cpu_start.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. // Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdint.h>
  15. #include <string.h>
  16. #include "esp_attr.h"
  17. #include "esp_err.h"
  18. #include "esp32/rom/ets_sys.h"
  19. #include "esp32/rom/uart.h"
  20. #include "esp32/rom/rtc.h"
  21. #include "esp32/rom/cache.h"
  22. #include "soc/cpu.h"
  23. #include "soc/rtc.h"
  24. #include "soc/dport_reg.h"
  25. #include "soc/gpio_periph.h"
  26. #include "soc/timer_periph.h"
  27. #include "soc/rtc_wdt.h"
  28. #include "soc/efuse_periph.h"
  29. #include "driver/rtc_io.h"
  30. #include "freertos/FreeRTOS.h"
  31. #include "freertos/task.h"
  32. #include "freertos/semphr.h"
  33. #include "freertos/queue.h"
  34. #include "freertos/portmacro.h"
  35. #include "esp_heap_caps_init.h"
  36. #include "sdkconfig.h"
  37. #include "esp_system.h"
  38. #include "esp_spi_flash.h"
  39. #include "esp_flash_internal.h"
  40. #include "nvs_flash.h"
  41. #include "esp_event.h"
  42. #include "esp_spi_flash.h"
  43. #include "esp_private/crosscore_int.h"
  44. #include "esp_log.h"
  45. #include "esp_vfs_dev.h"
  46. #include "esp_newlib.h"
  47. #include "esp32/brownout.h"
  48. #include "esp_int_wdt.h"
  49. #include "esp_task.h"
  50. #include "esp_task_wdt.h"
  51. #include "esp_phy_init.h"
  52. #include "esp32/cache_err_int.h"
  53. #include "esp_coexist_internal.h"
  54. #include "esp_core_dump.h"
  55. #include "esp_app_trace.h"
  56. #include "esp_private/dbg_stubs.h"
  57. #include "esp_flash_encrypt.h"
  58. #include "esp32/spiram.h"
  59. #include "esp_clk_internal.h"
  60. #include "esp_timer.h"
  61. #include "esp_pm.h"
  62. #include "esp_private/pm_impl.h"
  63. #include "trax.h"
  64. #include "esp_ota_ops.h"
  65. #include "esp_efuse.h"
  66. #include "bootloader_flash_config.h"
  67. #ifdef CONFIG_APP_BUILD_TYPE_ELF_RAM
  68. #include "esp32/rom/efuse.h"
  69. #include "esp32/rom/spi_flash.h"
  70. #endif // CONFIG_APP_BUILD_TYPE_ELF_RAM
  71. #define STRINGIFY(s) STRINGIFY2(s)
  72. #define STRINGIFY2(s) #s
  73. void start_cpu0(void) __attribute__((weak, alias("start_cpu0_default"))) __attribute__((noreturn));
  74. void start_cpu0_default(void) IRAM_ATTR __attribute__((noreturn));
  75. #if !CONFIG_FREERTOS_UNICORE
  76. static void IRAM_ATTR call_start_cpu1(void) __attribute__((noreturn));
  77. void start_cpu1(void) __attribute__((weak, alias("start_cpu1_default"))) __attribute__((noreturn));
  78. void start_cpu1_default(void) IRAM_ATTR __attribute__((noreturn));
  79. static bool app_cpu_started = false;
  80. #endif //!CONFIG_FREERTOS_UNICORE
  81. static void do_global_ctors(void);
  82. static void main_task(void* args);
  83. extern void app_main(void);
  84. extern esp_err_t esp_pthread_init(void);
  85. extern int _bss_start;
  86. extern int _bss_end;
  87. extern int _rtc_bss_start;
  88. extern int _rtc_bss_end;
  89. #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
  90. extern int _ext_ram_bss_start;
  91. extern int _ext_ram_bss_end;
  92. #endif
  93. extern int _init_start;
  94. extern void (*__init_array_start)(void);
  95. extern void (*__init_array_end)(void);
  96. extern volatile int port_xSchedulerRunning[2];
  97. static const char* TAG = "cpu_start";
  98. struct object { long placeholder[ 10 ]; };
  99. void __register_frame_info (const void *begin, struct object *ob);
  100. extern char __eh_frame[];
  101. //If CONFIG_SPIRAM_IGNORE_NOTFOUND is set and external RAM is not found or errors out on testing, this is set to false.
