pm_impl.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818
  1. // Copyright 2016-2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <stdbool.h>
  16. #include <string.h>
  17. #include <sys/param.h>
  18. #include "esp_attr.h"
  19. #include "esp_err.h"
  20. #include "esp_pm.h"
  21. #include "esp_log.h"
  22. #include "esp_private/crosscore_int.h"
  23. #include "soc/rtc.h"
  24. #include "hal/cpu_hal.h"
  25. #include "hal/uart_ll.h"
  26. #include "hal/uart_types.h"
  27. #include "freertos/FreeRTOS.h"
  28. #include "freertos/task.h"
  29. #if __XTENSA__
  30. #include "freertos/xtensa_timer.h"
  31. #include "xtensa/core-macros.h"
  32. #endif
  33. #include "esp_private/pm_impl.h"
  34. #include "esp_private/pm_trace.h"
  35. #include "esp_private/esp_timer_private.h"
  36. #include "esp_sleep.h"
  37. #include "sdkconfig.h"
  38. // [refactor-todo] opportunity for further refactor
  39. #if CONFIG_IDF_TARGET_ESP32
  40. #include "esp32/clk.h"
  41. #include "esp32/pm.h"
  42. #include "driver/gpio.h"
  43. #elif CONFIG_IDF_TARGET_ESP32S2
  44. #include "esp32s2/clk.h"
  45. #include "esp32s2/pm.h"
  46. #include "driver/gpio.h"
  47. #elif CONFIG_IDF_TARGET_ESP32S3
  48. #include "esp32s3/clk.h"
  49. #include "esp32s3/pm.h"
  50. #elif CONFIG_IDF_TARGET_ESP32C3
  51. #include "esp32c3/clk.h"
  52. #include "esp32c3/pm.h"
  53. #include "driver/gpio.h"
  54. #include "esp_private/sleep_modes.h"
  55. #endif
  56. #define MHZ (1000000)
  57. #if __XTENSA__
  58. /* CCOMPARE update timeout, in CPU cycles. Any value above ~600 cycles will work
  59. * for the purpose of detecting a deadlock.
  60. */
  61. #define CCOMPARE_UPDATE_TIMEOUT 1000000
  62. /* When changing CCOMPARE, don't allow changes if the difference is less
  63. * than this. This is to prevent setting CCOMPARE below CCOUNT.
  64. */
  65. #define CCOMPARE_MIN_CYCLES_IN_FUTURE 1000
  66. #endif
  67. /* When light sleep is used, wake this number of microseconds earlier than
  68. * the next tick.
  69. */
  70. #define LIGHT_SLEEP_EARLY_WAKEUP_US 100
  71. #if CONFIG_IDF_TARGET_ESP32
  72. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  73. #define REF_CLK_DIV_MIN 10
  74. #define DEFAULT_CPU_FREQ CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ
  75. #elif CONFIG_IDF_TARGET_ESP32S2
  76. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  77. #define REF_CLK_DIV_MIN 2
  78. #define DEFAULT_CPU_FREQ CONFIG_ESP32S2_DEFAULT_CPU_FREQ_MHZ
  79. #elif CONFIG_IDF_TARGET_ESP32S3
  80. /* Minimal divider at which REF_CLK_FREQ can be obtained */
  81. #define REF_CLK_DIV_MIN 2
  82. #define DEFAULT_CPU_FREQ CONFIG_ESP32S3_DEFAULT_CPU_FREQ_MHZ
  83. #elif CONFIG_IDF_TARGET_ESP32C3
  84. #define REF_CLK_DIV_MIN 2
  85. #define DEFAULT_CPU_FREQ CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ
  86. #endif
  87. #ifdef CONFIG_PM_PROFILING
  88. #define WITH_PROFILING
  89. #endif
  90. static portMUX_TYPE s_switch_lock = portMUX_INITIALIZER_UNLOCKED;
  91. /* The following state variables are protected using s_switch_lock: */
  92. /* Current sleep mode; When switching, contains old mode until switch is complete */
  93. static pm_mode_t s_mode = PM_MODE_CPU_MAX;
  94. /* True when switch is in progress */
  95. static volatile bool s_is_switching;
  96. /* When switch is in progress, this is the mode we are switching into */
  97. static pm_mode_t s_new_mode = PM_MODE_CPU_MAX;
  98. /* Number of times each mode was locked */
  99. static size_t s_mode_lock_counts[PM_MODE_COUNT];
  100. /* Bit mask of locked modes. BIT(i) is set iff s_mode_lock_counts[i] > 0. */
  101. static uint32_t s_mode_mask;
  102. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  103. #define PERIPH_SKIP_LIGHT_SLEEP_NO 1
  104. /* Indicates if light sleep shoule be skipped by peripherals. */
  105. static skip_light_sleep_cb_t s_periph_skip_light_sleep_cb[PERIPH_SKIP_LIGHT_SLEEP_NO];
  106. /* Indicates if light sleep entry was skipped in vApplicationSleep for given CPU.
