test_spi_master.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. /*
  2. Tests for the spi_master device driver
  3. */
  4. #include <esp_types.h>
  5. #include <stdio.h>
  6. #include <stdlib.h>
  7. #include <malloc.h>
  8. #include <string.h>
  9. #include "rom/ets_sys.h"
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/task.h"
  12. #include "freertos/semphr.h"
  13. #include "freertos/queue.h"
  14. #include "freertos/xtensa_api.h"
  15. #include "unity.h"
  16. #include "driver/spi_master.h"
  17. #include "driver/spi_slave.h"
  18. #include "soc/dport_reg.h"
  19. #include "soc/spi_reg.h"
  20. #include "soc/spi_struct.h"
  21. #include "esp_heap_caps.h"
  22. #include "esp_log.h"
  23. #include "freertos/ringbuf.h"
  24. static void check_spi_pre_n_for(int clk, int pre, int n)
  25. {
  26. esp_err_t ret;
  27. spi_device_handle_t handle;
  28. spi_device_interface_config_t devcfg={
  29. .command_bits=0,
  30. .address_bits=0,
  31. .dummy_bits=0,
  32. .clock_speed_hz=clk,
  33. .duty_cycle_pos=128,
  34. .mode=0,
  35. .spics_io_num=21,
  36. .queue_size=3
  37. };
  38. char sendbuf[16]="";
  39. spi_transaction_t t;
  40. memset(&t, 0, sizeof(t));
  41. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
  42. TEST_ASSERT(ret==ESP_OK);
  43. t.length=16*8;
  44. t.tx_buffer=sendbuf;
  45. ret=spi_device_transmit(handle, &t);
  46. printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1);
  47. TEST_ASSERT(SPI2.clock.clkcnt_n+1==n);
  48. TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre);
  49. ret=spi_bus_remove_device(handle);
  50. TEST_ASSERT(ret==ESP_OK);
  51. }
  52. TEST_CASE("SPI Master clockdiv calculation routines", "[spi]")
  53. {
  54. spi_bus_config_t buscfg={
  55. .mosi_io_num=4,
  56. .miso_io_num=26,
  57. .sclk_io_num=25,
  58. .quadwp_io_num=-1,
  59. .quadhd_io_num=-1
  60. };
  61. esp_err_t ret;
  62. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  63. TEST_ASSERT(ret==ESP_OK);
  64. check_spi_pre_n_for(26000000, 1, 3);
  65. check_spi_pre_n_for(20000000, 1, 4);
  66. check_spi_pre_n_for(8000000, 1, 10);
  67. check_spi_pre_n_for(800000, 2, 50);
  68. check_spi_pre_n_for(100000, 16, 50);
  69. check_spi_pre_n_for(333333, 4, 60);
  70. check_spi_pre_n_for(900000, 2, 44);
  71. check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz
  72. check_spi_pre_n_for(26000000, 1, 3);
  73. ret=spi_bus_free(HSPI_HOST);
  74. TEST_ASSERT(ret==ESP_OK);
  75. }
  76. static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) {
  77. spi_bus_config_t buscfg={
  78. .mosi_io_num=4,
  79. .miso_io_num=26,
  80. .sclk_io_num=25,
  81. .quadwp_io_num=-1,
  82. .quadhd_io_num=-1,
  83. .max_transfer_sz=4096*3
  84. };
  85. spi_device_interface_config_t devcfg={
  86. .command_bits=0,
  87. .address_bits=0,
  88. .dummy_bits=0,
  89. .clock_speed_hz=clkspeed,
  90. .duty_cycle_pos=128,
  91. .mode=0,
  92. .spics_io_num=21,
  93. .queue_size=3,
  94. };
  95. esp_err_t ret;
  96. spi_device_handle_t handle;
  97. printf("THIS TEST NEEDS A JUMPER BETWEEN IO4 AND IO26\n");
  98. ret=spi_bus_initialize(HSPI_HOST, &buscfg, dma?1:0);
  99. TEST_ASSERT(ret==ESP_OK);
  100. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle);
