cpu_start.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402
  1. // Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdint.h>
  15. #include <string.h>
  16. #include "sdkconfig.h"
  17. #include "esp_attr.h"
  18. #include "esp_err.h"
  19. #include "esp32s2beta/rom/ets_sys.h"
  20. #include "esp32s2beta/rom/uart.h"
  21. #include "esp32s2beta/rom/rtc.h"
  22. #include "esp32s2beta/rom/cache.h"
  23. #include "esp32s2beta/dport_access.h"
  24. #include "esp32s2beta/brownout.h"
  25. #include "esp32s2beta/cache_err_int.h"
  26. #include "esp32s2beta/spiram.h"
  27. #include "soc/cpu.h"
  28. #include "soc/rtc.h"
  29. #include "soc/dport_reg.h"
  30. #include "soc/io_mux_reg.h"
  31. #include "soc/rtc_cntl_reg.h"
  32. #include "soc/timer_group_reg.h"
  33. #include "soc/periph_defs.h"
  34. #include "soc/rtc_wdt.h"
  35. #include "driver/rtc_io.h"
  36. #include "freertos/FreeRTOS.h"
  37. #include "freertos/task.h"
  38. #include "freertos/semphr.h"
  39. #include "freertos/queue.h"
  40. #include "freertos/portmacro.h"
  41. #include "esp_heap_caps_init.h"
  42. #include "esp_system.h"
  43. #include "esp_spi_flash.h"
  44. #include "nvs_flash.h"
  45. #include "esp_event.h"
  46. #include "esp_spi_flash.h"
  47. #include "esp_ipc.h"
  48. #include "esp_private/crosscore_int.h"
  49. #include "esp_log.h"
  50. #include "esp_vfs_dev.h"
  51. #include "esp_newlib.h"
  52. #include "esp_int_wdt.h"
  53. #include "esp_task.h"
  54. #include "esp_task_wdt.h"
  55. #include "esp_phy_init.h"
  56. #include "esp_coexist_internal.h"
  57. #include "esp_debug_helpers.h"
  58. #include "esp_core_dump.h"
  59. #include "esp_app_trace.h"
  60. #include "esp_private/dbg_stubs.h"
  61. #include "esp_clk_internal.h"
  62. #include "esp_timer.h"
  63. #include "esp_pm.h"
  64. #include "esp_private/pm_impl.h"
  65. #include "trax.h"
  66. #include "esp_efuse.h"
  67. #define STRINGIFY(s) STRINGIFY2(s)
  68. #define STRINGIFY2(s) #s
  69. void start_cpu0(void) __attribute__((weak, alias("start_cpu0_default"))) __attribute__((noreturn));
  70. void start_cpu0_default(void) IRAM_ATTR __attribute__((noreturn));
  71. static void do_global_ctors(void);
  72. static void main_task(void* args);
  73. extern void app_main(void);
  74. extern esp_err_t esp_pthread_init(void);
  75. extern int _bss_start;
  76. extern int _bss_end;
  77. extern int _rtc_bss_start;
  78. extern int _rtc_bss_end;
  79. extern int _init_start;
  80. extern void (*__init_array_start)(void);
  81. extern void (*__init_array_end)(void);
  82. extern volatile int port_xSchedulerRunning[2];
  83. static const char* TAG = "cpu_start";
  84. struct object { long placeholder[ 10 ]; };
  85. void __register_frame_info (const void *begin, struct object *ob);
  86. extern char __eh_frame[];
  87. //If CONFIG_SPIRAM_IGNORE_NOTFOUND is set and external RAM is not found or errors out on testing, this is set to false.
  88. static bool s_spiram_okay=true;
  89. /*
  90. * We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
  91. * and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
  92. */
  93. void IRAM_ATTR call_start_cpu0(void)
  94. {
  95. RESET_REASON rst_reas;
  96. cpu_configure_region_protection();
  97. //Move exception vectors to IRAM
  98. asm volatile (\
  99. "wsr %0, vecbase\n" \
  100. ::"r"(&_init_start));
  101. rst_reas = rtc_get_reset_reason(0);
  102. // from panic handler we can be reset by RWDT or TG0WDT
  103. if (rst_reas == RTCWDT_SYS_RESET || rst_reas == TG0WDT_SYS_RESET) {
  104. #ifndef CONFIG_BOOTLOADER_WDT_ENABLE
  105. rtc_wdt_disable();
  106. #endif
  107. }
  108. //Clear BSS. Please do not attempt to do any complex stuff (like early logging) before this.