  107. * This in turn gets used in IDLE hook to decide if `waiti` needs
  108. * to be invoked or not.
  109. */
  110. static bool s_skipped_light_sleep[portNUM_PROCESSORS];
  111. #if portNUM_PROCESSORS == 2
  112. /* When light sleep is finished on one CPU, it is possible that the other CPU
  113. * will enter light sleep again very soon, before interrupts on the first CPU
  114. * get a chance to run. To avoid such situation, set a flag for the other CPU to
  115. * skip light sleep attempt.
  116. */
  117. static bool s_skip_light_sleep[portNUM_PROCESSORS];
  118. #endif // portNUM_PROCESSORS == 2
  119. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  120. /* A flag indicating that Idle hook has run on a given CPU;
  121. * Next interrupt on the same CPU will take s_rtos_lock_handle.
  122. */
  123. static bool s_core_idle[portNUM_PROCESSORS];
  124. /* When no RTOS tasks are active, these locks are released to allow going into
  125. * a lower power mode. Used by ISR hook and idle hook.
  126. */
  127. static esp_pm_lock_handle_t s_rtos_lock_handle[portNUM_PROCESSORS];
  128. /* Lookup table of CPU frequency configs to be used in each mode.
  129. * Initialized by esp_pm_impl_init and modified by esp_pm_configure.
  130. */
  131. rtc_cpu_freq_config_t s_cpu_freq_by_mode[PM_MODE_COUNT];
  132. /* Whether automatic light sleep is enabled */
  133. static bool s_light_sleep_en = false;
  134. /* When configuration is changed, current frequency may not match the
  135. * newly configured frequency for the current mode. This is an indicator
  136. * to the mode switch code to get the actual current frequency instead of
  137. * relying on the current mode.
  138. */
  139. static bool s_config_changed = false;
  140. #ifdef WITH_PROFILING
  141. /* Time, in microseconds, spent so far in each mode */
  142. static pm_time_t s_time_in_mode[PM_MODE_COUNT];
  143. /* Timestamp, in microseconds, when the mode switch last happened */
  144. static pm_time_t s_last_mode_change_time;
  145. /* User-readable mode names, used by esp_pm_impl_dump_stats */
  146. static const char* s_mode_names[] = {
  147. "SLEEP",
  148. "APB_MIN",
  149. "APB_MAX",
  150. "CPU_MAX"
  151. };
  152. #endif // WITH_PROFILING
  153. #if __XTENSA__
  154. /* Indicates to the ISR hook that CCOMPARE needs to be updated on the given CPU.
  155. * Used in conjunction with cross-core interrupt to update CCOMPARE on the other CPU.
  156. */
  157. static volatile bool s_need_update_ccompare[portNUM_PROCESSORS];
  158. /* Divider and multiplier used to adjust (ccompare - ccount) duration.
  159. * Only set to non-zero values when switch is in progress.