  102. static bool s_spiram_okay=true;
  103. /*
  104. * We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
  105. * and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
  106. */
  107. void IRAM_ATTR call_start_cpu0(void)
  108. {
  109. #if CONFIG_FREERTOS_UNICORE
  110. RESET_REASON rst_reas[1];
  111. #else
  112. RESET_REASON rst_reas[2];
  113. #endif
  114. cpu_configure_region_protection();
  115. cpu_init_memctl();
  116. //Move exception vectors to IRAM
  117. asm volatile (\
  118. "wsr %0, vecbase\n" \
  119. ::"r"(&_init_start));
  120. rst_reas[0] = rtc_get_reset_reason(0);
  121. #if !CONFIG_FREERTOS_UNICORE
  122. rst_reas[1] = rtc_get_reset_reason(1);
  123. #endif
  124. // from panic handler we can be reset by RWDT or TG0WDT
  125. if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET
  126. #if !CONFIG_FREERTOS_UNICORE
  127. || rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET
  128. #endif
  129. ) {
  130. #ifndef CONFIG_BOOTLOADER_WDT_ENABLE
  131. rtc_wdt_disable();
  132. #endif
  133. }
  134. //Clear BSS. Please do not attempt to do any complex stuff (like early logging) before this.
  135. memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
  136. /* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */
  137. if (rst_reas[0] != DEEPSLEEP_RESET) {
  138. memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start));
  139. }
  140. #if CONFIG_SPIRAM_BOOT_INIT
  141. esp_spiram_init_cache();
  142. if (esp_spiram_init() != ESP_OK) {
  143. #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
  144. ESP_EARLY_LOGE(TAG, "Failed to init external RAM, needed for external .bss segment");
  145. abort();
  146. #endif
  147. #if CONFIG_SPIRAM_IGNORE_NOTFOUND
  148. ESP_EARLY_LOGI(TAG, "Failed to init external RAM; continuing without it.");
  149. s_spiram_okay = false;
  150. #else
  151. ESP_EARLY_LOGE(TAG, "Failed to init external RAM!");
  152. abort();
  153. #endif
  154. }
  155. #endif
  156. ESP_EARLY_LOGI(TAG, "Pro cpu up.");
  157. if (LOG_LOCAL_LEVEL >= ESP_LOG_INFO) {
  158. const esp_app_desc_t *app_desc = esp_ota_get_app_description();
  159. ESP_EARLY_LOGI(TAG, "Application information:");
  160. #ifndef CONFIG_APP_EXCLUDE_PROJECT_NAME_VAR
  161. ESP_EARLY_LOGI(TAG, "Project name: %s", app_desc->project_name);
  162. #endif
  163. #ifndef CONFIG_APP_EXCLUDE_PROJECT_VER_VAR
  164. ESP_EARLY_LOGI(TAG, "App version: %s", app_desc->version);
  165. #endif
  166. #ifdef CONFIG_BOOTLOADER_APP_SECURE_VERSION
  167. ESP_EARLY_LOGI(TAG, "Secure version: %d", app_desc->secure_version);
  168. #endif
  169. #ifdef CONFIG_APP_COMPILE_TIME_DATE
  170. ESP_EARLY_LOGI(TAG, "Compile time: %s %s", app_desc->date, app_desc->time);
  171. #endif
  172. char buf[17];
  173. esp_ota_get_app_elf_sha256(buf, sizeof(buf));
  174. ESP_EARLY_LOGI(TAG, "ELF file SHA256: %s...", buf);
  175. ESP_EARLY_LOGI(TAG, "ESP-IDF: %s", app_desc->idf_ver);
  176. }
  177. #if !CONFIG_FREERTOS_UNICORE
  178. if (REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_DIS_APP_CPU)) {
  179. ESP_EARLY_LOGE(TAG, "Running on single core chip, but application is built with dual core support.");
  180. ESP_EARLY_LOGE(TAG, "Please enable CONFIG_FREERTOS_UNICORE option in menuconfig.");
  181. abort();
  182. }
  183. ESP_EARLY_LOGI(TAG, "Starting app cpu, entry point is %p", call_start_cpu1);
  184. #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
  185. esp_flash_encryption_init_checks();
  186. #endif
  187. //Flush and enable icache for APP CPU
  188. Cache_Flush(1);
  189. Cache_Read_Enable(1);
  190. esp_cpu_unstall(1);
  191. // Enable clock and reset APP CPU. Note that OpenOCD may have already
  192. // enabled clock and taken APP CPU out of reset. In this case don't reset
  193. // APP CPU again, as that will clear the breakpoints which may have already
  194. // been set.
