT_SLEEP
  1088. esp_pm_lock_delete(s_light_sleep_pm_lock);
  1089. s_light_sleep_pm_lock = NULL;
  1090. #endif /* #if !BTDM_ALLOW_LIGHT_SLEEP */
  1091. esp_pm_lock_delete(s_pm_lock);
  1092. s_pm_lock = NULL;
  1093. esp_timer_stop(s_btdm_slp_tmr);
  1094. esp_timer_delete(s_btdm_slp_tmr);
  1095. s_btdm_slp_tmr = NULL;
  1096. semphr_delete_wrapper(s_pm_lock_sem);
  1097. s_pm_lock_sem = NULL;
  1098. #endif
  1099. #if CONFIG_SPIRAM_USE_MALLOC
  1100. vSemaphoreDelete(btdm_queue_table_mux);
  1101. btdm_queue_table_mux = NULL;
  1102. memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM);
  1103. #endif
  1104. free(osi_funcs_p);
  1105. osi_funcs_p = NULL;
  1106. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
  1107. btdm_lpcycle_us = 0;
  1108. btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE);
  1109. return ESP_OK;
  1110. }
  1111. esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
  1112. {
  1113. int ret;
  1114. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
  1115. return ESP_ERR_INVALID_STATE;
  1116. }
  1117. //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
  1118. if (mode != btdm_controller_get_mode()) {
  1119. return ESP_ERR_INVALID_ARG;
  1120. }
  1121. #ifdef CONFIG_PM_ENABLE
  1122. #if !BTDM_ALLOW_LIGHT_SLEEP
  1123. esp_pm_lock_acquire(s_light_sleep_pm_lock);
  1124. #endif /* #if !BTDM_ALLOW_LIGHT_SLEEP */
  1125. esp_pm_lock_acquire(s_pm_lock);
  1126. #endif
  1127. esp_phy_load_cal_and_init(PHY_BT_MODULE);
  1128. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) {
  1129. //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter.
  1130. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF.
  1131. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1132. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1133. esp_modem_sleep_exit(MODEM_BLE_MODULE);
  1134. esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE);
  1135. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1136. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1137. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1138. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1139. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1140. }
  1141. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1142. btdm_controller_enable_sleep(true);
  1143. }
  1144. // inititalize bluetooth baseband
  1145. btdm_check_and_init_bb();
  1146. ret = btdm_controller_enable(mode);
  1147. if (ret) {
  1148. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1149. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1150. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1151. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1152. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1153. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1154. }
  1155. esp_phy_rf_deinit(PHY_BT_MODULE);
  1156. #ifdef CONFIG_PM_ENABLE
  1157. #if !BTDM_ALLOW_LIGHT_SLEEP
  1158. esp_pm_lock_release(s_light_sleep_pm_lock);
  1159. #endif /* #if !BTDM_ALLOW_LIGHT_SLEEP */
  1160. esp_pm_lock_release(s_pm_lock);
  1161. #endif
  1162. return ESP_ERR_INVALID_STATE;
  1163. }
  1164. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;
  1165. return ESP_OK;
  1166. }
  1167. esp_err_t esp_bt_controller_disable(void)
  1168. {
  1169. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1170. return ESP_ERR_INVALID_STATE;
  1171. }
  1172. // disable modem sleep and wake up from sleep mode
  1173. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1174. btdm_controller_enable_sleep(false);
  1175. if (!btdm_power_state_active()) {
  1176. btdm_wakeup_request(false);
  1177. }
  1178. while (!btdm_power_state_active()) {
  1179. ets_delay_us(1000);
  1180. }
  1181. }
  1182. btdm_controller_disable();
  1183. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE
  1184. || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1185. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1186. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1187. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1188. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1189. }