  160. */
  161. static uint32_t s_ccount_div;
  162. static uint32_t s_ccount_mul;
  163. static void update_ccompare(void);
  164. #endif // __XTENSA__
  165. static const char* TAG = "pm";
  166. static void do_switch(pm_mode_t new_mode);
  167. static void leave_idle(void);
  168. static void on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us);
  169. pm_mode_t esp_pm_impl_get_mode(esp_pm_lock_type_t type, int arg)
  170. {
  171. (void) arg;
  172. if (type == ESP_PM_CPU_FREQ_MAX) {
  173. return PM_MODE_CPU_MAX;
  174. } else if (type == ESP_PM_APB_FREQ_MAX) {
  175. return PM_MODE_APB_MAX;
  176. } else if (type == ESP_PM_NO_LIGHT_SLEEP) {
  177. return PM_MODE_APB_MIN;
  178. } else {
  179. // unsupported mode
  180. abort();
  181. }
  182. }
  183. esp_err_t esp_pm_configure(const void* vconfig)
  184. {
  185. #ifndef CONFIG_PM_ENABLE
  186. return ESP_ERR_NOT_SUPPORTED;
  187. #endif
  188. #if CONFIG_IDF_TARGET_ESP32
  189. const esp_pm_config_esp32_t* config = (const esp_pm_config_esp32_t*) vconfig;
  190. #elif CONFIG_IDF_TARGET_ESP32S2
  191. const esp_pm_config_esp32s2_t* config = (const esp_pm_config_esp32s2_t*) vconfig;
  192. #elif CONFIG_IDF_TARGET_ESP32S3
  193. const esp_pm_config_esp32s3_t* config = (const esp_pm_config_esp32s3_t*) vconfig;
  194. #elif CONFIG_IDF_TARGET_ESP32C3
  195. const esp_pm_config_esp32c3_t* config = (const esp_pm_config_esp32c3_t*) vconfig;
  196. #endif
  197. #ifndef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  198. if (config->light_sleep_enable) {
  199. return ESP_ERR_NOT_SUPPORTED;
  200. }
  201. #endif
  202. int min_freq_mhz = config->min_freq_mhz;
  203. int max_freq_mhz = config->max_freq_mhz;
  204. if (min_freq_mhz > max_freq_mhz) {
  205. return ESP_ERR_INVALID_ARG;
  206. }
  207. rtc_cpu_freq_config_t freq_config;
  208. if (!rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &freq_config)) {
  209. ESP_LOGW(TAG, "invalid min_freq_mhz value (%d)", min_freq_mhz);
  210. return ESP_ERR_INVALID_ARG;
  211. }
  212. int xtal_freq_mhz = (int) rtc_clk_xtal_freq_get();
  213. if (min_freq_mhz < xtal_freq_mhz && min_freq_mhz * MHZ / REF_CLK_FREQ < REF_CLK_DIV_MIN) {
  214. ESP_LOGW(TAG, "min_freq_mhz should be >= %d", REF_CLK_FREQ * REF_CLK_DIV_MIN / MHZ);
  215. return ESP_ERR_INVALID_ARG;
  216. }
  217. if (!rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &freq_config)) {
  218. ESP_LOGW(TAG, "invalid max_freq_mhz value (%d)", max_freq_mhz);
  219. return ESP_ERR_INVALID_ARG;
  220. }
  221. #if CONFIG_IDF_TARGET_ESP32
  222. int apb_max_freq = max_freq_mhz; /* CPU frequency in APB_MAX mode */
  223. if (max_freq_mhz == 240) {
  224. /* We can't switch between 240 and 80/160 without disabling PLL,
  225. * so use 240MHz CPU frequency when 80MHz APB frequency is requested.
  226. */
  227. apb_max_freq = 240;
  228. } else if (max_freq_mhz == 160 || max_freq_mhz == 80) {
  229. /* Otherwise, can use 80MHz
  230. * CPU frequency when 80MHz APB frequency is requested.
  231. */
  232. apb_max_freq = 80;
  233. }
  234. #else
  235. int apb_max_freq = MIN(max_freq_mhz, 80); /* CPU frequency in APB_MAX mode */
  236. #endif
  237. apb_max_freq = MAX(apb_max_freq, min_freq_mhz);
  238. ESP_LOGI(TAG, "Frequency switching config: "
  239. "CPU_MAX: %d, APB_MAX: %d, APB_MIN: %d, Light sleep: %s",
  240. max_freq_mhz,
  241. apb_max_freq,
  242. min_freq_mhz,
  243. config->light_sleep_enable ? "ENABLED" : "DISABLED");
  244. portENTER_CRITICAL(&s_switch_lock);
  245. bool res = false;
  246. res = rtc_clk_cpu_freq_mhz_to_config(max_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_CPU_MAX]);
