rmt.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986
  1. // Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <esp_types.h>
  14. #include <string.h>
  15. #include <stdlib.h>
  16. #include "freertos/FreeRTOS.h"
  17. #include "freertos/semphr.h"
  18. #include "freertos/xtensa_api.h"
  19. #include "freertos/ringbuf.h"
  20. #include "esp_intr_alloc.h"
  21. #include "esp_log.h"
  22. #include "esp_err.h"
  23. #include "soc/gpio_periph.h"
  24. #include "driver/periph_ctrl.h"
  25. #include "driver/rmt.h"
  26. #include "soc/soc_memory_layout.h"
  27. #include <sys/lock.h>
  28. #define RMT_SOUCCE_CLK_APB (APB_CLK_FREQ) /*!< RMT source clock is APB_CLK */
  29. #define RMT_SOURCE_CLK_REF (1 * 1000000) /*!< not used yet */
  30. #define RMT_SOURCE_CLK(select) ((select == RMT_BASECLK_REF) ? (RMT_SOURCE_CLK_REF) : (RMT_SOUCCE_CLK_APB)) /*! RMT source clock frequency */
  31. #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
  32. #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
  33. #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
  34. #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
  35. #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
  36. #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
  37. #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
  38. #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
  39. #define RMT_MODE_ERROR_STR "RMT MODE ERROR"
  40. #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
  41. #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
  42. #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
  43. #define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
  44. #define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
  45. #define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
  46. #define RMT_PARAM_ERR_STR "RMT param error"
  47. static const char* RMT_TAG = "rmt";
  48. static uint8_t s_rmt_driver_channels; // Bitmask (bits 0-7) of installed drivers' channels
  49. static rmt_isr_handle_t s_rmt_driver_intr_handle;
  50. #define RMT_CHECK(a, str, ret_val) \
  51. if (!(a)) { \
  52. ESP_LOGE(RMT_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  53. return (ret_val); \
  54. }
  55. // Spinlock for protecting concurrent register-level access only
  56. static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
  57. // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
  58. static _lock_t rmt_driver_isr_lock;
  59. typedef struct {
  60. size_t tx_offset;
  61. size_t tx_len_rem;
  62. size_t tx_sub_len;
  63. bool translator;
  64. bool wait_done; //Mark whether wait tx done.
  65. rmt_channel_t channel;
  66. const rmt_item32_t* tx_data;
  67. xSemaphoreHandle tx_sem;
  68. #if CONFIG_SPIRAM_USE_MALLOC
  69. int intr_alloc_flags;
  70. StaticSemaphore_t tx_sem_buffer;
  71. #endif
  72. rmt_item32_t* tx_buf;
  73. RingbufHandle_t rx_buf;
  74. sample_to_rmt_t sample_to_rmt;
  75. size_t sample_size_remain;
  76. const uint8_t *sample_cur;
  77. } rmt_obj_t;
  78. rmt_obj_t* p_rmt_obj[RMT_CHANNEL_MAX] = {0};
  79. // Event called when transmission is ended
  80. static rmt_tx_end_callback_t rmt_tx_end_callback;
  81. static void rmt_set_tx_wrap_en(bool en)
  82. {
  83. portENTER_CRITICAL(&rmt_spinlock);
  84. RMT.apb_conf.mem_tx_wrap_en = en;
  85. portEXIT_CRITICAL(&rmt_spinlock);
  86. }
  87. static void rmt_set_data_mode(rmt_data_mode_t data_mode)
  88. {
  89. portENTER_CRITICAL(&rmt_spinlock);
  90. RMT.apb_conf.fifo_mask = data_mode;
  91. portEXIT_CRITICAL(&rmt_spinlock);
  92. }
  93. esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
  94. {
  95. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  96. RMT.conf_ch[channel].conf0.div_cnt = div_cnt;
  97. return ESP_OK;
  98. }
  99. esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t* div_cnt)
  100. {
  101. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  102. RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  103. *div_cnt = RMT.conf_ch[channel].conf0.div_cnt;
  104. return ESP_OK;
  105. }
  106. esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
  107. {
  108. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  109. RMT.conf_ch[channel].conf0.idle_thres = thresh;
  110. return ESP_OK;
  111. }
  112. esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
  113. {
