uart.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "malloc.h"
  20. #include "freertos/FreeRTOS.h"
  21. #include "freertos/semphr.h"
  22. #include "freertos/xtensa_api.h"
  23. #include "freertos/task.h"
  24. #include "freertos/ringbuf.h"
  25. #include "soc/uart_periph.h"
  26. #include "driver/uart.h"
  27. #include "driver/gpio.h"
  28. #include "driver/uart_select.h"
  29. #include "sdkconfig.h"
  30. #if CONFIG_IDF_TARGET_ESP32
  31. #include "esp32/clk.h"
  32. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  33. #include "esp32s2beta/clk.h"
  34. #endif
  35. #define UART_NUM SOC_UART_NUM
  36. #ifdef CONFIG_UART_ISR_IN_IRAM
  37. #define UART_ISR_ATTR IRAM_ATTR
  38. #else
  39. #define UART_ISR_ATTR
  40. #endif
  41. #define XOFF (char)0x13
  42. #define XON (char)0x11
  43. static const char *UART_TAG = "uart";
  44. #define UART_CHECK(a, str, ret_val) \
  45. if (!(a)) { \
  46. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  47. return (ret_val); \
  48. }
  49. #define UART_EMPTY_THRESH_DEFAULT (10)
  50. #define UART_FULL_THRESH_DEFAULT (120)
  51. #define UART_TOUT_THRESH_DEFAULT (10)
  52. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  53. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  54. #define UART_TX_IDLE_NUM_DEFAULT (0)
  55. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  56. #define UART_MIN_WAKEUP_THRESH (2)
  57. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  58. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  59. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  60. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  61. // Check actual UART mode set
  62. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  63. typedef struct {
  64. uart_event_type_t type; /*!< UART TX data type */
  65. struct {
  66. int brk_len;
  67. size_t size;
  68. uint8_t data[0];
  69. } tx_data;
  70. } uart_tx_data_t;
  71. typedef struct {
  72. int wr;
  73. int rd;
  74. int len;
  75. int *data;
  76. } uart_pat_rb_t;
  77. typedef struct {
  78. uart_port_t uart_num; /*!< UART port number*/
  79. int queue_size; /*!< UART event queue size*/
  80. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  81. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  82. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  83. bool coll_det_flg; /*!< UART collision detection flag */
  84. //rx parameters
  85. int rx_buffered_len; /*!< UART cached data length */
  86. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  87. int rx_buf_size; /*!< RX ring buffer size */
  88. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  89. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  90. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  91. uint8_t *rx_ptr; /*!< pointer to the current data in ring buffer*/
  92. uint8_t *rx_head_ptr; /*!< pointer to the head of RX item*/
  93. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  94. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  95. uart_pat_rb_t rx_pattern_pos;
  96. //tx parameters
  97. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  98. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  99. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  100. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  101. int tx_buf_size; /*!< TX ring buffer size */
  102. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  103. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  104. uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  105. uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  106. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  107. uint32_t tx_len_cur;
  108. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  109. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  110. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  111. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  112. } uart_obj_t;
  113. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  114. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  115. static DRAM_ATTR uart_dev_t *const UART[UART_NUM_MAX] = {
  116. &UART0,
  117. &UART1,
  118. #if UART_NUM > 2
  119. &UART2
  120. #endif
  121. };
  122. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  123. portMUX_INITIALIZER_UNLOCKED,
  124. portMUX_INITIALIZER_UNLOCKED,
  125. #if UART_NUM > 2
  126. portMUX_INITIALIZER_UNLOCKED
  127. #endif
  128. };
  129. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  130. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  131. {
  132. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  133. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  134. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  135. UART[uart_num]->conf0.bit_num = data_bit;
  136. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  137. return ESP_OK;
  138. }
  139. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
  140. {
  141. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  142. *(data_bit) = UART[uart_num]->conf0.bit_num;
  143. return ESP_OK;
  144. }
  145. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  146. {
  147. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  148. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  149. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  150. #if CONFIG_IDF_TARGET_ESP32
  151. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  152. if (stop_bit == UART_STOP_BITS_2) {
  153. stop_bit = UART_STOP_BITS_1;
  154. UART[uart_num]->rs485_conf.dl1_en = 1;
  155. } else {
  156. UART[uart_num]->rs485_conf.dl1_en = 0;
  157. }
  158. #endif
  159. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  160. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  161. return ESP_OK;
  162. }
  163. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
  164. {
  165. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  166. #if CONFIG_IDF_TARGET_ESP32
  167. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  168. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  169. (*stop_bit) = UART_STOP_BITS_2;
  170. } else {
  171. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  172. }
  173. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  174. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  175. #endif
  176. return ESP_OK;
  177. }
  178. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  179. {
  180. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  181. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  182. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  183. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  184. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  185. return ESP_OK;
  186. }
  187. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
  188. {
  189. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  190. int val = UART[uart_num]->conf0.val;
  191. if (val & UART_PARITY_EN_M) {
  192. if (val & UART_PARITY_M) {
  193. (*parity_mode) = UART_PARITY_ODD;
  194. } else {
  195. (*parity_mode) = UART_PARITY_EVEN;
  196. }
  197. } else {
  198. (*parity_mode) = UART_PARITY_DISABLE;
  199. }
  200. return ESP_OK;
  201. }
  202. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  203. {
  204. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  205. esp_err_t ret = ESP_OK;
  206. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  207. int uart_clk_freq;
  208. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  209. /* this UART has been configured to use REF_TICK */
  210. uart_clk_freq = REF_CLK_FREQ;
  211. } else {
  212. uart_clk_freq = esp_clk_apb_freq();
  213. }
  214. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  215. if (clk_div < 16) {
  216. /* baud rate is too high for this clock frequency */
  217. ret = ESP_ERR_INVALID_ARG;
  218. } else {
  219. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  220. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  221. }
  222. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  223. return ret;
  224. }
  225. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
  226. {
  227. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  228. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  229. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  230. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  231. uint32_t uart_clk_freq = esp_clk_apb_freq();
  232. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  233. uart_clk_freq = REF_CLK_FREQ;
  234. }
  235. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  236. return ESP_OK;
  237. }
  238. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  239. {
  240. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  241. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  242. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  243. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  244. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  245. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  246. return ESP_OK;
  247. }
  248. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  249. {