  247. assert(res);
  248. res = rtc_clk_cpu_freq_mhz_to_config(apb_max_freq, &s_cpu_freq_by_mode[PM_MODE_APB_MAX]);
  249. assert(res);
  250. res = rtc_clk_cpu_freq_mhz_to_config(min_freq_mhz, &s_cpu_freq_by_mode[PM_MODE_APB_MIN]);
  251. assert(res);
  252. s_cpu_freq_by_mode[PM_MODE_LIGHT_SLEEP] = s_cpu_freq_by_mode[PM_MODE_APB_MIN];
  253. s_light_sleep_en = config->light_sleep_enable;
  254. s_config_changed = true;
  255. portEXIT_CRITICAL(&s_switch_lock);
  256. #if CONFIG_PM_SLP_DISABLE_GPIO && SOC_GPIO_SUPPORT_SLP_SWITCH
  257. esp_sleep_gpio_status_switch_configure(config->light_sleep_enable);
  258. #endif
  259. #if CONFIG_ESP_SYSTEM_PM_POWER_DOWN_CPU && SOC_PM_SUPPORT_CPU_PD
  260. esp_err_t ret = esp_sleep_cpu_pd_low_init(config->light_sleep_enable);
  261. if (config->light_sleep_enable && ret != ESP_OK) {
  262. ESP_LOGW(TAG, "Failed to enable CPU power down during light sleep.");
  263. }
  264. #endif
  265. return ESP_OK;
  266. }
  267. static pm_mode_t IRAM_ATTR get_lowest_allowed_mode(void)
  268. {
  269. /* TODO: optimize using ffs/clz */
  270. if (s_mode_mask >= BIT(PM_MODE_CPU_MAX)) {
  271. return PM_MODE_CPU_MAX;
  272. } else if (s_mode_mask >= BIT(PM_MODE_APB_MAX)) {
  273. return PM_MODE_APB_MAX;
  274. } else if (s_mode_mask >= BIT(PM_MODE_APB_MIN) || !s_light_sleep_en) {
  275. return PM_MODE_APB_MIN;
  276. } else {
  277. return PM_MODE_LIGHT_SLEEP;
  278. }
  279. }
  280. void IRAM_ATTR esp_pm_impl_switch_mode(pm_mode_t mode,
  281. pm_mode_switch_t lock_or_unlock, pm_time_t now)
  282. {
  283. bool need_switch = false;
  284. uint32_t mode_mask = BIT(mode);
  285. portENTER_CRITICAL_SAFE(&s_switch_lock);
  286. uint32_t count;
  287. if (lock_or_unlock == MODE_LOCK) {
  288. count = ++s_mode_lock_counts[mode];
  289. } else {
  290. count = s_mode_lock_counts[mode]--;
  291. }
  292. if (count == 1) {
  293. if (lock_or_unlock == MODE_LOCK) {
  294. s_mode_mask |= mode_mask;
  295. } else {
  296. s_mode_mask &= ~mode_mask;
  297. }
  298. need_switch = true;
  299. }
  300. pm_mode_t new_mode = s_mode;
  301. if (need_switch) {
  302. new_mode = get_lowest_allowed_mode();
  303. #ifdef WITH_PROFILING
  304. if (s_last_mode_change_time != 0) {
  305. pm_time_t diff = now - s_last_mode_change_time;
  306. s_time_in_mode[s_mode] += diff;
  307. }
  308. s_last_mode_change_time = now;
  309. #endif // WITH_PROFILING
  310. }
  311. portEXIT_CRITICAL_SAFE(&s_switch_lock);
  312. if (need_switch && new_mode != s_mode) {
  313. do_switch(new_mode);
  314. }
  315. }
  316. /**
  317. * @brief Update clock dividers in esp_timer and FreeRTOS, and adjust CCOMPARE
  318. * values on both CPUs.
  319. * @param old_ticks_per_us old CPU frequency
  320. * @param ticks_per_us new CPU frequency
  321. */
  322. static void IRAM_ATTR on_freq_update(uint32_t old_ticks_per_us, uint32_t ticks_per_us)
  323. {
  324. uint32_t old_apb_ticks_per_us = MIN(old_ticks_per_us, 80);
  325. uint32_t apb_ticks_per_us = MIN(ticks_per_us, 80);
  326. /* Update APB frequency value used by the timer */
  327. if (old_apb_ticks_per_us != apb_ticks_per_us) {
  328. esp_timer_private_update_apb_freq(apb_ticks_per_us);
  329. }
  330. #if __XTENSA__
  331. #if XT_RTOS_TIMER_INT
  332. /* Calculate new tick divisor */
  333. _xt_tick_divisor = ticks_per_us * MHZ / XT_TICK_PER_SEC;
  334. #endif
  335. int core_id = xPortGetCoreID();
  336. if (s_rtos_lock_handle[core_id] != NULL) {
  337. ESP_PM_TRACE_ENTER(CCOMPARE_UPDATE, core_id);
  338. /* ccount_div and ccount_mul are used in esp_pm_impl_update_ccompare
  339. * to calculate new CCOMPARE value.