  114. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  115. RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  116. *thresh = RMT.conf_ch[channel].conf0.idle_thres;
  117. return ESP_OK;
  118. }
  119. esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
  120. {
  121. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  122. RMT_CHECK(rmt_mem_num <= RMT_CHANNEL_MAX - channel, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  123. RMT.conf_ch[channel].conf0.mem_size = rmt_mem_num;
  124. return ESP_OK;
  125. }
  126. esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t* rmt_mem_num)
  127. {
  128. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  129. RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  130. *rmt_mem_num = RMT.conf_ch[channel].conf0.mem_size;
  131. return ESP_OK;
  132. }
  133. esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
  134. rmt_carrier_level_t carrier_level)
  135. {
  136. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  137. RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
  138. RMT.carrier_duty_ch[channel].high = high_level;
  139. RMT.carrier_duty_ch[channel].low = low_level;
  140. RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
  141. RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
  142. return ESP_OK;
  143. }
  144. esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
  145. {
  146. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  147. RMT.conf_ch[channel].conf0.mem_pd = pd_en;
  148. return ESP_OK;
  149. }
  150. esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en)
  151. {
  152. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  153. *pd_en = (bool) RMT.conf_ch[channel].conf0.mem_pd;
  154. return ESP_OK;
  155. }
  156. esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
  157. {
  158. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  159. portENTER_CRITICAL(&rmt_spinlock);
  160. if(tx_idx_rst) {
  161. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  162. }
  163. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  164. RMT.conf_ch[channel].conf1.tx_start = 1;
  165. portEXIT_CRITICAL(&rmt_spinlock);
  166. return ESP_OK;
  167. }
  168. esp_err_t rmt_tx_stop(rmt_channel_t channel)
  169. {
  170. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  171. portENTER_CRITICAL(&rmt_spinlock);
  172. #ifdef CONFIG_IDF_TARGET_ESP32
  173. RMTMEM.chan[channel].data32[0].val = 0;
  174. RMT.conf_ch[channel].conf1.tx_start = 0;
  175. #elif defined CONFIG_IDF_TARGET_ESP32S2BETA
  176. RMT.conf_ch[channel].conf1.tx_stop = 1;
  177. #endif
  178. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  179. RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
  180. portEXIT_CRITICAL(&rmt_spinlock);
  181. return ESP_OK;
  182. }
  183. esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
  184. {
  185. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  186. portENTER_CRITICAL(&rmt_spinlock);
  187. if(rx_idx_rst) {
  188. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  189. }
  190. RMT.conf_ch[channel].conf1.rx_en = 0;
  191. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  192. RMT.conf_ch[channel].conf1.rx_en = 1;
  193. portEXIT_CRITICAL(&rmt_spinlock);
  194. return ESP_OK;
  195. }
  196. esp_err_t rmt_rx_stop(rmt_channel_t channel)
  197. {
  198. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  199. portENTER_CRITICAL(&rmt_spinlock);
  200. RMT.conf_ch[channel].conf1.rx_en = 0;
  201. portEXIT_CRITICAL(&rmt_spinlock);
  202. return ESP_OK;
  203. }
  204. esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
  205. {
  206. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  207. portENTER_CRITICAL(&rmt_spinlock);
  208. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  209. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  210. portEXIT_CRITICAL(&rmt_spinlock);
  211. return ESP_OK;
  212. }
  213. esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
  214. {
  215. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  216. RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  217. portENTER_CRITICAL(&rmt_spinlock);
  218. RMT.conf_ch[channel].conf1.mem_owner = owner;
  219. portEXIT_CRITICAL(&rmt_spinlock);
  220. return ESP_OK;
  221. }
  222. esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t* owner)
  223. {
  224. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  225. RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