  250. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  251. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  252. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  253. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  254. UART[uart_num]->flow_conf.sw_flow_con_en = enable ? 1 : 0;
  255. UART[uart_num]->flow_conf.xonoff_del = enable ? 1 : 0;
  256. #if CONFIG_IDF_TARGET_ESP32
  257. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  258. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  259. UART[uart_num]->swfc_conf.xon_char = XON;
  260. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  261. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  262. UART[uart_num]->swfc_conf1.xon_threshold = rx_thresh_xon;
  263. UART[uart_num]->swfc_conf0.xoff_threshold = rx_thresh_xoff;
  264. UART[uart_num]->swfc_conf1.xon_char = XON;
  265. UART[uart_num]->swfc_conf0.xoff_char = XOFF;
  266. #endif
  267. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  268. return ESP_OK;
  269. }
  270. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  271. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  272. {
  273. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  274. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  275. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  276. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  277. if (flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  278. #if CONFIG_IDF_TARGET_ESP32
  279. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  280. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  281. UART[uart_num]->mem_conf.rx_flow_thrhd = rx_thresh;
  282. #endif
  283. UART[uart_num]->conf1.rx_flow_en = 1;
  284. } else {
  285. UART[uart_num]->conf1.rx_flow_en = 0;
  286. }
  287. if (flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  288. UART[uart_num]->conf0.tx_flow_en = 1;
  289. } else {
  290. UART[uart_num]->conf0.tx_flow_en = 0;
  291. }
  292. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  293. return ESP_OK;
  294. }
  295. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
  296. {
  297. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  298. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  299. if (UART[uart_num]->conf1.rx_flow_en) {
  300. val |= UART_HW_FLOWCTRL_RTS;
  301. }
  302. if (UART[uart_num]->conf0.tx_flow_en) {
  303. val |= UART_HW_FLOWCTRL_CTS;
  304. }
  305. (*flow_ctrl) = val;
  306. return ESP_OK;
  307. }
  308. static esp_err_t UART_ISR_ATTR uart_reset_rx_fifo(uart_port_t uart_num)
  309. {
  310. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  311. #if CONFIG_IDF_TARGET_ESP32
  312. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  313. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  314. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  315. while (UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  316. READ_PERI_REG(UART_FIFO_REG(uart_num));
  317. }
  318. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  319. UART[uart_num]->conf0.rxfifo_rst = 1;
  320. UART[uart_num]->conf0.rxfifo_rst = 0;
  321. #endif
  322. return ESP_OK;
  323. }
  324. esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  325. {
  326. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  327. //intr_clr register is write-only
  328. UART[uart_num]->int_clr.val = clr_mask;
  329. return ESP_OK;
  330. }
  331. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  332. {
  333. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  334. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  335. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  336. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  337. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  338. return ESP_OK;
  339. }
  340. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  341. {
  342. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  343. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  344. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  345. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  346. return ESP_OK;
  347. }
  348. static void UART_ISR_ATTR uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  349. {
  350. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  351. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  352. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  353. }
  354. static void UART_ISR_ATTR uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  355. {
  356. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  357. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  358. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  359. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  360. }
  361. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  362. {
  363. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  364. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  365. int *pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  366. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  367. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  368. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  369. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  370. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  371. free(pdata);
  372. }
  373. return ESP_OK;
  374. }
  375. static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
  376. {
  377. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  378. esp_err_t ret = ESP_OK;
  379. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  380. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  381. int next = p_pos->wr + 1;
  382. if (next >= p_pos->len) {
  383. next = 0;
  384. }
  385. if (next == p_pos->rd) {
  386. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  387. ret = ESP_FAIL;
  388. } else {
  389. p_pos->data[p_pos->wr] = pos;
  390. p_pos->wr = next;
  391. ret = ESP_OK;
  392. }
  393. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  394. return ret;
  395. }
  396. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  397. {
  398. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  399. if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  400. return ESP_ERR_INVALID_STATE;
  401. } else {
  402. esp_err_t ret = ESP_OK;
  403. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  404. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  405. if (p_pos->rd == p_pos->wr) {
  406. ret = ESP_FAIL;
  407. } else {
  408. p_pos->rd++;
  409. }
  410. if (p_pos->rd >= p_pos->len) {
  411. p_pos->rd = 0;
  412. }
  413. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  414. return ret;
  415. }
  416. }
  417. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  418. {
  419. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  420. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  421. uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  422. int rd = p_pos->rd;
  423. while (rd != p_pos->wr) {
  424. p_pos->data[rd] -= diff_len;
  425. int rd_rec = rd;
  426. rd ++;
  427. if (rd >= p_pos->len) {
  428. rd = 0;
  429. }
  430. if (p_pos->data[rd_rec] < 0) {
  431. p_pos->rd = rd;
  432. }
  433. }
  434. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  435. return ESP_OK;
  436. }
  437. int uart_pattern_pop_pos(uart_port_t uart_num)
  438. {
  439. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  440. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  441. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  442. int pos = -1;
  443. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  444. pos = pat_pos->data[pat_pos->rd];
  445. uart_pattern_dequeue(uart_num);
  446. }
  447. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  448. return pos;
  449. }
  450. int uart_pattern_get_pos(uart_port_t uart_num)
  451. {
  452. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  453. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  454. uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  455. int pos = -1;
  456. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  457. pos = pat_pos->data[pat_pos->rd];
  458. }
  459. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  460. return pos;
  461. }
  462. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  463. {
  464. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  465. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  466. int *pdata = (int *) malloc(queue_length * sizeof(int));
  467. if (pdata == NULL) {
  468. return ESP_ERR_NO_MEM;
  469. }
  470. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  471. int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  472. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  473. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  474. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  475. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  476. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  477. free(ptmp);
  478. return ESP_OK;
  479. }
  480. #if CONFIG_IDF_TARGET_ESP32
  481. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  482. {
  483. //This function is deprecated, please use uart_enable_pattern_det_baud_intr instead.