  1190. esp_phy_rf_deinit(PHY_BT_MODULE);
  1191. btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;
  1192. #ifdef CONFIG_PM_ENABLE
  1193. #if !BTDM_ALLOW_LIGHT_SLEEP
  1194. esp_pm_lock_release(s_light_sleep_pm_lock);
  1195. #endif /* #if !BTDM_ALLOW_LIGHT_SLEEP */
  1196. esp_pm_lock_release(s_pm_lock);
  1197. #endif
  1198. return ESP_OK;
  1199. }
  1200. esp_bt_controller_status_t esp_bt_controller_get_status(void)
  1201. {
  1202. return btdm_controller_status;
  1203. }
  1204. /* extra functions */
  1205. esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
  1206. {
  1207. if (ble_txpwr_set(power_type, power_level) != 0) {
  1208. return ESP_ERR_INVALID_ARG;
  1209. }
  1210. return ESP_OK;
  1211. }
  1212. esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
  1213. {
  1214. return (esp_power_level_t)ble_txpwr_get(power_type);
  1215. }
  1216. esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level)
  1217. {
  1218. esp_err_t err;
  1219. int ret;
  1220. ret = bredr_txpwr_set(min_power_level, max_power_level);
  1221. if (ret == 0) {
  1222. err = ESP_OK;
  1223. } else if (ret == -1) {
  1224. err = ESP_ERR_INVALID_ARG;
  1225. } else {
  1226. err = ESP_ERR_INVALID_STATE;
  1227. }
  1228. return err;
  1229. }
  1230. esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level)
  1231. {
  1232. if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) {
  1233. return ESP_ERR_INVALID_ARG;
  1234. }
  1235. return ESP_OK;
  1236. }
  1237. esp_err_t esp_bt_sleep_enable (void)
  1238. {
  1239. esp_err_t status;
  1240. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1241. return ESP_ERR_INVALID_STATE;
  1242. }
  1243. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1244. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1245. esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE);
  1246. btdm_controller_enable_sleep (true);
  1247. status = ESP_OK;
  1248. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1249. esp_modem_sleep_register(MODEM_BLE_MODULE);
  1250. btdm_controller_enable_sleep (true);
  1251. status = ESP_OK;
  1252. } else {
  1253. status = ESP_ERR_NOT_SUPPORTED;
  1254. }
  1255. return status;
  1256. }
  1257. esp_err_t esp_bt_sleep_disable (void)
  1258. {
  1259. esp_err_t status;
  1260. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1261. return ESP_ERR_INVALID_STATE;
  1262. }
  1263. if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) {
  1264. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1265. esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE);
  1266. btdm_controller_enable_sleep (false);
  1267. status = ESP_OK;
  1268. } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) {
  1269. esp_modem_sleep_deregister(MODEM_BLE_MODULE);
  1270. btdm_controller_enable_sleep (false);
  1271. status = ESP_OK;
  1272. } else {
  1273. status = ESP_ERR_NOT_SUPPORTED;
  1274. }
  1275. return status;
  1276. }
  1277. bool esp_bt_controller_is_sleeping(void)
  1278. {
  1279. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1280. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1281. return false;
  1282. }
  1283. return !btdm_power_state_active();
  1284. }
  1285. void esp_bt_controller_wakeup_request(void)
  1286. {
  1287. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
  1288. btdm_controller_get_sleep_mode() != BTDM_MODEM_SLEEP_MODE_ORIG) {
  1289. return;
  1290. }
  1291. btdm_wakeup_request(false);
  1292. }
  1293. esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path)
  1294. {
  1295. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1296. return ESP_ERR_INVALID_STATE;
  1297. }
  1298. bredr_sco_datapath_set(data_path);
  1299. return ESP_OK;
  1300. }
  1301. esp_err_t esp_ble_scan_dupilcate_list_flush(void)
  1302. {
  1303. if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
  1304. return ESP_ERR_INVALID_STATE;
  1305. }
  1306. btdm_controller_scan_duplicate_list_clear();
  1307. return ESP_OK;
  1308. }
  1309. #endif /* CONFIG_BT_ENABLED */