  340. */
  341. s_ccount_div = old_ticks_per_us;
  342. s_ccount_mul = ticks_per_us;
  343. /* Update CCOMPARE value on this CPU */
  344. update_ccompare();
  345. #if portNUM_PROCESSORS == 2
  346. /* Send interrupt to the other CPU to update CCOMPARE value */
  347. int other_core_id = (core_id == 0) ? 1 : 0;
  348. s_need_update_ccompare[other_core_id] = true;
  349. esp_crosscore_int_send_freq_switch(other_core_id);
  350. int timeout = 0;
  351. while (s_need_update_ccompare[other_core_id]) {
  352. if (++timeout == CCOMPARE_UPDATE_TIMEOUT) {
  353. assert(false && "failed to update CCOMPARE, possible deadlock");
  354. }
  355. }
  356. #endif // portNUM_PROCESSORS == 2
  357. s_ccount_mul = 0;
  358. s_ccount_div = 0;
  359. ESP_PM_TRACE_EXIT(CCOMPARE_UPDATE, core_id);
  360. }
  361. #endif // __XTENSA__
  362. }
  363. /**
  364. * Perform the switch to new power mode.
  365. * Currently only changes the CPU frequency and adjusts clock dividers.
  366. * No light sleep yet.
  367. * @param new_mode mode to switch to
  368. */
  369. static void IRAM_ATTR do_switch(pm_mode_t new_mode)
  370. {
  371. const int core_id = xPortGetCoreID();
  372. do {
  373. portENTER_CRITICAL_ISR(&s_switch_lock);
  374. if (!s_is_switching) {
  375. break;
  376. }
  377. if (s_new_mode <= new_mode) {
  378. portEXIT_CRITICAL_ISR(&s_switch_lock);
  379. return;
  380. }
  381. #if __XTENSA__
  382. if (s_need_update_ccompare[core_id]) {
  383. s_need_update_ccompare[core_id] = false;
  384. }
  385. #endif
  386. portEXIT_CRITICAL_ISR(&s_switch_lock);
  387. } while (true);
  388. s_new_mode = new_mode;
  389. s_is_switching = true;
  390. bool config_changed = s_config_changed;
  391. s_config_changed = false;
  392. portEXIT_CRITICAL_ISR(&s_switch_lock);
  393. rtc_cpu_freq_config_t new_config = s_cpu_freq_by_mode[new_mode];
  394. rtc_cpu_freq_config_t old_config;
  395. if (!config_changed) {
  396. old_config = s_cpu_freq_by_mode[s_mode];
  397. } else {
  398. rtc_clk_cpu_freq_get_config(&old_config);
  399. }
  400. if (new_config.freq_mhz != old_config.freq_mhz) {
  401. uint32_t old_ticks_per_us = old_config.freq_mhz;
  402. uint32_t new_ticks_per_us = new_config.freq_mhz;
  403. bool switch_down = new_ticks_per_us < old_ticks_per_us;
  404. ESP_PM_TRACE_ENTER(FREQ_SWITCH, core_id);
  405. if (switch_down) {
  406. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  407. }
  408. rtc_clk_cpu_freq_set_config_fast(&new_config);
  409. if (!switch_down) {
  410. on_freq_update(old_ticks_per_us, new_ticks_per_us);
  411. }
  412. ESP_PM_TRACE_EXIT(FREQ_SWITCH, core_id);
  413. }
  414. portENTER_CRITICAL_ISR(&s_switch_lock);
  415. s_mode = new_mode;
  416. s_is_switching = false;
  417. portEXIT_CRITICAL_ISR(&s_switch_lock);
  418. }
  419. #if __XTENSA__
  420. /**
  421. * @brief Calculate new CCOMPARE value based on s_ccount_{mul,div}
  422. *
  423. * Adjusts CCOMPARE value so that the interrupt happens at the same time as it
  424. * would happen without the frequency change.
  425. * Assumes that the new_frequency = old_frequency * s_ccount_mul / s_ccount_div.