  484. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  485. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  486. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  487. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  488. UART[uart_num]->at_cmd_char.data = pattern_chr;
  489. UART[uart_num]->at_cmd_char.char_num = chr_num;
  490. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  491. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  492. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  493. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  494. }
  495. #endif
  496. esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  497. {
  498. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  499. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  500. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  501. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  502. UART[uart_num]->at_cmd_char.data = pattern_chr;
  503. UART[uart_num]->at_cmd_char.char_num = chr_num;
  504. #if CONFIG_IDF_TARGET_ESP32
  505. int apb_clk_freq = 0;
  506. uint32_t uart_baud = 0;
  507. uint32_t uart_div = 0;
  508. uart_get_baudrate(uart_num, &uart_baud);
  509. apb_clk_freq = esp_clk_apb_freq();
  510. uart_div = apb_clk_freq / uart_baud;
  511. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout * uart_div;
  512. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle * uart_div;
  513. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle * uart_div;
  514. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  515. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  516. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  517. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  518. #endif
  519. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  520. }
  521. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  522. {
  523. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  524. }
  525. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  526. {
  527. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  528. }
  529. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  530. {
  531. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA);
  532. }
  533. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  534. {
  535. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  536. }
  537. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  538. {
  539. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  540. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  541. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  542. UART[uart_num]->int_clr.txfifo_empty = 1;
  543. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  544. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  545. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  546. return ESP_OK;
  547. }
  548. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  549. {
  550. int ret;
  551. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  552. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  553. switch(uart_num) {
  554. case UART_NUM_1:
  555. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  556. break;
  557. #if UART_NUM > 2
  558. case UART_NUM_2:
  559. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  560. break;
  561. #endif
  562. case UART_NUM_0:
  563. default:
  564. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  565. break;
  566. }
  567. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  568. return ret;
  569. }
  570. esp_err_t uart_isr_free(uart_port_t uart_num)
  571. {
  572. esp_err_t ret;
  573. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  574. if (p_uart_obj[uart_num]->intr_handle == NULL) {
  575. return ESP_ERR_INVALID_ARG;
  576. }
  577. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  578. ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  579. p_uart_obj[uart_num]->intr_handle = NULL;
  580. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  581. return ret;
  582. }
  583. //internal signal can be output to multiple GPIO pads
  584. //only one GPIO pad can connect with input signal
  585. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  586. {
  587. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  588. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  589. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  590. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  591. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  592. int tx_sig, rx_sig, rts_sig, cts_sig;
  593. switch(uart_num) {
  594. case UART_NUM_0:
  595. tx_sig = U0TXD_OUT_IDX;
  596. rx_sig = U0RXD_IN_IDX;
  597. rts_sig = U0RTS_OUT_IDX;
  598. cts_sig = U0CTS_IN_IDX;
  599. break;
  600. case UART_NUM_1:
  601. tx_sig = U1TXD_OUT_IDX;
  602. rx_sig = U1RXD_IN_IDX;
  603. rts_sig = U1RTS_OUT_IDX;
  604. cts_sig = U1CTS_IN_IDX;
  605. break;
  606. #if UART_NUM > 2
  607. case UART_NUM_2:
  608. tx_sig = U2TXD_OUT_IDX;
  609. rx_sig = U2RXD_IN_IDX;
  610. rts_sig = U2RTS_OUT_IDX;
  611. cts_sig = U2CTS_IN_IDX;
  612. break;
  613. #endif
  614. case UART_NUM_MAX:
  615. default:
  616. tx_sig = U0TXD_OUT_IDX;
  617. rx_sig = U0RXD_IN_IDX;
  618. rts_sig = U0RTS_OUT_IDX;
  619. cts_sig = U0CTS_IN_IDX;
  620. break;
  621. }
  622. if (tx_io_num >= 0) {
  623. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  624. gpio_set_level(tx_io_num, 1);
  625. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  626. }
  627. if (rx_io_num >= 0) {
  628. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  629. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  630. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  631. gpio_matrix_in(rx_io_num, rx_sig, 0);
  632. }
  633. if (rts_io_num >= 0) {
  634. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  635. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  636. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  637. }
  638. if (cts_io_num >= 0) {
  639. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  640. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  641. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  642. gpio_matrix_in(cts_io_num, cts_sig, 0);
  643. }
  644. return ESP_OK;
  645. }
  646. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  647. {
  648. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  649. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  650. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  651. UART[uart_num]->conf0.sw_rts = level & 0x1;
  652. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  653. return ESP_OK;
  654. }
  655. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  656. {
  657. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  658. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  659. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  660. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  661. return ESP_OK;
  662. }
  663. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  664. {
  665. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  666. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  667. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  668. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  669. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  670. return ESP_OK;
  671. }
  672. static periph_module_t get_periph_module(uart_port_t uart_num)
  673. {
  674. periph_module_t periph_module = PERIPH_UART0_MODULE;
  675. if (uart_num == UART_NUM_0) {
  676. periph_module = PERIPH_UART0_MODULE;
  677. } else if (uart_num == UART_NUM_1) {
  678. periph_module = PERIPH_UART1_MODULE;
  679. }
  680. #if SOC_UART_NUM > 2
  681. else if (uart_num == UART_NUM_2) {
  682. periph_module = PERIPH_UART2_MODULE;
  683. }
  684. #endif
  685. else {
  686. assert(0 && "uart_num error");
  687. }
  688. return periph_module;
  689. }
  690. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  691. {
  692. esp_err_t r;
  693. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  694. UART_CHECK((uart_config), "param null", ESP_FAIL);
  695. periph_module_t periph_module = get_periph_module(uart_num);
  696. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  697. periph_module_reset(periph_module);
  698. }
  699. periph_module_enable(periph_module);
  700. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  701. if (r != ESP_OK) {
  702. return r;
  703. }
  704. UART[uart_num]->conf0.val =
  705. (uart_config->parity << UART_PARITY_S)
  706. | (uart_config->data_bits << UART_BIT_NUM_S)
  707. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  708. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  709. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  710. if (r != ESP_OK) {
  711. return r;
  712. }
  713. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  714. if (r != ESP_OK) {
  715. return r;
  716. }
  717. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  718. //A hardware reset does not reset the fifo,
  719. //so we need to reset the fifo manually.