  101. TEST_ASSERT(ret==ESP_OK);
  102. printf("Bus/dev inited.\n");
  103. return handle;
  104. }
  105. static void spi_test(spi_device_handle_t handle, int num_bytes) {
  106. esp_err_t ret;
  107. int x;
  108. srand(num_bytes);
  109. char *sendbuf=heap_caps_malloc(num_bytes, MALLOC_CAP_DMA);
  110. char *recvbuf=heap_caps_malloc(num_bytes, MALLOC_CAP_DMA);
  111. for (x=0; x<num_bytes; x++) {
  112. sendbuf[x]=rand()&0xff;
  113. recvbuf[x]=0x55;
  114. }
  115. spi_transaction_t t;
  116. memset(&t, 0, sizeof(t));
  117. t.length=num_bytes*8;
  118. t.tx_buffer=sendbuf;
  119. t.rx_buffer=recvbuf;
  120. t.addr=0xA00000000000000FL;
  121. t.cmd=0x55;
  122. printf("Transmitting %d bytes...\n", num_bytes);
  123. ret=spi_device_transmit(handle, &t);
  124. TEST_ASSERT(ret==ESP_OK);
  125. srand(num_bytes);
  126. for (x=0; x<num_bytes; x++) {
  127. if (sendbuf[x]!=(rand()&0xff)) {
  128. printf("Huh? Sendbuf corrupted at byte %d\n", x);
  129. TEST_ASSERT(0);
  130. }
  131. if (sendbuf[x]!=recvbuf[x]) break;
  132. }
  133. if (x!=num_bytes) {
  134. int from=x-16;
  135. if (from<0) from=0;
  136. printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from);
  137. for (int i=0; i<32; i++) {
  138. if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]);
  139. }
  140. printf("\n");
  141. for (int i=0; i<32; i++) {
  142. if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]);
  143. }
  144. printf("\n");
  145. // TEST_ASSERT(0);
  146. }
  147. printf("Success!\n");
  148. free(sendbuf);
  149. free(recvbuf);
  150. }
  151. static void destroy_spi_bus(spi_device_handle_t handle) {
  152. esp_err_t ret;
  153. ret=spi_bus_remove_device(handle);
  154. TEST_ASSERT(ret==ESP_OK);
  155. ret=spi_bus_free(HSPI_HOST);
  156. TEST_ASSERT(ret==ESP_OK);
  157. }
  158. #define TEST_LEN 111
  159. TEST_CASE("SPI Master test", "[spi][ignore]")
  160. {
  161. printf("Testing bus at 80KHz\n");
  162. spi_device_handle_t handle=setup_spi_bus(80000, true);
  163. spi_test(handle, 16); //small
  164. spi_test(handle, 21); //small, unaligned
  165. spi_test(handle, 36); //aligned
  166. spi_test(handle, 128); //aligned
  167. spi_test(handle, 129); //unaligned
  168. spi_test(handle, 4096-2); //multiple descs, edge case 1
  169. spi_test(handle, 4096-1); //multiple descs, edge case 2
  170. spi_test(handle, 4096*3); //multiple descs
  171. destroy_spi_bus(handle);
  172. printf("Testing bus at 80KHz, non-DMA\n");
  173. handle=setup_spi_bus(80000, false);
  174. spi_test(handle, 4); //aligned
  175. spi_test(handle, 16); //small
  176. spi_test(handle, 21); //small, unaligned
  177. destroy_spi_bus(handle);
  178. printf("Testing bus at 26MHz\n");
  179. handle=setup_spi_bus(20000000, true);
  180. spi_test(handle, 128); //DMA, aligned
  181. spi_test(handle, 4096*3); //DMA, multiple descs
  182. destroy_spi_bus(handle);
  183. printf("Testing bus at 900KHz\n");
  184. handle=setup_spi_bus(9000000, true);
  185. spi_test(handle, 128); //DMA, aligned
  186. spi_test(handle, 4096*3); //DMA, multiple descs
  187. destroy_spi_bus(handle);
  188. }
  189. TEST_CASE("SPI Master test, interaction of multiple devs", "[spi][ignore]") {
  190. esp_err_t ret;