  226. *owner = (rmt_mem_owner_t) RMT.conf_ch[channel].conf1.mem_owner;
  227. return ESP_OK;
  228. }
  229. esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
  230. {
  231. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  232. portENTER_CRITICAL(&rmt_spinlock);
  233. RMT.conf_ch[channel].conf1.tx_conti_mode = loop_en;
  234. portEXIT_CRITICAL(&rmt_spinlock);
  235. return ESP_OK;
  236. }
  237. esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool* loop_en)
  238. {
  239. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  240. *loop_en = (bool) RMT.conf_ch[channel].conf1.tx_conti_mode;
  241. return ESP_OK;
  242. }
  243. esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
  244. {
  245. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  246. portENTER_CRITICAL(&rmt_spinlock);
  247. RMT.conf_ch[channel].conf1.rx_filter_en = rx_filter_en;
  248. RMT.conf_ch[channel].conf1.rx_filter_thres = thresh;
  249. portEXIT_CRITICAL(&rmt_spinlock);
  250. return ESP_OK;
  251. }
  252. esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
  253. {
  254. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  255. RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
  256. portENTER_CRITICAL(&rmt_spinlock);
  257. RMT.conf_ch[channel].conf1.ref_always_on = base_clk;
  258. portEXIT_CRITICAL(&rmt_spinlock);
  259. return ESP_OK;
  260. }
  261. esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t* src_clk)
  262. {
  263. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  264. *src_clk = (rmt_source_clk_t) (RMT.conf_ch[channel].conf1.ref_always_on);
  265. return ESP_OK;
  266. }
  267. esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
  268. {
  269. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  270. RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
  271. portENTER_CRITICAL(&rmt_spinlock);
  272. RMT.conf_ch[channel].conf1.idle_out_en = idle_out_en;
  273. RMT.conf_ch[channel].conf1.idle_out_lv = level;
  274. portEXIT_CRITICAL(&rmt_spinlock);
  275. return ESP_OK;
  276. }
  277. esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool* idle_out_en, rmt_idle_level_t* level)
  278. {
  279. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  280. *idle_out_en = (bool) (RMT.conf_ch[channel].conf1.idle_out_en);
  281. *level = (rmt_idle_level_t) (RMT.conf_ch[channel].conf1.idle_out_lv);
  282. return ESP_OK;
  283. }
  284. esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status)
  285. {
  286. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  287. #ifdef CONFIG_IDF_TARGET_ESP32
  288. *status = RMT.status_ch[channel];
  289. #elif defined CONFIG_IDF_TARGET_ESP32S2BETA
  290. *status = RMT.status_ch[channel].val;
  291. #endif
  292. return ESP_OK;
  293. }
  294. rmt_data_mode_t rmt_get_data_mode(void)
  295. {
  296. return (rmt_data_mode_t) (RMT.apb_conf.fifo_mask);
  297. }
  298. void rmt_set_intr_enable_mask(uint32_t mask)
  299. {
  300. portENTER_CRITICAL(&rmt_spinlock);
  301. RMT.int_ena.val |= mask;
  302. portEXIT_CRITICAL(&rmt_spinlock);
  303. }
  304. void rmt_clr_intr_enable_mask(uint32_t mask)
  305. {
  306. portENTER_CRITICAL(&rmt_spinlock);
  307. RMT.int_ena.val &= (~mask);
  308. portEXIT_CRITICAL(&rmt_spinlock);
  309. }
  310. esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
  311. {
  312. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  313. if(en) {
  314. rmt_set_intr_enable_mask(BIT(channel * 3 + 1));
  315. } else {
  316. rmt_clr_intr_enable_mask(BIT(channel * 3 + 1));
  317. }
  318. return ESP_OK;
  319. }
  320. esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
  321. {
  322. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  323. if(en) {
  324. rmt_set_intr_enable_mask(BIT(channel * 3 + 2));
  325. } else {
  326. rmt_clr_intr_enable_mask(BIT(channel * 3 + 2));
  327. }
  328. return ESP_OK;
  329. }
  330. esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
  331. {
  332. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  333. if(en) {
  334. rmt_set_intr_enable_mask(BIT(channel * 3));
  335. } else {
  336. rmt_clr_intr_enable_mask(BIT(channel * 3));
  337. }
  338. return ESP_OK;
  339. }
  340. esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
  341. {
  342. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  343. if(en) {