  426. */
  427. static void IRAM_ATTR update_ccompare(void)
  428. {
  429. uint32_t ccount = cpu_hal_get_cycle_count();
  430. uint32_t ccompare = XTHAL_GET_CCOMPARE(XT_TIMER_INDEX);
  431. if ((ccompare - CCOMPARE_MIN_CYCLES_IN_FUTURE) - ccount < UINT32_MAX / 2) {
  432. uint32_t diff = ccompare - ccount;
  433. uint32_t diff_scaled = (diff * s_ccount_mul + s_ccount_div - 1) / s_ccount_div;
  434. if (diff_scaled < _xt_tick_divisor) {
  435. uint32_t new_ccompare = ccount + diff_scaled;
  436. XTHAL_SET_CCOMPARE(XT_TIMER_INDEX, new_ccompare);
  437. }
  438. }
  439. }
  440. #endif // __XTENSA__
  441. static void IRAM_ATTR leave_idle(void)
  442. {
  443. int core_id = xPortGetCoreID();
  444. if (s_core_idle[core_id]) {
  445. // TODO: possible optimization: raise frequency here first
  446. esp_pm_lock_acquire(s_rtos_lock_handle[core_id]);
  447. s_core_idle[core_id] = false;
  448. }
  449. }
  450. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  451. esp_err_t esp_pm_register_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  452. {
  453. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  454. if (s_periph_skip_light_sleep_cb[i] == cb) {
  455. return ESP_OK;
  456. } else if (s_periph_skip_light_sleep_cb[i] == NULL) {
  457. s_periph_skip_light_sleep_cb[i] = cb;
  458. return ESP_OK;
  459. }
  460. }
  461. return ESP_ERR_NO_MEM;
  462. }
  463. esp_err_t esp_pm_unregister_skip_light_sleep_callback(skip_light_sleep_cb_t cb)
  464. {
  465. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  466. if (s_periph_skip_light_sleep_cb[i] == cb) {
  467. s_periph_skip_light_sleep_cb[i] = NULL;
  468. return ESP_OK;
  469. }
  470. }
  471. return ESP_ERR_INVALID_STATE;
  472. }
  473. static inline bool IRAM_ATTR periph_should_skip_light_sleep(void)
  474. {
  475. for (int i = 0; i < PERIPH_SKIP_LIGHT_SLEEP_NO; i++) {
  476. if (s_periph_skip_light_sleep_cb[i]) {
  477. if (s_periph_skip_light_sleep_cb[i]() == true) {
  478. return true;
  479. }
  480. }
  481. }
  482. return false;
  483. }
  484. static inline bool IRAM_ATTR should_skip_light_sleep(int core_id)
  485. {
  486. #if portNUM_PROCESSORS == 2
  487. if (s_skip_light_sleep[core_id]) {
  488. s_skip_light_sleep[core_id] = false;
  489. s_skipped_light_sleep[core_id] = true;
  490. return true;
  491. }
  492. #endif // portNUM_PROCESSORS == 2
  493. if (s_mode != PM_MODE_LIGHT_SLEEP || s_is_switching || periph_should_skip_light_sleep()) {
  494. s_skipped_light_sleep[core_id] = true;
  495. } else {
  496. s_skipped_light_sleep[core_id] = false;
  497. }
  498. return s_skipped_light_sleep[core_id];
  499. }
  500. static inline void IRAM_ATTR other_core_should_skip_light_sleep(int core_id)
  501. {
  502. #if portNUM_PROCESSORS == 2
  503. s_skip_light_sleep[!core_id] = true;
  504. #endif
  505. }
  506. void IRAM_ATTR vApplicationSleep( TickType_t xExpectedIdleTime )
  507. {
  508. portENTER_CRITICAL(&s_switch_lock);
  509. int core_id = xPortGetCoreID();
  510. if (!should_skip_light_sleep(core_id)) {
  511. /* Calculate how much we can sleep */
  512. int64_t next_esp_timer_alarm = esp_timer_get_next_alarm();
  513. int64_t now = esp_timer_get_time();
  514. int64_t time_until_next_alarm = next_esp_timer_alarm - now;
  515. int64_t wakeup_delay_us = portTICK_PERIOD_MS * 1000LL * xExpectedIdleTime;
  516. int64_t sleep_time_us = MIN(wakeup_delay_us, time_until_next_alarm);
  517. if (sleep_time_us >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP * portTICK_PERIOD_MS * 1000LL) {
  518. esp_sleep_enable_timer_wakeup(sleep_time_us - LIGHT_SLEEP_EARLY_WAKEUP_US);
  519. #ifdef CONFIG_PM_TRACE
  520. /* to force tracing GPIOs to keep state */
  521. esp_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_ON);
  522. #endif
  523. /* Enter sleep */
  524. ESP_PM_TRACE_ENTER(SLEEP, core_id);
  525. int64_t sleep_start = esp_timer_get_time();
  526. esp_light_sleep_start();
  527. int64_t slept_us = esp_timer_get_time() - sleep_start;
  528. ESP_PM_TRACE_EXIT(SLEEP, core_id);
  529. uint32_t slept_ticks = slept_us / (portTICK_PERIOD_MS * 1000LL);
  530. if (slept_ticks > 0) {
  531. /* Adjust RTOS tick count based on the amount of time spent in sleep */
  532. vTaskStepTick(slept_ticks);
  533. #if __XTENSA__
  534. /* Trigger tick interrupt, since sleep time was longer
  535. * than portTICK_PERIOD_MS. Note that setting INTSET does not
  536. * work for timer interrupt, and changing CCOMPARE would clear
  537. * the interrupt flag.