  191. spi_device_interface_config_t devcfg={
  192. .command_bits=0,
  193. .address_bits=0,
  194. .dummy_bits=0,
  195. .clock_speed_hz=1000000,
  196. .duty_cycle_pos=128,
  197. .mode=0,
  198. .spics_io_num=23,
  199. .queue_size=3,
  200. };
  201. spi_device_handle_t handle1=setup_spi_bus(80000, true);
  202. spi_device_handle_t handle2;
  203. spi_bus_add_device(HSPI_HOST, &devcfg, &handle2);
  204. printf("Sending to dev 1\n");
  205. spi_test(handle1, 7);
  206. printf("Sending to dev 1\n");
  207. spi_test(handle1, 15);
  208. printf("Sending to dev 2\n");
  209. spi_test(handle2, 15);
  210. printf("Sending to dev 1\n");
  211. spi_test(handle1, 32);
  212. printf("Sending to dev 2\n");
  213. spi_test(handle2, 32);
  214. printf("Sending to dev 1\n");
  215. spi_test(handle1, 63);
  216. printf("Sending to dev 2\n");
  217. spi_test(handle2, 63);
  218. printf("Sending to dev 1\n");
  219. spi_test(handle1, 5000);
  220. printf("Sending to dev 2\n");
  221. spi_test(handle2, 5000);
  222. ret=spi_bus_remove_device(handle2);
  223. TEST_ASSERT(ret==ESP_OK);
  224. destroy_spi_bus(handle1);
  225. }
  226. TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]")
  227. {
  228. //spi config
  229. spi_bus_config_t bus_config;
  230. spi_device_interface_config_t device_config;
  231. spi_device_handle_t spi;
  232. spi_host_device_t host;
  233. int dma = 1;
  234. memset(&bus_config, 0, sizeof(spi_bus_config_t));
  235. memset(&device_config, 0, sizeof(spi_device_interface_config_t));
  236. bus_config.miso_io_num = -1;
  237. bus_config.mosi_io_num = 26;
  238. bus_config.sclk_io_num = 25;
  239. bus_config.quadwp_io_num = -1;
  240. bus_config.quadhd_io_num = -1;
  241. device_config.clock_speed_hz = 50000;
  242. device_config.mode = 0;
  243. device_config.spics_io_num = -1;
  244. device_config.queue_size = 1;
  245. device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST;
  246. struct spi_transaction_t transaction = {
  247. .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA,
  248. .length = 16,
  249. .rx_buffer = NULL,
  250. .tx_data = {0x04, 0x00}
  251. };
  252. //initialize for first host
  253. host = 1;
  254. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  255. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  256. printf("before first xmit\n");
  257. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  258. printf("after first xmit\n");
  259. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  260. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  261. //for second host and failed before
  262. host = 2;
  263. TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK);
  264. TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK);
  265. printf("before second xmit\n");
  266. // the original version (bit mis-written) stucks here.
  267. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK);
  268. // test case success when see this.
  269. printf("after second xmit\n");
  270. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  271. TEST_ASSERT(spi_bus_free(host) == ESP_OK);
  272. }
  273. IRAM_ATTR static uint32_t data_iram[320];
  274. DRAM_ATTR static uint32_t data_dram[320];
  275. //force to place in code area.