  344. RMT_CHECK(evt_thresh <= 256, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
  345. portENTER_CRITICAL(&rmt_spinlock);
  346. RMT.tx_lim_ch[channel].limit = evt_thresh;
  347. portEXIT_CRITICAL(&rmt_spinlock);
  348. rmt_set_tx_wrap_en(true);
  349. #ifdef CONFIG_IDF_TARGET_ESP32
  350. rmt_set_intr_enable_mask(BIT(channel + 24));
  351. } else {
  352. rmt_clr_intr_enable_mask(BIT(channel + 24));
  353. #elif defined CONFIG_IDF_TARGET_ESP32S2BETA
  354. rmt_set_intr_enable_mask(BIT(channel + 12));
  355. } else {
  356. rmt_clr_intr_enable_mask(BIT(channel + 12));
  357. #endif
  358. }
  359. return ESP_OK;
  360. }
  361. esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
  362. {
  363. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  364. RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
  365. RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) || (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
  366. RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  367. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  368. if(mode == RMT_MODE_TX) {
  369. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  370. gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
  371. } else {
  372. gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
  373. gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
  374. }
  375. return ESP_OK;
  376. }
  377. esp_err_t rmt_config(const rmt_config_t* rmt_param)
  378. {
  379. uint8_t mode = rmt_param->rmt_mode;
  380. uint8_t channel = rmt_param->channel;
  381. uint8_t gpio_num = rmt_param->gpio_num;
  382. uint8_t mem_cnt = rmt_param->mem_block_num;
  383. int clk_div = rmt_param->clk_div;
  384. uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
  385. bool carrier_en = rmt_param->tx_config.carrier_en;
  386. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  387. RMT_CHECK(GPIO_IS_VALID_GPIO(gpio_num), RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
  388. RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
  389. RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
  390. if (mode == RMT_MODE_TX) {
  391. RMT_CHECK((!carrier_en || carrier_freq_hz > 0), "RMT carrier frequency can't be zero", ESP_ERR_INVALID_ARG);
  392. }
  393. static bool rmt_enable = false;
  394. if (rmt_enable == false) {
  395. periph_module_reset(PERIPH_RMT_MODULE);
  396. rmt_enable = true;
  397. }
  398. periph_module_enable(PERIPH_RMT_MODULE);
  399. RMT.conf_ch[channel].conf0.div_cnt = clk_div;
  400. /*Visit data use memory not FIFO*/
  401. rmt_set_data_mode(RMT_DATA_MODE_MEM);
  402. /*Reset tx/rx memory index */
  403. portENTER_CRITICAL(&rmt_spinlock);
  404. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  405. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  406. portEXIT_CRITICAL(&rmt_spinlock);
  407. if(mode == RMT_MODE_TX) {
  408. uint32_t rmt_source_clk_hz = 0;
  409. uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
  410. uint8_t carrier_level = rmt_param->tx_config.carrier_level;
  411. uint8_t idle_level = rmt_param->tx_config.idle_level;
  412. portENTER_CRITICAL(&rmt_spinlock);
  413. RMT.conf_ch[channel].conf1.tx_conti_mode = rmt_param->tx_config.loop_en;
  414. /*Memory set block number*/
  415. RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
  416. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  417. /*We use APB clock in this version, which is 80Mhz, later we will release system reference clock*/
  418. RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
  419. rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
  420. /*Set idle level */
  421. RMT.conf_ch[channel].conf1.idle_out_en = rmt_param->tx_config.idle_output_en;
  422. RMT.conf_ch[channel].conf1.idle_out_lv = idle_level;
  423. /*Set carrier*/
  424. RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
  425. if (carrier_en) {
  426. uint32_t duty_div, duty_h, duty_l;
  427. duty_div = rmt_source_clk_hz / carrier_freq_hz;
  428. duty_h = duty_div * carrier_duty_percent / 100;
  429. duty_l = duty_div - duty_h;
  430. RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
  431. RMT.carrier_duty_ch[channel].high = duty_h;
  432. RMT.carrier_duty_ch[channel].low = duty_l;
  433. } else {
  434. RMT.conf_ch[channel].conf0.carrier_out_lv = 0;
  435. RMT.carrier_duty_ch[channel].high = 0;
  436. RMT.carrier_duty_ch[channel].low = 0;
  437. }