  195. if (!DPORT_GET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN)) {
  196. DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
  197. DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_C_REG, DPORT_APPCPU_RUNSTALL);
  198. DPORT_SET_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
  199. DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_A_REG, DPORT_APPCPU_RESETTING);
  200. }
  201. ets_set_appcpu_boot_addr((uint32_t)call_start_cpu1);
  202. while (!app_cpu_started) {
  203. ets_delay_us(100);
  204. }
  205. #else
  206. ESP_EARLY_LOGI(TAG, "Single core mode");
  207. DPORT_CLEAR_PERI_REG_MASK(DPORT_APPCPU_CTRL_B_REG, DPORT_APPCPU_CLKGATE_EN);
  208. #endif
  209. #if CONFIG_SPIRAM_MEMTEST
  210. if (s_spiram_okay) {
  211. bool ext_ram_ok=esp_spiram_test();
  212. if (!ext_ram_ok) {
  213. ESP_EARLY_LOGE(TAG, "External RAM failed memory test!");
  214. abort();
  215. }
  216. }
  217. #endif
  218. #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
  219. memset(&_ext_ram_bss_start, 0, (&_ext_ram_bss_end - &_ext_ram_bss_start) * sizeof(_ext_ram_bss_start));
  220. #endif
  221. /* Initialize heap allocator. WARNING: This *needs* to happen *after* the app cpu has booted.
  222. If the heap allocator is initialized first, it will put free memory linked list items into
  223. memory also used by the ROM. Starting the app cpu will let its ROM initialize that memory,
  224. corrupting those linked lists. Initializing the allocator *after* the app cpu has booted
  225. works around this problem.
  226. With SPI RAM enabled, there's a second reason: half of the SPI RAM will be managed by the
  227. app CPU, and when that is not up yet, the memory will be inaccessible and heap_caps_init may
  228. fail initializing it properly. */
  229. heap_caps_init();
  230. ESP_EARLY_LOGI(TAG, "Pro cpu start user code");
  231. start_cpu0();
  232. }
  233. #if !CONFIG_FREERTOS_UNICORE
  234. static void wdt_reset_cpu1_info_enable(void)
  235. {
  236. DPORT_REG_SET_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_PDEBUG_ENABLE | DPORT_APP_CPU_RECORD_ENABLE);
  237. DPORT_REG_CLR_BIT(DPORT_APP_CPU_RECORD_CTRL_REG, DPORT_APP_CPU_RECORD_ENABLE);
  238. }
  239. void IRAM_ATTR call_start_cpu1(void)
  240. {
  241. asm volatile (\
  242. "wsr %0, vecbase\n" \
  243. ::"r"(&_init_start));
  244. ets_set_appcpu_boot_addr(0);
  245. cpu_configure_region_protection();
  246. cpu_init_memctl();
  247. #if CONFIG_ESP_CONSOLE_UART_NONE
  248. ets_install_putc1(NULL);
  249. ets_install_putc2(NULL);
  250. #else // CONFIG_ESP_CONSOLE_UART_NONE
  251. uartAttach();
  252. ets_install_uart_printf();
  253. uart_tx_switch(CONFIG_ESP_CONSOLE_UART_NUM);
  254. #endif
  255. wdt_reset_cpu1_info_enable();
  256. ESP_EARLY_LOGI(TAG, "App cpu up.");
  257. app_cpu_started = 1;
  258. start_cpu1();
  259. }
  260. #endif //!CONFIG_FREERTOS_UNICORE
  261. static void intr_matrix_clear(void)
  262. {
  263. //Clear all the interrupt matrix register
  264. for (int i = ETS_WIFI_MAC_INTR_SOURCE; i <= ETS_CACHE_IA_INTR_SOURCE; i++) {
  265. intr_matrix_set(0, i, ETS_INVALID_INUM);
  266. #if !CONFIG_FREERTOS_UNICORE
  267. intr_matrix_set(1, i, ETS_INVALID_INUM);
  268. #endif
  269. }
  270. }
  271. void start_cpu0_default(void)
  272. {
  273. esp_err_t err;
  274. esp_setup_syscall_table();
  275. if (s_spiram_okay) {
  276. #if CONFIG_SPIRAM_BOOT_INIT && (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
  277. esp_err_t r=esp_spiram_add_to_heapalloc();
  278. if (r != ESP_OK) {
  279. ESP_EARLY_LOGE(TAG, "External RAM could not be added to heap!");
  280. abort();
  281. }
  282. #if CONFIG_SPIRAM_USE_MALLOC
  283. heap_caps_malloc_extmem_enable(CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL);
  284. #endif
  285. #endif
  286. }
  287. //Enable trace memory and immediately start trace.