  720. uart_reset_rx_fifo(uart_num);
  721. return r;
  722. }
  723. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  724. {
  725. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  726. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  727. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  728. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  729. if (intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  730. #if CONFIG_IDF_TARGET_ESP32
  731. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  732. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  733. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  734. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  735. } else {
  736. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  737. }
  738. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  739. UART[uart_num]->mem_conf.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  740. #endif
  741. UART[uart_num]->conf1.rx_tout_en = 1;
  742. } else {
  743. UART[uart_num]->conf1.rx_tout_en = 0;
  744. }
  745. if (intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  746. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  747. }
  748. if (intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  749. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  750. }
  751. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  752. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  753. return ESP_OK;
  754. }
  755. static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  756. {
  757. int cnt = 0;
  758. int len = length;
  759. while (len >= 0) {
  760. if (buf[len] == pat_chr) {
  761. cnt++;
  762. } else {
  763. cnt = 0;
  764. }
  765. if (cnt >= pat_num) {
  766. break;
  767. }
  768. len --;
  769. }
  770. return len;
  771. }
  772. //internal isr handler for default driver code.
  773. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
  774. {
  775. uart_obj_t *p_uart = (uart_obj_t *) param;
  776. uint8_t uart_num = p_uart->uart_num;
  777. uart_dev_t *uart_reg = UART[uart_num];
  778. int rx_fifo_len = 0;
  779. uint8_t buf_idx = 0;
  780. uint32_t uart_intr_status = 0;
  781. uart_event_t uart_event;
  782. portBASE_TYPE HPTaskAwoken = 0;
  783. static uint8_t pat_flg = 0;
  784. while(1) {
  785. uart_intr_status = uart_reg->int_st.val;
  786. // The `continue statement` may cause the interrupt to loop infinitely
  787. // we exit the interrupt here
  788. if(uart_intr_status == 0) {
  789. break;
  790. }
  791. uart_event.type = UART_EVENT_MAX;
  792. if (uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  793. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  794. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  795. if (p_uart->tx_waiting_brk) {
  796. continue;
  797. }
  798. //TX semaphore will only be used when tx_buf_size is zero.
  799. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  800. p_uart->tx_waiting_fifo = false;
  801. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  802. } else {
  803. //We don't use TX ring buffer, because the size is zero.
  804. if (p_uart->tx_buf_size == 0) {
  805. continue;
  806. }
  807. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  808. bool en_tx_flg = false;
  809. //We need to put a loop here, in case all the buffer items are very short.
  810. //That would cause a watch_dog reset because empty interrupt happens so often.
  811. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  812. while (tx_fifo_rem) {
  813. if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  814. size_t size;
  815. p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  816. if (p_uart->tx_head) {
  817. //The first item is the data description
  818. //Get the first item to get the data information
  819. if (p_uart->tx_len_tot == 0) {
  820. p_uart->tx_ptr = NULL;
  821. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  822. if (p_uart->tx_head->type == UART_DATA_BREAK) {
  823. p_uart->tx_brk_flg = 1;
  824. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  825. }
  826. //We have saved the data description from the 1st item, return buffer.
  827. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  828. }else if(p_uart->tx_ptr == NULL) {
  829. //Update the TX item pointer, we will need this to return item to buffer.
  830. p_uart->tx_ptr = (uint8_t *) p_uart->tx_head;
  831. en_tx_flg = true;
  832. p_uart->tx_len_cur = size;
  833. }
  834. } else {
  835. //Can not get data from ring buffer, return;
  836. break;
  837. }
  838. }
  839. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  840. //To fill the TX FIFO.
  841. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  842. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  843. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  844. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  845. uart_reg->conf0.sw_rts = 0;
  846. uart_reg->int_ena.tx_done = 1;
  847. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  848. }
  849. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  850. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  851. *(p_uart->tx_ptr++) & 0xff);
  852. }
  853. p_uart->tx_len_tot -= send_len;
  854. p_uart->tx_len_cur -= send_len;
  855. tx_fifo_rem -= send_len;
  856. if (p_uart->tx_len_cur == 0) {
  857. //Return item to ring buffer.
  858. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  859. p_uart->tx_head = NULL;
  860. p_uart->tx_ptr = NULL;
  861. //Sending item done, now we need to send break if there is a record.