  438. portEXIT_CRITICAL(&rmt_spinlock);
  439. ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
  440. channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
  441. }
  442. else if(RMT_MODE_RX == mode) {
  443. uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
  444. uint16_t threshold = rmt_param->rx_config.idle_threshold;
  445. portENTER_CRITICAL(&rmt_spinlock);
  446. /*clock init*/
  447. RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
  448. uint32_t rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
  449. /*memory set block number and owner*/
  450. RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
  451. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  452. /*Set idle threshold*/
  453. RMT.conf_ch[channel].conf0.idle_thres = threshold;
  454. /* Set RX filter */
  455. RMT.conf_ch[channel].conf1.rx_filter_thres = filter_cnt;
  456. RMT.conf_ch[channel].conf1.rx_filter_en = rmt_param->rx_config.filter_en;
  457. portEXIT_CRITICAL(&rmt_spinlock);
  458. ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
  459. channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
  460. }
  461. rmt_set_pin(channel, mode, gpio_num);
  462. return ESP_OK;
  463. }
  464. static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
  465. {
  466. portENTER_CRITICAL_SAFE(&rmt_spinlock);
  467. RMT.apb_conf.fifo_mask = RMT_DATA_MODE_MEM;
  468. portEXIT_CRITICAL_SAFE(&rmt_spinlock);
  469. int i;
  470. for(i = 0; i < item_num; i++) {
  471. RMTMEM.chan[channel].data32[i + mem_offset].val = item[i].val;
  472. }
  473. }
  474. esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
  475. {
  476. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
  477. RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  478. RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  479. /*Each block has 64 x 32 bits of data*/
  480. uint8_t mem_cnt = RMT.conf_ch[channel].conf0.mem_size;
  481. RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
  482. rmt_fill_memory(channel, item, item_num, mem_offset);
  483. return ESP_OK;
  484. }
  485. esp_err_t rmt_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
  486. {
  487. RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  488. RMT_CHECK(s_rmt_driver_channels == 0, "RMT driver installed, can not install generic ISR handler", ESP_FAIL);
  489. return esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  490. }
  491. esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
  492. {
  493. return esp_intr_free(handle);
  494. }
  495. static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
  496. {
  497. int block_num = RMT.conf_ch[channel].conf0.mem_size;
  498. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  499. volatile rmt_item32_t* data = RMTMEM.chan[channel].data32;
  500. int idx;
  501. for(idx = 0; idx < item_block_len; idx++) {
  502. if(data[idx].duration0 == 0) {
  503. return idx;
  504. } else if(data[idx].duration1 == 0) {
  505. return idx + 1;
  506. }
  507. }
  508. return idx;
  509. }
  510. static void IRAM_ATTR rmt_driver_isr_default(void* arg)
  511. {
  512. const uint32_t intr_st = RMT.int_st.val;
  513. uint32_t status = intr_st;
  514. uint8_t channel;
  515. portBASE_TYPE HPTaskAwoken = 0;
  516. while (status) {
  517. int i = __builtin_ffs(status) - 1;
  518. status &= ~(1 << i);
  519. #ifdef CONFIG_IDF_TARGET_ESP32
  520. if(i < 24) {
  521. #elif defined CONFIG_IDF_TARGET_ESP32S2BETA
  522. if(i >= 15) {
  523. } else if(i < 12) {
  524. #endif
  525. channel = i / 3;
  526. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  527. if(NULL == p_rmt) {
  528. continue;
  529. }
  530. switch(i % 3) {
  531. //TX END
  532. case 0:
  533. xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
  534. RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
  535. RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
  536. p_rmt->tx_data = NULL;
  537. p_rmt->tx_len_rem = 0;
  538. p_rmt->tx_offset = 0;
  539. p_rmt->tx_sub_len = 0;
  540. p_rmt->sample_cur = NULL;
  541. p_rmt->translator = false;
  542. if(rmt_tx_end_callback.function != NULL) {
  543. rmt_tx_end_callback.function(channel, rmt_tx_end_callback.arg);
  544. }
  545. break;
  546. //RX_END
  547. case 1:
  548. RMT.conf_ch[channel].conf1.rx_en = 0;
  549. int item_len = rmt_get_mem_len(channel);
  550. //change memory owner to protect data.