  288. #if CONFIG_ESP32_TRAX
  289. #if CONFIG_ESP32_TRAX_TWOBANKS
  290. trax_enable(TRAX_ENA_PRO_APP);
  291. #else
  292. trax_enable(TRAX_ENA_PRO);
  293. #endif
  294. trax_start_trace(TRAX_DOWNCOUNT_WORDS);
  295. #endif
  296. esp_clk_init();
  297. esp_perip_clk_init();
  298. intr_matrix_clear();
  299. #ifndef CONFIG_ESP_CONSOLE_UART_NONE
  300. #ifdef CONFIG_PM_ENABLE
  301. const int uart_clk_freq = REF_CLK_FREQ;
  302. /* When DFS is enabled, use REFTICK as UART clock source */
  303. CLEAR_PERI_REG_MASK(UART_CONF0_REG(CONFIG_ESP_CONSOLE_UART_NUM), UART_TICK_REF_ALWAYS_ON);
  304. #else
  305. const int uart_clk_freq = APB_CLK_FREQ;
  306. #endif // CONFIG_PM_DFS_ENABLE
  307. uart_div_modify(CONFIG_ESP_CONSOLE_UART_NUM, (uart_clk_freq << 4) / CONFIG_ESP_CONSOLE_UART_BAUDRATE);
  308. #endif // CONFIG_ESP_CONSOLE_UART_NONE
  309. #if CONFIG_ESP32_BROWNOUT_DET
  310. esp_brownout_init();
  311. #endif
  312. #if CONFIG_ESP32_DISABLE_BASIC_ROM_CONSOLE
  313. esp_efuse_disable_basic_rom_console();
  314. #endif
  315. rtc_gpio_force_hold_dis_all();
  316. esp_vfs_dev_uart_register();
  317. esp_reent_init(_GLOBAL_REENT);
  318. #ifndef CONFIG_ESP_CONSOLE_UART_NONE
  319. const char* default_uart_dev = "/dev/uart/" STRINGIFY(CONFIG_ESP_CONSOLE_UART_NUM);
  320. _GLOBAL_REENT->_stdin = fopen(default_uart_dev, "r");
  321. _GLOBAL_REENT->_stdout = fopen(default_uart_dev, "w");
  322. _GLOBAL_REENT->_stderr = fopen(default_uart_dev, "w");
  323. #else
  324. _GLOBAL_REENT->_stdin = (FILE*) &__sf_fake_stdin;
  325. _GLOBAL_REENT->_stdout = (FILE*) &__sf_fake_stdout;
  326. _GLOBAL_REENT->_stderr = (FILE*) &__sf_fake_stderr;
  327. #endif
  328. esp_timer_init();
  329. esp_set_time_from_rtc();
  330. #if CONFIG_ESP32_APPTRACE_ENABLE
  331. err = esp_apptrace_init();
  332. assert(err == ESP_OK && "Failed to init apptrace module on PRO CPU!");
  333. #endif
  334. #if CONFIG_SYSVIEW_ENABLE
  335. SEGGER_SYSVIEW_Conf();
  336. #endif
  337. #if CONFIG_ESP32_DEBUG_STUBS_ENABLE
  338. esp_dbg_stubs_init();
  339. #endif
  340. err = esp_pthread_init();
  341. assert(err == ESP_OK && "Failed to init pthread module!");
  342. do_global_ctors();
  343. #if CONFIG_ESP_INT_WDT
  344. esp_int_wdt_init();
  345. //Initialize the interrupt watch dog for CPU0.