  109. memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
  110. /* Unless waking from deep sleep (implying RTC memory is intact), clear RTC bss */
  111. if (rst_reas != DEEPSLEEP_RESET) {
  112. memset(&_rtc_bss_start, 0, (&_rtc_bss_end - &_rtc_bss_start) * sizeof(_rtc_bss_start));
  113. }
  114. /* Configure the mode of instruction cache : cache size, cache associated ways, cache line size. */
  115. extern void esp_config_instruction_cache_mode(void);
  116. esp_config_instruction_cache_mode();
  117. /* copy MMU table from ICache to DCache, so we can use DCache to access rodata later. */
  118. #if CONFIG_ESP32S2_RODATA_USE_DATA_CACHE
  119. MMU_Drom0_I2D_Copy();
  120. #endif
  121. /* If we need use SPIRAM, we should use data cache, or if we want to access rodata, we also should use data cache.
  122. Configure the mode of data : cache size, cache associated ways, cache line size.
  123. Enable data cache, so if we don't use SPIRAM, it just works. */
  124. #if CONFIG_SPIRAM_BOOT_INIT || CONFIG_ESP32S2_RODATA_USE_DATA_CACHE
  125. extern void esp_config_data_cache_mode(void);
  126. esp_config_data_cache_mode();
  127. Cache_Enable_DCache(0);
  128. #endif
  129. /* In SPIRAM code, we will reconfigure data cache, as well as instruction cache, so that we can:
  130. 1. make data buses works with SPIRAM
  131. 2. make instruction and rodata work with SPIRAM, still through instruction cache */
  132. #if CONFIG_SPIRAM_BOOT_INIT
  133. esp_spiram_init_cache();
  134. if (esp_spiram_init() != ESP_OK) {
  135. #if CONFIG_SPIRAM_IGNORE_NOTFOUND
  136. ESP_EARLY_LOGI(TAG, "Failed to init external RAM; continuing without it.");
  137. s_spiram_okay = false;
  138. #else
  139. ESP_EARLY_LOGE(TAG, "Failed to init external RAM!");
  140. abort();
  141. #endif
  142. }
  143. #endif
  144. /* Start to use data cache to access rodata. */
  145. #if CONFIG_ESP32S2_RODATA_USE_DATA_CACHE
  146. extern void esp_switch_rodata_to_dcache(void);
  147. esp_switch_rodata_to_dcache();
  148. #endif
  149. ESP_EARLY_LOGI(TAG, "Pro cpu up.");
  150. ESP_EARLY_LOGI(TAG, "Single core mode");
  151. #if CONFIG_SPIRAM_MEMTEST
  152. if (s_spiram_okay) {
  153. bool ext_ram_ok=esp_spiram_test();
  154. if (!ext_ram_ok) {
  155. ESP_EARLY_LOGE(TAG, "External RAM failed memory test!");
  156. abort();
  157. }
  158. }
  159. #endif
  160. #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
  161. extern void esp_spiram_enable_instruction_access(void);
  162. esp_spiram_enable_instruction_access();
  163. #endif
  164. #if SPIRAM_RODATA
  165. extern void esp_spiram_enable_rodata_access(void);
  166. esp_spiram_enable_rodata_access();
  167. #endif
  168. #if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP || CONFIG_ESP32S2_DATA_CACHE_WRAP
  169. uint32_t icache_wrap_enable = 0,dcache_wrap_enable = 0;
  170. #if CONFIG_ESP32S2_INSTRUCTION_CACHE_WRAP
  171. icache_wrap_enable = 1;
  172. #endif
  173. #if CONFIG_ESP32S2_DATA_CACHE_WRAP
  174. dcache_wrap_enable = 1;
  175. #endif
  176. extern void esp_enable_cache_wrap(uint32_t icache_wrap_enable, uint32_t dcache_wrap_enable);
  177. esp_enable_cache_wrap(icache_wrap_enable, dcache_wrap_enable);
  178. #endif
  179. /* Initialize heap allocator. WARNING: This *needs* to happen *after* the app cpu has booted.
  180. If the heap allocator is initialized first, it will put free memory linked list items into
  181. memory also used by the ROM. Starting the app cpu will let its ROM initialize that memory,
  182. corrupting those linked lists. Initializing the allocator *after* the app cpu has booted
  183. works around this problem.