  551. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
  552. if(p_rmt->rx_buf) {
  553. BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void*) RMTMEM.chan[channel].data32, item_len * 4, &HPTaskAwoken);
  554. if(res == pdFALSE) {
  555. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
  556. } else {
  557. }
  558. } else {
  559. ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR\n");
  560. }
  561. RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
  562. RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
  563. RMT.conf_ch[channel].conf1.rx_en = 1;
  564. break;
  565. //ERR
  566. case 2:
  567. ESP_EARLY_LOGE(RMT_TAG, "RMT[%d] ERR", channel);
  568. ESP_EARLY_LOGE(RMT_TAG, "status: 0x%08x", RMT.status_ch[channel]);
  569. RMT.int_ena.val &= (~(BIT(i)));
  570. break;
  571. default:
  572. break;
  573. }
  574. #ifdef CONFIG_IDF_TARGET_ESP32
  575. } else {
  576. channel = i - 24;
  577. #elif defined CONFIG_IDF_TARGET_ESP32S2BETA
  578. } else if(i >= 12 && i < 16) {
  579. channel = i - 12;
  580. #endif
  581. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  582. if(p_rmt->tx_data == NULL) {
  583. //skip
  584. } else {
  585. if(p_rmt->translator) {
  586. if(p_rmt->sample_size_remain > 0) {
  587. size_t translated_size = 0;
  588. p_rmt->sample_to_rmt((void *) p_rmt->sample_cur,
  589. p_rmt->tx_buf,
  590. p_rmt->sample_size_remain,
  591. p_rmt->tx_sub_len,
  592. &translated_size,
  593. &p_rmt->tx_len_rem
  594. );
  595. p_rmt->sample_size_remain -= translated_size;
  596. p_rmt->sample_cur += translated_size;
  597. p_rmt->tx_data = p_rmt->tx_buf;
  598. } else {
  599. p_rmt->sample_cur = NULL;
  600. p_rmt->translator = false;
  601. }
  602. }
  603. const rmt_item32_t* pdata = p_rmt->tx_data;
  604. int len_rem = p_rmt->tx_len_rem;
  605. if(len_rem >= p_rmt->tx_sub_len) {
  606. rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
  607. p_rmt->tx_data += p_rmt->tx_sub_len;
  608. p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
  609. } else if(len_rem == 0) {
  610. RMTMEM.chan[channel].data32[p_rmt->tx_offset].val = 0;
  611. } else {
  612. rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
  613. RMTMEM.chan[channel].data32[p_rmt->tx_offset + len_rem].val = 0;
  614. p_rmt->tx_data += len_rem;
  615. p_rmt->tx_len_rem -= len_rem;
  616. }
  617. if(p_rmt->tx_offset == 0) {
  618. p_rmt->tx_offset = p_rmt->tx_sub_len;
  619. } else {
  620. p_rmt->tx_offset = 0;
  621. }
  622. }
  623. }
  624. }
  625. RMT.int_clr.val = intr_st;
  626. if(HPTaskAwoken == pdTRUE) {
  627. portYIELD_FROM_ISR();
  628. }
  629. }
  630. esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
  631. {
  632. esp_err_t err = ESP_OK;
  633. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  634. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) != 0, "No RMT driver for this channel", ESP_ERR_INVALID_STATE);
  635. if(p_rmt_obj[channel] == NULL) {
  636. return ESP_OK;
  637. }
  638. //Avoid blocking here(when the interrupt is disabled and do not wait tx done).
  639. if(p_rmt_obj[channel]->wait_done) {
  640. xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
  641. }
  642. rmt_set_rx_intr_en(channel, 0);
  643. rmt_set_err_intr_en(channel, 0);
  644. rmt_set_tx_intr_en(channel, 0);
  645. rmt_set_tx_thr_intr_en(channel, 0, 0xffff);
  646. _lock_acquire_recursive(&rmt_driver_isr_lock);
  647. s_rmt_driver_channels &= ~BIT(channel);
  648. if (s_rmt_driver_channels == 0) { // all channels have driver disabled
  649. err = rmt_isr_deregister(s_rmt_driver_intr_handle);
  650. s_rmt_driver_intr_handle = NULL;
  651. }
  652. _lock_release_recursive(&rmt_driver_isr_lock);
  653. if (err != ESP_OK) {
  654. return err;
  655. }
  656. if(p_rmt_obj[channel]->tx_sem) {
  657. vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
  658. p_rmt_obj[channel]->tx_sem = NULL;
  659. }
  660. if(p_rmt_obj[channel]->rx_buf) {
  661. vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
  662. p_rmt_obj[channel]->rx_buf = NULL;
  663. }
  664. if(p_rmt_obj[channel]->tx_buf) {
  665. free(p_rmt_obj[channel]->tx_buf);
  666. p_rmt_obj[channel]->tx_buf = NULL;
  667. }
  668. if(p_rmt_obj[channel]->sample_to_rmt) {
  669. p_rmt_obj[channel]->sample_to_rmt = NULL;
  670. }
  671. free(p_rmt_obj[channel]);
  672. p_rmt_obj[channel] = NULL;
  673. return ESP_OK;
  674. }
  675. esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
  676. {
  677. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  678. RMT_CHECK((s_rmt_driver_channels & BIT(channel)) == 0, "RMT driver already installed for channel", ESP_ERR_INVALID_STATE);