  862. //Set TX break signal after FIFO is empty
  863. if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  864. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  865. uart_reg->int_ena.tx_brk_done = 0;
  866. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  867. uart_reg->conf0.txd_brk = 1;
  868. uart_reg->int_clr.tx_brk_done = 1;
  869. uart_reg->int_ena.tx_brk_done = 1;
  870. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  871. p_uart->tx_waiting_brk = 1;
  872. //do not enable TX empty interrupt
  873. en_tx_flg = false;
  874. } else {
  875. //enable TX empty interrupt
  876. en_tx_flg = true;
  877. }
  878. } else {
  879. //enable TX empty interrupt
  880. en_tx_flg = true;
  881. }
  882. }
  883. }
  884. if (en_tx_flg) {
  885. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  886. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  887. }
  888. }
  889. } else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  890. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  891. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  892. ) {
  893. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  894. if (pat_flg == 1) {
  895. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  896. pat_flg = 0;
  897. }
  898. if (p_uart->rx_buffer_full_flg == false) {
  899. //We have to read out all data in RX FIFO to clear the interrupt signal
  900. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  901. #if CONFIG_IDF_TARGET_ESP32
  902. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  903. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  904. p_uart->rx_data_buf[buf_idx] = READ_PERI_REG(UART_FIFO_AHB_REG(uart_num));
  905. #endif
  906. }
  907. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  908. int pat_num = uart_reg->at_cmd_char.char_num;
  909. int pat_idx = -1;
  910. //Get the buffer from the FIFO
  911. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  912. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  913. uart_event.type = UART_PATTERN_DET;
  914. uart_event.size = rx_fifo_len;
  915. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  916. } else {
  917. //After Copying the Data From FIFO ,Clear intr_status
  918. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  919. uart_event.type = UART_DATA;
  920. uart_event.size = rx_fifo_len;
  921. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  922. if (p_uart->uart_select_notif_callback) {
  923. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  924. }
  925. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  926. }
  927. p_uart->rx_stash_len = rx_fifo_len;
  928. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  929. //Mainly for applications that uses flow control or small ring buffer.
  930. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  931. p_uart->rx_buffer_full_flg = true;
  932. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  933. if (uart_event.type == UART_PATTERN_DET) {
  934. if (rx_fifo_len < pat_num) {
  935. //some of the characters are read out in last interrupt
  936. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  937. } else {
  938. uart_pattern_enqueue(uart_num,
  939. pat_idx <= -1 ?
  940. //can not find the pattern in buffer,
  941. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  942. // find the pattern in buffer
  943. p_uart->rx_buffered_len + pat_idx);
  944. }
  945. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  946. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  947. }
  948. }
  949. uart_event.type = UART_BUFFER_FULL;
  950. } else {
  951. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  952. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  953. if (rx_fifo_len < pat_num) {
  954. //some of the characters are read out in last interrupt
  955. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  956. } else if (pat_idx >= 0) {
  957. // find pattern in statsh buffer.
  958. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  959. }
  960. }
  961. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  962. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  963. }
  964. } else {
  965. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  966. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  967. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  968. uart_reg->int_clr.at_cmd_char_det = 1;
  969. uart_event.type = UART_PATTERN_DET;
  970. uart_event.size = rx_fifo_len;
  971. pat_flg = 1;
  972. }
  973. }
  974. } else if (uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  975. // When fifo overflows, we reset the fifo.
  976. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  977. uart_reset_rx_fifo(uart_num);
  978. uart_reg->int_clr.rxfifo_ovf = 1;
  979. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  980. uart_event.type = UART_FIFO_OVF;
  981. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  982. if (p_uart->uart_select_notif_callback) {
  983. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  984. }
  985. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  986. } else if (uart_intr_status & UART_BRK_DET_INT_ST_M) {
  987. uart_reg->int_clr.brk_det = 1;
  988. uart_event.type = UART_BREAK;
  989. } else if (uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  990. uart_reg->int_clr.frm_err = 1;
  991. uart_event.type = UART_FRAME_ERR;
  992. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  993. if (p_uart->uart_select_notif_callback) {
  994. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  995. }
  996. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  997. } else if (uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  998. uart_reg->int_clr.parity_err = 1;
  999. uart_event.type = UART_PARITY_ERR;
  1000. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  1001. if (p_uart->uart_select_notif_callback) {
  1002. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  1003. }
  1004. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  1005. } else if (uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  1006. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1007. uart_reg->conf0.txd_brk = 0;
  1008. uart_reg->int_ena.tx_brk_done = 0;
  1009. uart_reg->int_clr.tx_brk_done = 1;
  1010. if (p_uart->tx_brk_flg == 1) {
  1011. uart_reg->int_ena.txfifo_empty = 1;
  1012. }
  1013. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1014. if (p_uart->tx_brk_flg == 1) {
  1015. p_uart->tx_brk_flg = 0;
  1016. p_uart->tx_waiting_brk = 0;
  1017. } else {
  1018. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  1019. }
  1020. } else if (uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  1021. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  1022. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  1023. } else if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  1024. uart_reg->int_clr.at_cmd_char_det = 1;
  1025. uart_event.type = UART_PATTERN_DET;
  1026. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  1027. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  1028. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  1029. // RS485 collision or frame error interrupt triggered
  1030. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  1031. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1032. uart_reset_rx_fifo(uart_num);
  1033. // Set collision detection flag
  1034. p_uart_obj[uart_num]->coll_det_flg = true;
  1035. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1036. uart_event.type = UART_EVENT_MAX;
  1037. } else if (uart_intr_status & UART_TX_DONE_INT_ST_M) {
  1038. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  1039. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  1040. // If RS485 half duplex mode is enable then reset FIFO and
  1041. // reset RTS pin to start receiver driver
  1042. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1043. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1044. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  1045. uart_reg->conf0.sw_rts = 1;