  538. */
  539. cpu_hal_set_cycle_count(XTHAL_GET_CCOMPARE(XT_TIMER_INDEX) - 16);
  540. while (!(XTHAL_GET_INTERRUPT() & BIT(XT_TIMER_INTNUM))) {
  541. ;
  542. }
  543. #elif __riscv
  544. portYIELD_WITHIN_API();
  545. #endif
  546. }
  547. other_core_should_skip_light_sleep(core_id);
  548. }
  549. }
  550. portEXIT_CRITICAL(&s_switch_lock);
  551. }
  552. #endif //CONFIG_FREERTOS_USE_TICKLESS_IDLE
  553. #ifdef WITH_PROFILING
  554. void esp_pm_impl_dump_stats(FILE* out)
  555. {
  556. pm_time_t time_in_mode[PM_MODE_COUNT];
  557. portENTER_CRITICAL_ISR(&s_switch_lock);
  558. memcpy(time_in_mode, s_time_in_mode, sizeof(time_in_mode));
  559. pm_time_t last_mode_change_time = s_last_mode_change_time;
  560. pm_mode_t cur_mode = s_mode;
  561. pm_time_t now = pm_get_time();
  562. portEXIT_CRITICAL_ISR(&s_switch_lock);
  563. time_in_mode[cur_mode] += now - last_mode_change_time;
  564. fprintf(out, "Mode stats:\n");
  565. for (int i = 0; i < PM_MODE_COUNT; ++i) {
  566. if (i == PM_MODE_LIGHT_SLEEP && !s_light_sleep_en) {
  567. /* don't display light sleep mode if it's not enabled */
  568. continue;
  569. }
  570. fprintf(out, "%8s %3dM %12lld %2d%%\n",
  571. s_mode_names[i],
  572. s_cpu_freq_by_mode[i].freq_mhz,
  573. time_in_mode[i],
  574. (int) (time_in_mode[i] * 100 / now));
  575. }
  576. }
  577. #endif // WITH_PROFILING
  578. void esp_pm_impl_init(void)
  579. {
  580. #if defined(CONFIG_ESP_CONSOLE_UART)
  581. //This clock source should be a source which won't be affected by DFS
  582. uint32_t clk_source;
  583. #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2
  584. clk_source = UART_SCLK_REF_TICK;
  585. #else
  586. clk_source = UART_SCLK_XTAL;
  587. #endif
  588. while(!uart_ll_is_tx_idle(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM)));
  589. /* When DFS is enabled, override system setting and use REFTICK as UART clock source */
  590. uart_ll_set_sclk(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), clk_source);
  591. uart_ll_set_baudrate(UART_LL_GET_HW(CONFIG_ESP_CONSOLE_UART_NUM), CONFIG_ESP_CONSOLE_UART_BAUDRATE);
  592. #endif // CONFIG_ESP_CONSOLE_UART
  593. #ifdef CONFIG_PM_TRACE
  594. esp_pm_trace_init();
  595. #endif
  596. #if CONFIG_PM_SLP_DISABLE_GPIO && SOC_GPIO_SUPPORT_SLP_SWITCH
  597. esp_sleep_gpio_status_init();
  598. #endif
  599. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos0",
  600. &s_rtos_lock_handle[0]));
  601. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[0]));
  602. #if portNUM_PROCESSORS == 2
  603. ESP_ERROR_CHECK(esp_pm_lock_create(ESP_PM_CPU_FREQ_MAX, 0, "rtos1",
  604. &s_rtos_lock_handle[1]));
  605. ESP_ERROR_CHECK(esp_pm_lock_acquire(s_rtos_lock_handle[1]));
  606. #endif // portNUM_PROCESSORS == 2
  607. /* Configure all modes to use the default CPU frequency.
  608. * This will be modified later by a call to esp_pm_configure.