  679. esp_err_t err = ESP_OK;
  680. if(p_rmt_obj[channel] != NULL) {
  681. ESP_LOGD(RMT_TAG, "RMT driver already installed");
  682. return ESP_ERR_INVALID_STATE;
  683. }
  684. #if !CONFIG_SPIRAM_USE_MALLOC
  685. p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
  686. #else
  687. if( !(intr_alloc_flags & ESP_INTR_FLAG_IRAM) ) {
  688. p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
  689. } else {
  690. p_rmt_obj[channel] = (rmt_obj_t*) heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  691. }
  692. #endif
  693. if(p_rmt_obj[channel] == NULL) {
  694. ESP_LOGE(RMT_TAG, "RMT driver malloc error");
  695. return ESP_ERR_NO_MEM;
  696. }
  697. memset(p_rmt_obj[channel], 0, sizeof(rmt_obj_t));
  698. p_rmt_obj[channel]->tx_len_rem = 0;
  699. p_rmt_obj[channel]->tx_data = NULL;
  700. p_rmt_obj[channel]->channel = channel;
  701. p_rmt_obj[channel]->tx_offset = 0;
  702. p_rmt_obj[channel]->tx_sub_len = 0;
  703. p_rmt_obj[channel]->wait_done = false;
  704. p_rmt_obj[channel]->translator = false;
  705. p_rmt_obj[channel]->sample_to_rmt = NULL;
  706. if(p_rmt_obj[channel]->tx_sem == NULL) {
  707. #if !CONFIG_SPIRAM_USE_MALLOC
  708. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  709. #else
  710. p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
  711. if( !(intr_alloc_flags & ESP_INTR_FLAG_IRAM) ) {
  712. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
  713. } else {
  714. p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
  715. }
  716. #endif
  717. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  718. }
  719. if(p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
  720. p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
  721. rmt_set_rx_intr_en(channel, 1);
  722. rmt_set_err_intr_en(channel, 1);
  723. }
  724. _lock_acquire_recursive(&rmt_driver_isr_lock);
  725. if(s_rmt_driver_channels == 0) { // first RMT channel using driver
  726. err = rmt_isr_register(rmt_driver_isr_default, NULL, intr_alloc_flags, &s_rmt_driver_intr_handle);
  727. }
  728. if (err == ESP_OK) {
  729. s_rmt_driver_channels |= BIT(channel);
  730. rmt_set_tx_intr_en(channel, 1);
  731. }
  732. _lock_release_recursive(&rmt_driver_isr_lock);
  733. return err;
  734. }
  735. esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t* rmt_item, int item_num, bool wait_tx_done)
  736. {
  737. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  738. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  739. RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
  740. RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
  741. #if CONFIG_SPIRAM_USE_MALLOC
  742. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  743. if( !esp_ptr_internal(rmt_item) ) {
  744. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  745. return ESP_ERR_INVALID_ARG;
  746. }
  747. }
  748. #endif
  749. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  750. int block_num = RMT.conf_ch[channel].conf0.mem_size;
  751. int item_block_len = block_num * RMT_MEM_ITEM_NUM;
  752. int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
  753. int len_rem = item_num;
  754. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  755. // fill the memory block first
  756. if(item_num >= item_block_len) {
  757. rmt_fill_memory(channel, rmt_item, item_block_len, 0);
  758. len_rem -= item_block_len;
  759. rmt_set_tx_loop_mode(channel, false);
  760. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  761. p_rmt->tx_data = rmt_item + item_block_len;
  762. p_rmt->tx_len_rem = len_rem;
  763. p_rmt->tx_offset = 0;
  764. p_rmt->tx_sub_len = item_sub_len;
  765. } else {
  766. rmt_fill_memory(channel, rmt_item, len_rem, 0);
  767. RMTMEM.chan[channel].data32[len_rem].val = 0;
  768. p_rmt->tx_len_rem = 0;
  769. }
  770. rmt_tx_start(channel, true);
  771. p_rmt->wait_done = wait_tx_done;
  772. if(wait_tx_done) {
  773. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  774. xSemaphoreGive(p_rmt->tx_sem);
  775. }
  776. return ESP_OK;
  777. }
  778. esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
  779. {
  780. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  781. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  782. if(xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
  783. p_rmt_obj[channel]->wait_done = false;
  784. xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
  785. return ESP_OK;
  786. }
  787. else {
  788. if (wait_time != 0) { // Don't emit error message if just polling.