  1046. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  1047. }
  1048. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  1049. } else {
  1050. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  1051. uart_event.type = UART_EVENT_MAX;
  1052. }
  1053. if (uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  1054. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  1055. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  1056. }
  1057. }
  1058. }
  1059. if(HPTaskAwoken == pdTRUE) {
  1060. portYIELD_FROM_ISR();
  1061. }
  1062. }
  1063. /**************************************************************/
  1064. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1065. {
  1066. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1067. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1068. BaseType_t res;
  1069. portTickType ticks_start = xTaskGetTickCount();
  1070. //Take tx_mux
  1071. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1072. if (res == pdFALSE) {
  1073. return ESP_ERR_TIMEOUT;
  1074. }
  1075. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1076. typeof(UART0.status) status = UART[uart_num]->status;
  1077. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  1078. #ifdef CONFIG_IDF_TARGET_ESP32
  1079. if (status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  1080. #else /* TODO: check transmitter state machine on ESP32S2Beta */
  1081. if (status.txfifo_cnt == 0) {
  1082. #endif
  1083. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1084. return ESP_OK;
  1085. }
  1086. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1087. TickType_t ticks_end = xTaskGetTickCount();
  1088. if (ticks_end - ticks_start > ticks_to_wait) {
  1089. ticks_to_wait = 0;
  1090. } else {
  1091. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1092. }
  1093. //take 2nd tx_done_sem, wait given from ISR
  1094. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1095. if (res == pdFALSE) {
  1096. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1097. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1098. return ESP_ERR_TIMEOUT;
  1099. }
  1100. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1101. return ESP_OK;
  1102. }
  1103. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1104. {
  1105. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1106. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1107. UART[uart_num]->conf0.txd_brk = 1;
  1108. UART[uart_num]->int_clr.tx_brk_done = 1;
  1109. UART[uart_num]->int_ena.tx_brk_done = 1;
  1110. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1111. return ESP_OK;
  1112. }
  1113. //Fill UART tx_fifo and return a number,
  1114. //This function by itself is not thread-safe, always call from within a muxed section.
  1115. static int uart_fill_fifo(uart_port_t uart_num, const char *buffer, uint32_t len)
  1116. {
  1117. uint8_t i = 0;
  1118. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1119. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1120. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1121. // Set the RTS pin if RS485 mode is enabled
  1122. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1123. UART[uart_num]->conf0.sw_rts = 0;
  1124. UART[uart_num]->int_ena.tx_done = 1;
  1125. }
  1126. for (i = 0; i < copy_cnt; i++) {
  1127. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1128. }
  1129. return copy_cnt;
  1130. }
  1131. int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
  1132. {
  1133. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1134. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1135. UART_CHECK(buffer, "buffer null", (-1));
  1136. if (len == 0) {
  1137. return 0;
  1138. }
  1139. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1140. int tx_len = uart_fill_fifo(uart_num, (const char *) buffer, len);
  1141. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1142. return tx_len;
  1143. }
  1144. static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
  1145. {
  1146. if (size == 0) {
  1147. return 0;
  1148. }
  1149. size_t original_size = size;
  1150. //lock for uart_tx
  1151. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1152. p_uart_obj[uart_num]->coll_det_flg = false;
  1153. if (p_uart_obj[uart_num]->tx_buf_size > 0) {
  1154. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1155. int offset = 0;
  1156. uart_tx_data_t evt;
  1157. evt.tx_data.size = size;
  1158. evt.tx_data.brk_len = brk_len;
  1159. if (brk_en) {
  1160. evt.type = UART_DATA_BREAK;
  1161. } else {
  1162. evt.type = UART_DATA;
  1163. }
  1164. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1165. while (size > 0) {
  1166. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1167. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
  1168. size -= send_size;
  1169. offset += send_size;
  1170. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1171. }
  1172. } else {
  1173. while (size) {
  1174. //semaphore for tx_fifo available
  1175. if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1176. size_t sent = uart_fill_fifo(uart_num, (char *) src, size);
  1177. if (sent < size) {
  1178. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1179. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1180. }
  1181. size -= sent;
  1182. src += sent;
  1183. }
  1184. }
  1185. if (brk_en) {
  1186. uart_set_break(uart_num, brk_len);
  1187. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1188. }
  1189. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1190. }
  1191. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1192. return original_size;
  1193. }
  1194. int uart_write_bytes(uart_port_t uart_num, const char *src, size_t size)
  1195. {
  1196. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1197. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1198. UART_CHECK(src, "buffer null", (-1));
  1199. return uart_tx_all(uart_num, src, size, 0, 0);
  1200. }
  1201. int uart_write_bytes_with_break(uart_port_t uart_num, const char *src, size_t size, int brk_len)
  1202. {
  1203. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1204. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1205. UART_CHECK((size > 0), "uart size error", (-1));
  1206. UART_CHECK((src), "uart data null", (-1));
  1207. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1208. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1209. }
  1210. static bool uart_check_buf_full(uart_port_t uart_num)
  1211. {
  1212. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1213. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1214. if (res == pdTRUE) {
  1215. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1216. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1217. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1218. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1219. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1220. return true;
  1221. }
  1222. }
  1223. return false;
  1224. }
  1225. int uart_read_bytes(uart_port_t uart_num, uint8_t *buf, uint32_t length, TickType_t ticks_to_wait)
  1226. {
  1227. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1228. UART_CHECK((buf), "uart data null", (-1));
  1229. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1230. uint8_t *data = NULL;
  1231. size_t size;
  1232. size_t copy_len = 0;
  1233. int len_tmp;
  1234. if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) {
  1235. return -1;
  1236. }
  1237. while (length) {
  1238. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1239. data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1240. if (data) {
  1241. p_uart_obj[uart_num]->rx_head_ptr = data;
  1242. p_uart_obj[uart_num]->rx_ptr = data;
  1243. p_uart_obj[uart_num]->rx_cur_remain = size;
  1244. } else {
  1245. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1246. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1247. //to solve the possible asynchronous issues.