  276. static const uint32_t data_drom[320] = {0};
  277. #define PIN_NUM_MISO 25
  278. #define PIN_NUM_MOSI 23
  279. #define PIN_NUM_CLK 19
  280. #define PIN_NUM_CS 22
  281. #define PIN_NUM_DC 21
  282. #define PIN_NUM_RST 18
  283. #define PIN_NUM_BCKL 5
  284. TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
  285. {
  286. uint32_t data_rxdram[320];
  287. esp_err_t ret;
  288. spi_device_handle_t spi;
  289. spi_bus_config_t buscfg={
  290. .miso_io_num=PIN_NUM_MISO,
  291. .mosi_io_num=PIN_NUM_MOSI,
  292. .sclk_io_num=PIN_NUM_CLK,
  293. .quadwp_io_num=-1,
  294. .quadhd_io_num=-1
  295. };
  296. spi_device_interface_config_t devcfg={
  297. .clock_speed_hz=10000000, //Clock out at 10 MHz
  298. .mode=0, //SPI mode 0
  299. .spics_io_num=PIN_NUM_CS, //CS pin
  300. .queue_size=7, //We want to be able to queue 7 transactions at a time
  301. .pre_cb=NULL, //Specify pre-transfer callback to handle D/C line
  302. };
  303. //Initialize the SPI bus
  304. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  305. TEST_ASSERT(ret==ESP_OK);
  306. //Attach the LCD to the SPI bus
  307. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
  308. TEST_ASSERT(ret==ESP_OK);
  309. static spi_transaction_t trans[6];
  310. int x;
  311. printf("iram: %p, dram: %p, drom: %p\n", data_iram, data_dram, data_drom);
  312. memset(trans, 0, 6*sizeof(spi_transaction_t));
  313. trans[0].length = 320*8,
  314. trans[0].tx_buffer = data_iram;
  315. trans[0].rx_buffer = data_rxdram;
  316. trans[1].length = 320*8,
  317. trans[1].tx_buffer = data_dram;
  318. trans[1].rx_buffer = data_rxdram;
  319. trans[2].length = 320*8,
  320. trans[2].tx_buffer = data_drom;
  321. trans[2].rx_buffer = data_rxdram;
  322. trans[3].length = 320*8,
  323. trans[3].tx_buffer = data_drom;
  324. trans[3].rx_buffer = data_iram;
  325. trans[4].length = 320*8,
  326. trans[4].rxlength = 8*4;
  327. trans[4].tx_buffer = data_drom;
  328. trans[4].flags = SPI_TRANS_USE_RXDATA;
  329. trans[5].length = 8*4;
  330. trans[5].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
  331. //Queue all transactions.
  332. for (x=0; x<6; x++) {
  333. ret=spi_device_queue_trans(spi,&trans[x], portMAX_DELAY);
  334. TEST_ASSERT(ret==ESP_OK);
  335. }
  336. for (x=0; x<6; x++) {
  337. spi_transaction_t* ptr;
  338. ret=spi_device_get_trans_result(spi,&ptr, portMAX_DELAY);
  339. TEST_ASSERT(ret==ESP_OK);
  340. TEST_ASSERT(ptr = trans+x);
  341. }
  342. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  343. TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
  344. }
  345. static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi )
  346. {
  347. gpio_matrix_out( gpio, sigo, false, false );
  348. gpio_matrix_in( gpio, sigi, false );
  349. }
  350. //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1
  351. // 1. RX buffer not aligned (start and end)
  352. // 2. not setting rx_buffer
  353. // 3. setting rx_length != length
  354. TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
  355. {
  356. uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  357. uint8_t rx_buf[320];
  358. esp_err_t ret;
  359. spi_device_handle_t spi;
  360. spi_bus_config_t buscfg={
  361. .miso_io_num=PIN_NUM_MISO,
  362. .mosi_io_num=PIN_NUM_MOSI,
  363. .sclk_io_num=PIN_NUM_CLK,
  364. .quadwp_io_num=-1,
  365. .quadhd_io_num=-1
  366. };