  184. With SPI RAM enabled, there's a second reason: half of the SPI RAM will be managed by the
  185. app CPU, and when that is not up yet, the memory will be inaccessible and heap_caps_init may
  186. fail initializing it properly. */
  187. heap_caps_init();
  188. ESP_EARLY_LOGI(TAG, "Pro cpu start user code");
  189. start_cpu0();
  190. }
  191. static void intr_matrix_clear(void)
  192. {
  193. //Clear all the interrupt matrix register
  194. for (int i = ETS_WIFI_MAC_INTR_SOURCE; i < ETS_MAX_INTR_SOURCE; i++) {
  195. intr_matrix_set(0, i, ETS_INVALID_INUM);
  196. }
  197. }
  198. void start_cpu0_default(void)
  199. {
  200. esp_err_t err;
  201. esp_setup_syscall_table();
  202. if (s_spiram_okay) {
  203. #if CONFIG_SPIRAM_BOOT_INIT && (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC)
  204. esp_err_t r=esp_spiram_add_to_heapalloc();
  205. if (r != ESP_OK) {
  206. ESP_EARLY_LOGE(TAG, "External RAM could not be added to heap!");
  207. abort();
  208. }
  209. #if CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL
  210. r=esp_spiram_reserve_dma_pool(CONFIG_SPIRAM_MALLOC_RESERVE_INTERNAL);
  211. if (r != ESP_OK) {
  212. ESP_EARLY_LOGE(TAG, "Could not reserve internal/DMA pool!");
  213. abort();
  214. }
  215. #endif
  216. #if CONFIG_SPIRAM_USE_MALLOC
  217. heap_caps_malloc_extmem_enable(CONFIG_SPIRAM_MALLOC_ALWAYSINTERNAL);
  218. #endif
  219. #endif
  220. }
  221. //Enable trace memory and immediately start trace.
  222. #if CONFIG_ESP32S2_TRAX
  223. trax_enable(TRAX_ENA_PRO);
  224. trax_start_trace(TRAX_DOWNCOUNT_WORDS);
  225. #endif
  226. esp_clk_init();
  227. esp_perip_clk_init();
  228. intr_matrix_clear();
  229. #ifndef CONFIG_ESP_CONSOLE_UART_NONE
  230. #ifdef CONFIG_PM_ENABLE
  231. const int uart_clk_freq = REF_CLK_FREQ;
  232. /* When DFS is enabled, use REFTICK as UART clock source */
  233. CLEAR_PERI_REG_MASK(UART_CONF0_REG(CONFIG_ESP_CONSOLE_UART_NUM), UART_TICK_REF_ALWAYS_ON);
  234. #else
  235. const int uart_clk_freq = APB_CLK_FREQ;
  236. #endif // CONFIG_PM_DFS_ENABLE
  237. uart_div_modify(CONFIG_ESP_CONSOLE_UART_NUM, (uart_clk_freq << 4) / CONFIG_ESP_CONSOLE_UART_BAUDRATE);
  238. #endif // CONFIG_ESP_CONSOLE_UART_NONE
  239. #if CONFIG_ESP32S2_BROWNOUT_DET
  240. esp_brownout_init();
  241. #endif
  242. #if CONFIG_ESP32S2_DISABLE_BASIC_ROM_CONSOLE
  243. esp_efuse_disable_basic_rom_console();
  244. #endif
  245. rtc_gpio_force_hold_dis_all();
  246. esp_vfs_dev_uart_register();
  247. esp_reent_init(_GLOBAL_REENT);
  248. #ifndef CONFIG_ESP_CONSOLE_UART_NONE
  249. const char* default_uart_dev = "/dev/uart/" STRINGIFY(CONFIG_ESP_CONSOLE_UART_NUM);
  250. _GLOBAL_REENT->_stdin = fopen(default_uart_dev, "r");
  251. _GLOBAL_REENT->_stdout = fopen(default_uart_dev, "w");
  252. _GLOBAL_REENT->_stderr = fopen(default_uart_dev, "w");
  253. #else
  254. _GLOBAL_REENT->_stdin = (FILE*) &__sf_fake_stdin;
  255. _GLOBAL_REENT->_stdout = (FILE*) &__sf_fake_stdout;
  256. _GLOBAL_REENT->_stderr = (FILE*) &__sf_fake_stderr;
  257. #endif
  258. esp_timer_init();
  259. esp_set_time_from_rtc();
  260. #if CONFIG_ESP32_APPTRACE_ENABLE
  261. err = esp_apptrace_init();
  262. assert(err == ESP_OK && "Failed to init apptrace module on PRO CPU!");
  263. #endif