  609. */
  610. rtc_cpu_freq_config_t default_config;
  611. if (!rtc_clk_cpu_freq_mhz_to_config(DEFAULT_CPU_FREQ, &default_config)) {
  612. assert(false && "unsupported frequency");
  613. }
  614. for (size_t i = 0; i < PM_MODE_COUNT; ++i) {
  615. s_cpu_freq_by_mode[i] = default_config;
  616. }
  617. #ifdef CONFIG_PM_DFS_INIT_AUTO
  618. int xtal_freq = (int) rtc_clk_xtal_freq_get();
  619. #if CONFIG_IDF_TARGET_ESP32
  620. esp_pm_config_esp32_t cfg = {
  621. #elif CONFIG_IDF_TARGET_ESP32S2
  622. esp_pm_config_esp32s2_t cfg = {
  623. #elif CONFIG_IDF_TARGET_ESP32S3
  624. esp_pm_config_esp32s3_t cfg = {
  625. #elif CONFIG_IDF_TARGET_ESP32C3
  626. esp_pm_config_esp32c3_t cfg = {
  627. #endif
  628. .max_freq_mhz = DEFAULT_CPU_FREQ,
  629. .min_freq_mhz = xtal_freq,
  630. };
  631. esp_pm_configure(&cfg);
  632. #endif //CONFIG_PM_DFS_INIT_AUTO
  633. }
  634. void esp_pm_impl_idle_hook(void)
  635. {
  636. int core_id = xPortGetCoreID();
  637. uint32_t state = portENTER_CRITICAL_NESTED();
  638. if (!s_core_idle[core_id]
  639. #ifdef CONFIG_FREERTOS_USE_TICKLESS_IDLE
  640. && !periph_should_skip_light_sleep()
  641. #endif
  642. ) {
  643. esp_pm_lock_release(s_rtos_lock_handle[core_id]);
  644. s_core_idle[core_id] = true;
  645. }
  646. portEXIT_CRITICAL_NESTED(state);
  647. ESP_PM_TRACE_ENTER(IDLE, core_id);
  648. }
  649. void IRAM_ATTR esp_pm_impl_isr_hook(void)
  650. {
  651. int core_id = xPortGetCoreID();
  652. ESP_PM_TRACE_ENTER(ISR_HOOK, core_id);
  653. /* Prevent higher level interrupts (than the one this function was called from)
  654. * from happening in this section, since they will also call into esp_pm_impl_isr_hook.
  655. */
  656. uint32_t state = portENTER_CRITICAL_NESTED();
  657. #if __XTENSA__ && (portNUM_PROCESSORS == 2)
  658. if (s_need_update_ccompare[core_id]) {
  659. update_ccompare();
  660. s_need_update_ccompare[core_id] = false;
  661. } else {
  662. leave_idle();
  663. }
  664. #else
  665. leave_idle();
  666. #endif // portNUM_PROCESSORS == 2
  667. portEXIT_CRITICAL_NESTED(state);
  668. ESP_PM_TRACE_EXIT(ISR_HOOK, core_id);
  669. }
  670. void esp_pm_impl_waiti(void)
  671. {
  672. #if CONFIG_FREERTOS_USE_TICKLESS_IDLE
  673. int core_id = xPortGetCoreID();
  674. if (s_skipped_light_sleep[core_id]) {
  675. cpu_hal_waiti();
  676. /* Interrupt took the CPU out of waiti and s_rtos_lock_handle[core_id]
  677. * is now taken. However since we are back to idle task, we can release
  678. * the lock so that vApplicationSleep can attempt to enter light sleep.
  679. */
  680. esp_pm_impl_idle_hook();
  681. s_skipped_light_sleep[core_id] = false;
  682. }
  683. #else
  684. cpu_hal_waiti();
  685. #endif // CONFIG_FREERTOS_USE_TICKLESS_IDLE
  686. }
  687. #define PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO 1
  688. /* Inform peripherals of light sleep wakeup overhead time */
  689. static inform_out_light_sleep_overhead_cb_t s_periph_inform_out_light_sleep_overhead_cb[PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO];
  690. esp_err_t esp_pm_register_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  691. {
  692. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  693. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  694. return ESP_OK;
  695. } else if (s_periph_inform_out_light_sleep_overhead_cb[i] == NULL) {
  696. s_periph_inform_out_light_sleep_overhead_cb[i] = cb;
  697. return ESP_OK;
  698. }
  699. }
  700. return ESP_ERR_NO_MEM;
  701. }
  702. esp_err_t esp_pm_unregister_inform_out_light_sleep_overhead_callback(inform_out_light_sleep_overhead_cb_t cb)
  703. {
  704. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  705. if (s_periph_inform_out_light_sleep_overhead_cb[i] == cb) {
  706. s_periph_inform_out_light_sleep_overhead_cb[i] = NULL;
  707. return ESP_OK;
  708. }
  709. }
  710. return ESP_ERR_INVALID_STATE;
  711. }
  712. void periph_inform_out_light_sleep_overhead(uint32_t out_light_sleep_time)
  713. {
  714. for (int i = 0; i < PERIPH_INFORM_OUT_LIGHT_SLEEP_OVERHEAD_NO; i++) {
  715. if (s_periph_inform_out_light_sleep_overhead_cb[i]) {
  716. s_periph_inform_out_light_sleep_overhead_cb[i](out_light_sleep_time);
  717. }
  718. }
  719. }