  367. spi_device_interface_config_t devcfg={
  368. .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
  369. .mode=0, //SPI mode 0
  370. .spics_io_num=PIN_NUM_CS, //CS pin
  371. .queue_size=7, //We want to be able to queue 7 transactions at a time
  372. .pre_cb=NULL,
  373. };
  374. //Initialize the SPI bus
  375. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  376. TEST_ASSERT(ret==ESP_OK);
  377. //Attach the LCD to the SPI bus
  378. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
  379. TEST_ASSERT(ret==ESP_OK);
  380. //do internal connection
  381. int_connect( PIN_NUM_MOSI, HSPID_OUT_IDX, HSPIQ_IN_IDX );
  382. memset(rx_buf, 0x66, 320);
  383. for ( int i = 0; i < 8; i ++ ) {
  384. memset( rx_buf, 0x66, sizeof(rx_buf));
  385. spi_transaction_t t = {};
  386. t.length = 8*(i+1);
  387. t.rxlength = 0;
  388. t.tx_buffer = tx_buf+2*i;
  389. t.rx_buffer = rx_buf + i;
  390. if ( i == 1 ) {
  391. //test set no start
  392. t.rx_buffer = NULL;
  393. } else if ( i == 2 ) {
  394. //test rx length != tx_length
  395. t.rxlength = t.length - 8;
  396. }
  397. spi_device_transmit( spi, &t );
  398. for( int i = 0; i < 16; i ++ ) {
  399. printf("%02X ", rx_buf[i]);
  400. }
  401. printf("\n");
  402. if ( i == 1 ) {
  403. // no rx, skip check
  404. } else if ( i == 2 ) {
  405. //test rx length = tx length-1
  406. TEST_ASSERT( memcmp(t.tx_buffer, t.rx_buffer, t.length/8-1)==0 );
  407. } else {
  408. //normal check
  409. TEST_ASSERT( memcmp(t.tx_buffer, t.rx_buffer, t.length/8)==0 );
  410. }
  411. }
  412. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  413. TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
  414. }
  415. static const char MASTER_TAG[] = "test_master";
  416. static const char SLAVE_TAG[] = "test_slave";
  417. DRAM_ATTR static uint8_t master_send[] = {0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
  418. DRAM_ATTR static uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 };
  419. static void master_init( spi_device_handle_t* spi, int mode, uint32_t speed)
  420. {
  421. esp_err_t ret;
  422. spi_bus_config_t buscfg={
  423. .miso_io_num=PIN_NUM_MISO,
  424. .mosi_io_num=PIN_NUM_MOSI,
  425. .sclk_io_num=PIN_NUM_CLK,
  426. .quadwp_io_num=-1,
  427. .quadhd_io_num=-1
  428. };
  429. spi_device_interface_config_t devcfg={
  430. .clock_speed_hz=speed, //currently only up to 4MHz for internel connect
  431. .mode=mode, //SPI mode 0
  432. .spics_io_num=PIN_NUM_CS, //CS pin
  433. .queue_size=16, //We want to be able to queue 7 transactions at a time
  434. .pre_cb=NULL,
  435. .cs_ena_pretrans = 0,
  436. };
  437. //Initialize the SPI bus
  438. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  439. TEST_ASSERT(ret==ESP_OK);
  440. //Attach the LCD to the SPI bus
  441. ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi);
  442. TEST_ASSERT(ret==ESP_OK);
  443. }
  444. static void slave_init(int mode, int dma_chan)
  445. {
  446. //Configuration for the SPI bus
  447. spi_bus_config_t buscfg={
  448. .mosi_io_num=PIN_NUM_MOSI,
  449. .miso_io_num=PIN_NUM_MISO,
  450. .sclk_io_num=PIN_NUM_CLK
  451. };
  452. //Configuration for the SPI slave interface
  453. spi_slave_interface_config_t slvcfg={
  454. .mode=mode,
  455. .spics_io_num=PIN_NUM_CS,
  456. .queue_size=3,
  457. .flags=0,
  458. };
  459. //Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected.