  1248. if (uart_check_buf_full(uart_num)) {
  1249. //This condition will never be true if `uart_read_bytes`
  1250. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1251. continue;
  1252. } else {
  1253. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1254. return copy_len;
  1255. }
  1256. }
  1257. }
  1258. if (p_uart_obj[uart_num]->rx_cur_remain > length) {
  1259. len_tmp = length;
  1260. } else {
  1261. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1262. }
  1263. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1264. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1265. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1266. uart_pattern_queue_update(uart_num, len_tmp);
  1267. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1268. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1269. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1270. copy_len += len_tmp;
  1271. length -= len_tmp;
  1272. if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1273. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1274. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1275. p_uart_obj[uart_num]->rx_ptr = NULL;
  1276. uart_check_buf_full(uart_num);
  1277. }
  1278. }
  1279. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1280. return copy_len;
  1281. }
  1282. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
  1283. {
  1284. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1285. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1286. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1287. return ESP_OK;
  1288. }
  1289. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1290. esp_err_t uart_flush_input(uart_port_t uart_num)
  1291. {
  1292. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1293. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1294. uart_obj_t *p_uart = p_uart_obj[uart_num];
  1295. uint8_t *data;
  1296. size_t size;
  1297. //rx sem protect the ring buffer read related functions
  1298. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1299. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1300. while (true) {
  1301. if (p_uart->rx_head_ptr) {
  1302. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1303. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1304. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1305. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1306. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1307. p_uart->rx_ptr = NULL;
  1308. p_uart->rx_cur_remain = 0;
  1309. p_uart->rx_head_ptr = NULL;
  1310. }
  1311. data = (uint8_t *) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1312. if (data == NULL) {
  1313. if ( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1314. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1315. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1316. }
  1317. //We also need to clear the `rx_buffer_full_flg` here.
  1318. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1319. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1320. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1321. break;
  1322. }
  1323. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1324. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1325. uart_pattern_queue_update(uart_num, size);
  1326. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1327. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1328. if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1329. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1330. if (res == pdTRUE) {
  1331. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1332. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1333. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1334. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1335. }
  1336. }
  1337. }
  1338. p_uart->rx_ptr = NULL;
  1339. p_uart->rx_cur_remain = 0;
  1340. p_uart->rx_head_ptr = NULL;
  1341. uart_reset_rx_fifo(uart_num);
  1342. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1343. xSemaphoreGive(p_uart->rx_mux);
  1344. return ESP_OK;
  1345. }
  1346. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1347. {
  1348. esp_err_t r;
  1349. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1350. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1351. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1352. #if CONFIG_UART_ISR_IN_IRAM
  1353. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0,
  1354. "should set ESP_INTR_FLAG_IRAM flag when CONFIG_UART_ISR_IN_IRAM is enabled", ESP_FAIL);
  1355. #else
  1356. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0,
  1357. "should not set ESP_INTR_FLAG_IRAM when CONFIG_UART_ISR_IN_IRAM is not enabled", ESP_FAIL);
  1358. #endif
  1359. if (p_uart_obj[uart_num] == NULL) {
  1360. p_uart_obj[uart_num] = (uart_obj_t *) calloc(1, sizeof(uart_obj_t));
  1361. if (p_uart_obj[uart_num] == NULL) {
  1362. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1363. return ESP_FAIL;
  1364. }
  1365. p_uart_obj[uart_num]->uart_num = uart_num;
  1366. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1367. p_uart_obj[uart_num]->coll_det_flg = false;
  1368. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1369. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1370. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1371. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1372. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1373. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1374. p_uart_obj[uart_num]->queue_size = queue_size;
  1375. p_uart_obj[uart_num]->tx_ptr = NULL;
  1376. p_uart_obj[uart_num]->tx_head = NULL;
  1377. p_uart_obj[uart_num]->tx_len_tot = 0;
  1378. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1379. p_uart_obj[uart_num]->tx_brk_len = 0;
  1380. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1381. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1382. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1383. if (uart_queue) {
  1384. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1385. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1386. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1387. } else {
  1388. p_uart_obj[uart_num]->xQueueUart = NULL;
  1389. }
  1390. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1391. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1392. p_uart_obj[uart_num]->rx_ptr = NULL;
  1393. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1394. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1395. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1396. if (tx_buffer_size > 0) {
  1397. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1398. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1399. } else {
  1400. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1401. p_uart_obj[uart_num]->tx_buf_size = 0;
  1402. }
  1403. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1404. } else {
  1405. ESP_LOGE(UART_TAG, "UART driver already installed");
  1406. return ESP_FAIL;
  1407. }
  1408. r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1409. if (r != ESP_OK) {
  1410. goto err;
  1411. }
  1412. uart_intr_config_t uart_intr = {
  1413. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1414. | UART_RXFIFO_TOUT_INT_ENA_M
  1415. | UART_FRM_ERR_INT_ENA_M
  1416. | UART_RXFIFO_OVF_INT_ENA_M
  1417. | UART_BRK_DET_INT_ENA_M
  1418. | UART_PARITY_ERR_INT_ENA_M,
  1419. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1420. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1421. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1422. };
  1423. r = uart_intr_config(uart_num, &uart_intr);
  1424. if (r != ESP_OK) {