  264. #if CONFIG_SYSVIEW_ENABLE
  265. SEGGER_SYSVIEW_Conf();
  266. #endif
  267. #if CONFIG_ESP32S2_DEBUG_STUBS_ENABLE
  268. esp_dbg_stubs_init();
  269. #endif
  270. err = esp_pthread_init();
  271. assert(err == ESP_OK && "Failed to init pthread module!");
  272. do_global_ctors();
  273. #if CONFIG_ESP_INT_WDT
  274. esp_int_wdt_init();
  275. //Initialize the interrupt watch dog
  276. esp_int_wdt_cpu_init();
  277. #endif
  278. esp_cache_err_int_init();
  279. esp_crosscore_int_init();
  280. spi_flash_init();
  281. /* init default OS-aware flash access critical section */
  282. spi_flash_guard_set(&g_flash_guard_default_ops);
  283. #ifdef CONFIG_PM_ENABLE
  284. esp_pm_impl_init();
  285. #ifdef CONFIG_PM_DFS_INIT_AUTO
  286. rtc_cpu_freq_t max_freq;
  287. rtc_clk_cpu_freq_from_mhz(CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ, &max_freq);
  288. esp_pm_config_esp32_t cfg = {
  289. .max_cpu_freq = max_freq,
  290. .min_cpu_freq = RTC_CPU_FREQ_XTAL
  291. };
  292. esp_pm_configure(&cfg);
  293. #endif //CONFIG_PM_DFS_INIT_AUTO
  294. #endif //CONFIG_PM_ENABLE
  295. #if CONFIG_ESP32_ENABLE_COREDUMP
  296. esp_core_dump_init();
  297. #endif
  298. portBASE_TYPE res = xTaskCreatePinnedToCore(&main_task, "main",
  299. ESP_TASK_MAIN_STACK, NULL,
  300. ESP_TASK_MAIN_PRIO, NULL, 0);
  301. assert(res == pdTRUE);
  302. ESP_LOGI(TAG, "Starting scheduler on PRO CPU.");
  303. vTaskStartScheduler();
  304. abort(); /* Only get to here if not enough free heap to start scheduler */
  305. }
  306. #ifdef CONFIG_COMPILER_CXX_EXCEPTIONS
  307. size_t __cxx_eh_arena_size_get(void)
  308. {
  309. return CONFIG_COMPILER_CXX_EXCEPTIONS_EMG_POOL_SIZE;
  310. }
  311. #endif
  312. static void do_global_ctors(void)
  313. {
  314. #ifdef CONFIG_COMPILER_CXX_EXCEPTIONS
  315. static struct object ob;
  316. __register_frame_info( __eh_frame, &ob );
  317. #endif
  318. void (**p)(void);
  319. for (p = &__init_array_end - 1; p >= &__init_array_start; --p) {
  320. (*p)();
  321. }
  322. }
  323. static void main_task(void* args)
  324. {
  325. //Enable allocation in region where the startup stacks were located.
  326. heap_caps_enable_nonos_stack_heaps();
  327. //Initialize task wdt if configured to do so
  328. #ifdef CONFIG_ESP_TASK_WDT_PANIC
  329. ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_ESP_TASK_WDT_TIMEOUT_S, true));
  330. #elif CONFIG_ESP_TASK_WDT
  331. ESP_ERROR_CHECK(esp_task_wdt_init(CONFIG_ESP_TASK_WDT_TIMEOUT_S, false));
  332. #endif
  333. //Add IDLE 0 to task wdt
  334. #ifdef CONFIG_ESP_TASK_WDT_CHECK_IDLE_TASK_CPU0
  335. TaskHandle_t idle_0 = xTaskGetIdleTaskHandleForCPU(0);
  336. if(idle_0 != NULL){
  337. ESP_ERROR_CHECK(esp_task_wdt_add(idle_0));
  338. }
  339. #endif
  340. // Now that the application is about to start, disable boot watchdog
  341. #ifndef CONFIG_BOOTLOADER_WDT_DISABLE_IN_USER_CODE
  342. rtc_wdt_disable();
  343. #endif
  344. #ifdef CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE
  345. const esp_partition_t *efuse_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_EFUSE_EM, NULL);
  346. if (efuse_partition) {
  347. esp_efuse_init(efuse_partition->address, efuse_partition->size);
  348. }
  349. #endif
  350. app_main();
  351. vTaskDelete(NULL);
  352. }