  460. gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY);
  461. gpio_set_pull_mode(PIN_NUM_CLK, GPIO_PULLUP_ONLY);
  462. gpio_set_pull_mode(PIN_NUM_CS, GPIO_PULLUP_ONLY);
  463. //Initialize SPI slave interface
  464. TEST_ESP_OK( spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, dma_chan) );
  465. }
  466. typedef struct {
  467. uint32_t len;
  468. uint8_t *start;
  469. } slave_txdata_t;
  470. typedef struct {
  471. uint32_t len;
  472. uint8_t data[1];
  473. } slave_rxdata_t;
  474. typedef struct {
  475. RingbufHandle_t data_received;
  476. QueueHandle_t data_to_send;
  477. } spi_slave_task_context_t;
  478. esp_err_t init_slave_context(spi_slave_task_context_t *context)
  479. {
  480. context->data_to_send = xQueueCreate( 16, sizeof( slave_txdata_t ));
  481. if ( context->data_to_send == NULL ) {
  482. return ESP_ERR_NO_MEM;
  483. }
  484. context->data_received = xRingbufferCreate( 1024, RINGBUF_TYPE_NOSPLIT );
  485. if ( context->data_received == NULL ) {
  486. return ESP_ERR_NO_MEM;
  487. }
  488. return ESP_OK;
  489. }
  490. void deinit_slave_context(spi_slave_task_context_t *context)
  491. {
  492. TEST_ASSERT( context->data_to_send != NULL );
  493. vQueueDelete( context->data_to_send );
  494. context->data_to_send = NULL;
  495. TEST_ASSERT( context->data_received != NULL );
  496. vRingbufferDelete( context->data_received );
  497. context->data_received = NULL;
  498. }
  499. static void task_slave(void* arg)
  500. {
  501. spi_slave_task_context_t* context = (spi_slave_task_context_t*) arg;
  502. QueueHandle_t queue = context->data_to_send;
  503. RingbufHandle_t ringbuf = context->data_received;
  504. uint8_t recvbuf[320+4];
  505. slave_txdata_t txdata;
  506. ESP_LOGI( SLAVE_TAG, "slave up" );
  507. //never quit, but blocked by the queue, waiting to be killed, when no more send from main task.
  508. while( 1 ) {
  509. xQueueReceive( queue, &txdata, portMAX_DELAY );
  510. ESP_LOGI( "test", "received: %p", txdata.start );
  511. spi_slave_transaction_t t = {};
  512. t.length = txdata.len;
  513. t.tx_buffer = txdata.start;
  514. t.rx_buffer = recvbuf+4;
  515. //loop until trans_len != 0 to skip glitches
  516. do {
  517. TEST_ESP_OK( spi_slave_transmit( VSPI_HOST, &t, portMAX_DELAY ) );
  518. } while ( t.trans_len == 0 );
  519. *(uint32_t*)recvbuf = t.trans_len;
  520. ESP_LOGI( SLAVE_TAG, "received: %d", t.trans_len );
  521. xRingbufferSend( ringbuf, recvbuf, 4+(t.trans_len+7)/8, portMAX_DELAY );
  522. }
  523. }
  524. TEST_CASE("SPI master variable cmd & addr test","[spi]")
  525. {
  526. uint8_t *tx_buf=master_send;
  527. uint8_t rx_buf[320];
  528. uint8_t *rx_buf_ptr = rx_buf;
  529. spi_slave_task_context_t slave_context = {};
  530. esp_err_t err = init_slave_context( &slave_context );
  531. TEST_ASSERT( err == ESP_OK );
  532. spi_device_handle_t spi;
  533. //initial master, mode 0, 1MHz
  534. master_init( &spi, 0, 1*1000*1000 );
  535. //initial slave, mode 0, no dma
  536. slave_init(0, 0);
  537. //do internal connection
  538. int_connect( PIN_NUM_MOSI, HSPID_OUT_IDX, VSPIQ_IN_IDX );
  539. int_connect( PIN_NUM_MISO, VSPIQ_OUT_IDX, HSPID_IN_IDX );
  540. int_connect( PIN_NUM_CS, HSPICS0_OUT_IDX, VSPICS0_IN_IDX );
  541. int_connect( PIN_NUM_CLK, HSPICLK_OUT_IDX, VSPICLK_IN_IDX );
  542. TaskHandle_t handle_slave;
  543. xTaskCreate( task_slave, "spi_slave", 4096, &slave_context, 0, &handle_slave);