  346. esp_int_wdt_cpu_init();
  347. #endif
  348. esp_cache_err_int_init();
  349. esp_crosscore_int_init();
  350. #ifndef CONFIG_FREERTOS_UNICORE
  351. esp_dport_access_int_init();
  352. #endif
  353. bootloader_flash_update_id();
  354. #if !CONFIG_SPIRAM_BOOT_INIT
  355. // Read the application binary image header. This will also decrypt the header if the image is encrypted.
  356. esp_image_header_t fhdr = {0};
  357. #ifdef CONFIG_APP_BUILD_TYPE_ELF_RAM
  358. fhdr.spi_mode = ESP_IMAGE_SPI_MODE_DIO;
  359. fhdr.spi_speed = ESP_IMAGE_SPI_SPEED_40M;
  360. fhdr.spi_size = ESP_IMAGE_FLASH_SIZE_4MB;
  361. extern void esp_rom_spiflash_attach(uint32_t, bool);
  362. esp_rom_spiflash_attach(ets_efuse_get_spiconfig(), false);
  363. esp_rom_spiflash_unlock();
  364. #else
  365. // This assumes that DROM is the first segment in the application binary, i.e. that we can read
  366. // the binary header through cache by accessing SOC_DROM_LOW address.
  367. memcpy(&fhdr, (void*) SOC_DROM_LOW, sizeof(fhdr));
  368. #endif // CONFIG_APP_BUILD_TYPE_ELF_RAM
  369. // If psram is uninitialized, we need to improve some flash configuration.
  370. bootloader_flash_clock_config(&fhdr);
  371. bootloader_flash_gpio_config(&fhdr);
  372. bootloader_flash_dummy_config(&fhdr);
  373. bootloader_flash_cs_timing_config();
  374. #endif //!CONFIG_SPIRAM_BOOT_INIT
  375. spi_flash_init();
  376. /* init default OS-aware flash access critical section */
  377. spi_flash_guard_set(&g_flash_guard_default_ops);
  378. esp_flash_app_init();
  379. esp_err_t flash_ret = esp_flash_init_default_chip();
  380. assert(flash_ret == ESP_OK);
  381. #ifdef CONFIG_PM_ENABLE
  382. esp_pm_impl_init();
  383. #ifdef CONFIG_PM_DFS_INIT_AUTO
  384. int xtal_freq = (int) rtc_clk_xtal_freq_get();
  385. esp_pm_config_esp32_t cfg = {
  386. .max_freq_mhz = CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ,
  387. .min_freq_mhz = xtal_freq,
  388. };
  389. esp_pm_configure(&cfg);
  390. #endif //CONFIG_PM_DFS_INIT_AUTO
  391. #endif //CONFIG_PM_ENABLE
  392. #if CONFIG_ESP32_ENABLE_COREDUMP
  393. esp_core_dump_init();
  394. size_t core_data_sz = 0;
  395. size_t core_data_addr = 0;
  396. if (esp_core_dump_image_get(&core_data_addr, &core_data_sz) == ESP_OK && core_data_sz > 0) {
  397. ESP_LOGI(TAG, "Found core dump %d bytes in flash @ 0x%x", core_data_sz, core_data_addr);
  398. }
  399. #endif
  400. #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
  401. esp_coex_adapter_register(&g_coex_adapter_funcs);
  402. #endif
  403. portBASE_TYPE res = xTaskCreatePinnedToCore(&main_task, "main",
  404. ESP_TASK_MAIN_STACK, NULL,
  405. ESP_TASK_MAIN_PRIO, NULL, 0);
  406. assert(res == pdTRUE);
  407. ESP_LOGI(TAG, "Starting scheduler on PRO CPU.");
  408. vTaskStartScheduler();
  409. abort(); /* Only get to here if not enough free heap to start scheduler */
  410. }
  411. #if !CONFIG_FREERTOS_UNICORE
  412. void start_cpu1_default(void)
  413. {
  414. // Wait for FreeRTOS initialization to finish on PRO CPU
  415. while (port_xSchedulerRunning[0] == 0) {
  416. ;
  417. }
  418. #if CONFIG_ESP32_TRAX_TWOBANKS
  419. trax_start_trace(TRAX_DOWNCOUNT_WORDS);
  420. #endif
  421. #if CONFIG_ESP32_APPTRACE_ENABLE
  422. esp_err_t err = esp_apptrace_init();
  423. assert(err == ESP_OK && "Failed to init apptrace module on APP CPU!");
  424. #endif
  425. #if CONFIG_ESP_INT_WDT
  426. //Initialize the interrupt watch dog for CPU1.