  789. ESP_LOGE(RMT_TAG, "Timeout on wait_tx_done");
  790. }
  791. return ESP_ERR_TIMEOUT;
  792. }
  793. }
  794. esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t* buf_handle)
  795. {
  796. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  797. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  798. RMT_CHECK(buf_handle != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
  799. *buf_handle = p_rmt_obj[channel]->rx_buf;
  800. return ESP_OK;
  801. }
  802. rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
  803. {
  804. rmt_tx_end_callback_t previous = rmt_tx_end_callback;
  805. rmt_tx_end_callback.function = function;
  806. rmt_tx_end_callback.arg = arg;
  807. return previous;
  808. }
  809. esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
  810. {
  811. RMT_CHECK(fn != NULL, RMT_TRANSLATOR_NULL_STR, ESP_ERR_INVALID_ARG);
  812. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  813. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  814. const uint32_t block_size = RMT.conf_ch[channel].conf0.mem_size * RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
  815. if (p_rmt_obj[channel]->tx_buf == NULL) {
  816. #if !CONFIG_SPIRAM_USE_MALLOC
  817. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  818. #else
  819. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  820. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
  821. } else {
  822. p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
  823. }
  824. #endif
  825. if(p_rmt_obj[channel]->tx_buf == NULL) {
  826. ESP_LOGE(RMT_TAG, "RMT translator buffer create fail");
  827. return ESP_FAIL;
  828. }
  829. }
  830. p_rmt_obj[channel]->sample_to_rmt = fn;
  831. p_rmt_obj[channel]->sample_size_remain = 0;
  832. p_rmt_obj[channel]->sample_cur = NULL;
  833. ESP_LOGD(RMT_TAG, "RMT translator init done");
  834. return ESP_OK;
  835. }
  836. esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
  837. {
  838. RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
  839. RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
  840. RMT_CHECK(p_rmt_obj[channel]->sample_to_rmt != NULL,RMT_TRANSLATOR_UNINIT_STR, ESP_FAIL);
  841. #if CONFIG_SPIRAM_USE_MALLOC
  842. if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
  843. if( !esp_ptr_internal(src) ) {
  844. ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
  845. return ESP_ERR_INVALID_ARG;
  846. }
  847. }
  848. #endif
  849. size_t item_num = 0;
  850. size_t translated_size = 0;
  851. rmt_obj_t* p_rmt = p_rmt_obj[channel];
  852. const uint32_t item_block_len = RMT.conf_ch[channel].conf0.mem_size * RMT_MEM_ITEM_NUM;
  853. const uint32_t item_sub_len = item_block_len / 2;
  854. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  855. p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &item_num);
  856. p_rmt->sample_size_remain = src_size - translated_size;
  857. p_rmt->sample_cur = src + translated_size;
  858. rmt_fill_memory(channel, p_rmt->tx_buf, item_num, 0);
  859. if (item_num == item_block_len) {
  860. rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
  861. p_rmt->tx_data = p_rmt->tx_buf;
  862. p_rmt->tx_offset = 0;
  863. p_rmt->tx_sub_len = item_sub_len;
  864. p_rmt->translator = true;
  865. } else {
  866. RMTMEM.chan[channel].data32[item_num].val = 0;
  867. p_rmt->tx_len_rem = 0;
  868. p_rmt->sample_cur = NULL;
  869. p_rmt->translator = false;
  870. }
  871. rmt_tx_start(channel, true);
  872. p_rmt->wait_done = wait_tx_done;
  873. if (wait_tx_done) {
  874. xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
  875. xSemaphoreGive(p_rmt->tx_sem);
  876. }
  877. return ESP_OK;
  878. }
  879. esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status)
  880. {
  881. RMT_CHECK(channel_status != NULL, RMT_PARAM_ERR_STR, ESP_ERR_INVALID_ARG);
  882. for(int i = 0; i < RMT_CHANNEL_MAX; i++) {
  883. channel_status->status[i]= RMT_CHANNEL_UNINIT;
  884. if( p_rmt_obj[i] != NULL ) {
  885. if( p_rmt_obj[i]->tx_sem != NULL ) {
  886. if( xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE ) {
  887. channel_status->status[i] = RMT_CHANNEL_IDLE;
  888. xSemaphoreGive(p_rmt_obj[i]->tx_sem);
  889. } else {
  890. channel_status->status[i] = RMT_CHANNEL_BUSY;
  891. }
  892. }
  893. }
  894. }
  895. return ESP_OK;
  896. }