  544. slave_txdata_t slave_txdata[16];
  545. spi_transaction_ext_t trans[16];
  546. for( int i= 0; i < 16; i ++ ) {
  547. //prepare slave tx data
  548. slave_txdata[i] = (slave_txdata_t) {
  549. .start = slave_send + 4*(i%3),
  550. .len = 256,
  551. };
  552. xQueueSend( slave_context.data_to_send, &slave_txdata[i], portMAX_DELAY );
  553. //prepare master tx data
  554. trans[i] = (spi_transaction_ext_t) {
  555. .base = {
  556. .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
  557. .addr = 0x456789ab,
  558. .cmd = 0xcdef,
  559. .length = 8*i,
  560. .tx_buffer = tx_buf+i,
  561. .rx_buffer = rx_buf_ptr,
  562. },
  563. .command_bits = ((i+1)%3) * 8,
  564. .address_bits = ((i/3)%5) * 8,
  565. };
  566. if ( trans[i].base.length == 0 ) {
  567. trans[i].base.tx_buffer = NULL;
  568. trans[i].base.rx_buffer = NULL;
  569. } else {
  570. rx_buf_ptr += (trans[i].base.length + 31)/32*4;
  571. }
  572. }
  573. vTaskDelay(10);
  574. for ( int i = 0; i < 16; i ++ ) {
  575. TEST_ESP_OK (spi_device_queue_trans( spi, (spi_transaction_t*)&trans[i], portMAX_DELAY ) );
  576. vTaskDelay(10);
  577. }
  578. for( int i= 0; i < 16; i ++ ) {
  579. //wait for both master and slave end
  580. ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
  581. spi_transaction_ext_t *t;
  582. size_t rcv_len;
  583. spi_device_get_trans_result( spi, (spi_transaction_t**)&t, portMAX_DELAY );
  584. TEST_ASSERT( t == &trans[i] );
  585. if ( trans[i].base.length != 0 ) {
  586. ESP_LOG_BUFFER_HEX( "master tx", trans[i].base.tx_buffer, trans[i].base.length/8 );
  587. ESP_LOG_BUFFER_HEX( "master rx", trans[i].base.rx_buffer, trans[i].base.length/8 );
  588. } else {
  589. ESP_LOGI( "master tx", "no data" );
  590. ESP_LOGI( "master rx", "no data" );
  591. }
  592. slave_rxdata_t *rcv_data = xRingbufferReceive( slave_context.data_received, &rcv_len, portMAX_DELAY );
  593. uint8_t *buffer = rcv_data->data;
  594. rcv_len = rcv_data->len;
  595. ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
  596. ESP_LOG_BUFFER_HEX( "slave tx", slave_txdata[i].start, (rcv_len+7)/8);
  597. ESP_LOG_BUFFER_HEX( "slave rx", buffer, (rcv_len+7)/8);
  598. //check result
  599. uint8_t *ptr_addr = (uint8_t*)&t->base.addr;
  600. uint8_t *ptr_cmd = (uint8_t*)&t->base.cmd;
  601. for ( int j = 0; j < t->command_bits/8; j ++ ) {
  602. TEST_ASSERT_EQUAL( buffer[j], ptr_cmd[t->command_bits/8-j-1] );
  603. }
  604. for ( int j = 0; j < t->address_bits/8; j ++ ) {
  605. TEST_ASSERT_EQUAL( buffer[t->command_bits/8+j], ptr_addr[t->address_bits/8-j-1] );
  606. }
  607. if ( t->base.length != 0) {
  608. TEST_ASSERT_EQUAL_HEX8_ARRAY(t->base.tx_buffer, buffer + (t->command_bits + t->address_bits)/8, t->base.length/8);
  609. TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_txdata[i].start + (t->command_bits + t->address_bits)/8, t->base.rx_buffer, t->base.length/8);
  610. }
  611. TEST_ASSERT_EQUAL( t->base.length + t->command_bits + t->address_bits, rcv_len );
  612. //clean
  613. vRingbufferReturnItem( slave_context.data_received, buffer );
  614. }
  615. vTaskDelete( handle_slave );
  616. handle_slave = 0;
  617. deinit_slave_context(&slave_context);
  618. TEST_ASSERT(spi_slave_free(VSPI_HOST) == ESP_OK);
  619. TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
  620. TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
  621. ESP_LOGI(MASTER_TAG, "test passed.");
  622. }