  427. esp_int_wdt_cpu_init();
  428. #endif
  429. //Take care putting stuff here: if asked, FreeRTOS will happily tell you the scheduler
  430. //has started, but it isn't active *on this CPU* yet.
  431. esp_cache_err_int_init();
  432. esp_crosscore_int_init();
  433. esp_dport_access_int_init();
  434. ESP_EARLY_LOGI(TAG, "Starting scheduler on APP CPU.");
  435. xPortStartScheduler();
  436. abort(); /* Only get to here if FreeRTOS somehow very broken */
  437. }
  438. #endif //!CONFIG_FREERTOS_UNICORE
  439. #ifdef CONFIG_COMPILER_CXX_EXCEPTIONS
  440. size_t __cxx_eh_arena_size_get(void)
  441. {
  442. return CONFIG_COMPILER_CXX_EXCEPTIONS_EMG_POOL_SIZE;
  443. }
  444. #endif
  445. static void do_global_ctors(void)
  446. {
  447. #ifdef CONFIG_COMPILER_CXX_EXCEPTIONS
  448. static struct object ob;
  449. __register_frame_info( __eh_frame, &ob );
  450. #endif
  451. void (**p)(void);
  452. for (p = &__init_array_end - 1; p >= &__init_array_start; --p) {
  453. (*p)();
  454. }
  455. }
  456. static void main_task(void* args)
  457. {
  458. #if !CONFIG_FREERTOS_UNICORE
  459. // Wait for FreeRTOS initialization to finish on APP CPU, before replacing its startup stack
  460. while (port_xSchedulerRunning[1] == 0) {
  461. ;
  462. }
  463. #endif
  464. //Enable allocation in region where the startup stacks were located.
  465. heap_caps_enable_nonos_stack_heaps();
  466. // Now we have startup stack RAM available for heap, enable any DMA pool memory
  467. #if CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL
  468. esp_err_t r = esp_spiram_reserve_dma_pool(CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL);
  469. if (r != ESP_OK) {
  470. ESP_EARLY_LOGE(TAG, "Could not reserve internal/DMA pool (error 0x%x)", r);
  471. abort();
  472. }
  473. #endif
  474. //Initialize task wdt if configured to do so
  475. #ifdef CONFIG_ESP_TASK_WDT_PANIC
  476. ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_ESP_TASK_WDT_TIMEOUT_S, true));
  477. #elif CONFIG_ESP_TASK_WDT
  478. ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_ESP_TASK_WDT_TIMEOUT_S, false));
  479. #endif
  480. //Add IDLE 0 to task wdt
  481. #ifdef CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0
  482. TaskHandle_t idle_0 = xTaskGetIdleTaskHandleForCPU(0);
  483. if(idle_0 != NULL){
  484. ESP_ERROR_CHECK(esp_task_wdt_add(idle_0));
  485. }
  486. #endif
  487. //Add IDLE 1 to task wdt
  488. #ifdef CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU1
  489. TaskHandle_t idle_1 = xTaskGetIdleTaskHandleForCPU(1);
  490. if(idle_1 != NULL){
  491. ESP_ERROR_CHECK(esp_task_wdt_add(idle_1));
  492. }
  493. #endif
  494. // Now that the application is about to start, disable boot watchdog
  495. #ifndef CONFIG_BOOTLOADER_WDT_DISABLE_IN_USER_CODE
  496. rtc_wdt_disable();
  497. #endif
  498. #ifdef CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE
  499. const esp_partition_t *efuse_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_EFUSE_EM, NULL);
  500. if (efuse_partition) {
  501. esp_efuse_init(efuse_partition->address, efuse_partition->size);
  502. }
  503. #endif
  504. app_main();
  505. vTaskDelete(NULL);
  506. }