  1425. goto err;
  1426. }
  1427. return r;
  1428. err:
  1429. uart_driver_delete(uart_num);
  1430. return r;
  1431. }
  1432. //Make sure no other tasks are still using UART before you call this function
  1433. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1434. {
  1435. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1436. if (p_uart_obj[uart_num] == NULL) {
  1437. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1438. return ESP_OK;
  1439. }
  1440. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1441. uart_disable_rx_intr(uart_num);
  1442. uart_disable_tx_intr(uart_num);
  1443. uart_pattern_link_free(uart_num);
  1444. if (p_uart_obj[uart_num]->tx_fifo_sem) {
  1445. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1446. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1447. }
  1448. if (p_uart_obj[uart_num]->tx_done_sem) {
  1449. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1450. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1451. }
  1452. if (p_uart_obj[uart_num]->tx_brk_sem) {
  1453. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1454. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1455. }
  1456. if (p_uart_obj[uart_num]->tx_mux) {
  1457. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1458. p_uart_obj[uart_num]->tx_mux = NULL;
  1459. }
  1460. if (p_uart_obj[uart_num]->rx_mux) {
  1461. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1462. p_uart_obj[uart_num]->rx_mux = NULL;
  1463. }
  1464. if (p_uart_obj[uart_num]->xQueueUart) {
  1465. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1466. p_uart_obj[uart_num]->xQueueUart = NULL;
  1467. }
  1468. if (p_uart_obj[uart_num]->rx_ring_buf) {
  1469. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1470. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1471. }
  1472. if (p_uart_obj[uart_num]->tx_ring_buf) {
  1473. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1474. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1475. }
  1476. free(p_uart_obj[uart_num]);
  1477. p_uart_obj[uart_num] = NULL;
  1478. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  1479. periph_module_t periph_module = get_periph_module(uart_num);
  1480. periph_module_disable(periph_module);
  1481. }
  1482. return ESP_OK;
  1483. }
  1484. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1485. {
  1486. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1487. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1488. }
  1489. }
  1490. portMUX_TYPE *uart_get_selectlock(void)
  1491. {
  1492. return &uart_selectlock;
  1493. }
  1494. // Set UART mode
  1495. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1496. {
  1497. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1498. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1499. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1500. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1501. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1502. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1503. }
  1504. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1505. UART[uart_num]->rs485_conf.en = 0;
  1506. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1507. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1508. UART[uart_num]->conf0.irda_en = 0;
  1509. UART[uart_num]->conf0.sw_rts = 0;
  1510. switch (mode) {
  1511. case UART_MODE_UART:
  1512. break;
  1513. case UART_MODE_RS485_COLLISION_DETECT:
  1514. // This mode allows read while transmitting that allows collision detection
  1515. p_uart_obj[uart_num]->coll_det_flg = false;
  1516. // Transmitter’s output signal loop back to the receiver’s input signal
  1517. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1518. // Transmitter should send data when its receiver is busy
  1519. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1520. UART[uart_num]->rs485_conf.en = 1;
  1521. // Enable collision detection interrupts
  1522. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1523. | UART_RXFIFO_FULL_INT_ENA
  1524. | UART_RS485_CLASH_INT_ENA
  1525. | UART_RS485_FRM_ERR_INT_ENA
  1526. | UART_RS485_PARITY_ERR_INT_ENA);
  1527. break;
  1528. case UART_MODE_RS485_APP_CTRL:
  1529. // Application software control, remove echo
  1530. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1531. UART[uart_num]->rs485_conf.en = 1;
  1532. break;
  1533. case UART_MODE_RS485_HALF_DUPLEX:
  1534. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1535. UART[uart_num]->conf0.sw_rts = 1;
  1536. UART[uart_num]->rs485_conf.en = 1;
  1537. // Must be set to 0 to automatically remove echo
  1538. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1539. // This is to void collision
  1540. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1541. break;
  1542. case UART_MODE_IRDA:
  1543. UART[uart_num]->conf0.irda_en = 1;
  1544. break;
  1545. default:
  1546. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1547. break;
  1548. }
  1549. p_uart_obj[uart_num]->uart_mode = mode;
  1550. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1551. return ESP_OK;
  1552. }
  1553. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1554. {
  1555. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1556. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1557. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1558. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1559. // transmission time of one symbol (~11 bit) on current baudrate
  1560. if (tout_thresh > 0) {
  1561. #if CONFIG_IDF_TARGET_ESP32
  1562. //ESP32 hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1563. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1564. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1565. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT) & UART_RX_TOUT_THRHD_V);
  1566. } else {
  1567. UART[uart_num]->conf1.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1568. }
  1569. #elif CONFIG_IDF_TARGET_ESP32S2BETA
  1570. UART[uart_num]->mem_conf.rx_tout_thrhd = ((tout_thresh) & UART_RX_TOUT_THRHD_V);
  1571. #endif
  1572. UART[uart_num]->conf1.rx_tout_en = 1;
  1573. } else {
  1574. UART[uart_num]->conf1.rx_tout_en = 0;
  1575. }
  1576. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1577. return ESP_OK;
  1578. }
  1579. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
  1580. {
  1581. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1582. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1583. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1584. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1585. "wrong mode", ESP_ERR_INVALID_ARG);
  1586. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1587. return ESP_OK;
  1588. }
  1589. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1590. {
  1591. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1592. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1593. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1594. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1595. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1596. return ESP_OK;
  1597. }
  1598. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
  1599. {
  1600. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1601. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1602. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1603. return ESP_OK;
  1604. }
  1605. void uart_wait_tx_idle_polling(uart_port_t uart_num)
  1606. {
  1607. uint32_t status;
  1608. do {
  1609. status = READ_PERI_REG(UART_STATUS_REG(uart_num));
  1610. /* either tx count or state is non-zero */
  1611. } while ((status & (UART_ST_UTX_OUT_M | UART_TXFIFO_CNT_M)) != 0);
  1612. }