uart.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr.h"
  17. #include "esp_intr_alloc.h"
  18. #include "esp_log.h"
  19. #include "esp_err.h"
  20. #include "esp_clk.h"
  21. #include "malloc.h"
  22. #include "freertos/FreeRTOS.h"
  23. #include "freertos/semphr.h"
  24. #include "freertos/xtensa_api.h"
  25. #include "freertos/task.h"
  26. #include "freertos/ringbuf.h"
  27. #include "soc/dport_reg.h"
  28. #include "soc/uart_struct.h"
  29. #include "driver/uart.h"
  30. #include "driver/gpio.h"
  31. #define XOFF (char)0x13
  32. #define XON (char)0x11
  33. static const char* UART_TAG = "uart";
  34. #define UART_CHECK(a, str, ret_val) \
  35. if (!(a)) { \
  36. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  37. return (ret_val); \
  38. }
  39. #define UART_EMPTY_THRESH_DEFAULT (10)
  40. #define UART_FULL_THRESH_DEFAULT (120)
  41. #define UART_TOUT_THRESH_DEFAULT (10)
  42. #define UART_TX_IDLE_NUM_DEFAULT (0)
  43. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  44. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  45. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  46. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  47. typedef struct {
  48. uart_event_type_t type; /*!< UART TX data type */
  49. struct {
  50. int brk_len;
  51. size_t size;
  52. uint8_t data[0];
  53. } tx_data;
  54. } uart_tx_data_t;
  55. typedef struct {
  56. uart_port_t uart_num; /*!< UART port number*/
  57. int queue_size; /*!< UART event queue size*/
  58. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  59. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  60. //rx parameters
  61. int rx_buffered_len; /*!< UART cached data length */
  62. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  63. int rx_buf_size; /*!< RX ring buffer size */
  64. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  65. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  66. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  67. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  68. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  69. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  70. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  71. //tx parameters
  72. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  73. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  74. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  75. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  76. int tx_buf_size; /*!< TX ring buffer size */
  77. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  78. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  79. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  80. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  81. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  82. uint32_t tx_len_cur;
  83. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  84. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  85. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  86. } uart_obj_t;
  87. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  88. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  89. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
  90. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
  91. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  92. {
  93. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  94. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  95. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  96. UART[uart_num]->conf0.bit_num = data_bit;
  97. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  98. return ESP_OK;
  99. }
  100. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  101. {
  102. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  103. *(data_bit) = UART[uart_num]->conf0.bit_num;
  104. return ESP_OK;
  105. }
  106. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  107. {
  108. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  109. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  110. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  111. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  112. if (stop_bit == UART_STOP_BITS_2) {
  113. stop_bit = UART_STOP_BITS_1;
  114. UART[uart_num]->rs485_conf.dl1_en = 1;
  115. } else {
  116. UART[uart_num]->rs485_conf.dl1_en = 0;
  117. }
  118. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  119. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  120. return ESP_OK;
  121. }
  122. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  123. {
  124. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  125. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  126. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  127. (*stop_bit) = UART_STOP_BITS_2;
  128. } else {
  129. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  130. }
  131. return ESP_OK;
  132. }
  133. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  134. {
  135. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  136. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  137. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  138. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  139. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  140. return ESP_OK;
  141. }
  142. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  143. {
  144. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  145. int val = UART[uart_num]->conf0.val;
  146. if(val & UART_PARITY_EN_M) {
  147. if(val & UART_PARITY_M) {
  148. (*parity_mode) = UART_PARITY_ODD;
  149. } else {
  150. (*parity_mode) = UART_PARITY_EVEN;
  151. }
  152. } else {
  153. (*parity_mode) = UART_PARITY_DISABLE;
  154. }
  155. return ESP_OK;
  156. }
  157. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  158. {
  159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  160. esp_err_t ret = ESP_OK;
  161. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  162. int uart_clk_freq;
  163. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  164. /* this UART has been configured to use REF_TICK */
  165. uart_clk_freq = REF_CLK_FREQ;
  166. } else {
  167. uart_clk_freq = esp_clk_apb_freq();
  168. }
  169. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  170. if (clk_div < 16) {
  171. /* baud rate is too high for this clock frequency */
  172. ret = ESP_ERR_INVALID_ARG;
  173. } else {
  174. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  175. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  176. }
  177. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  178. return ret;
  179. }
  180. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  181. {
  182. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  183. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  184. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  185. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  186. (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
  187. return ESP_OK;
  188. }
  189. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  190. {
  191. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  192. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  193. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  194. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  195. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  196. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  197. return ESP_OK;
  198. }
  199. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  200. {
  201. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  202. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  203. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  204. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  205. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  206. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  207. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  208. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  209. UART[uart_num]->swfc_conf.xon_char = XON;
  210. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  211. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  212. return ESP_OK;
  213. }
  214. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  215. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  216. {
  217. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  218. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  219. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  220. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  221. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  222. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  223. UART[uart_num]->conf1.rx_flow_en = 1;
  224. } else {
  225. UART[uart_num]->conf1.rx_flow_en = 0;
  226. }
  227. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  228. UART[uart_num]->conf0.tx_flow_en = 1;
  229. } else {
  230. UART[uart_num]->conf0.tx_flow_en = 0;
  231. }
  232. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  233. return ESP_OK;
  234. }
  235. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  236. {
  237. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  238. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  239. if(UART[uart_num]->conf1.rx_flow_en) {
  240. val |= UART_HW_FLOWCTRL_RTS;
  241. }
  242. if(UART[uart_num]->conf0.tx_flow_en) {
  243. val |= UART_HW_FLOWCTRL_CTS;
  244. }
  245. (*flow_ctrl) = val;
  246. return ESP_OK;
  247. }
  248. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  249. {
  250. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  251. // Read all data from the FIFO
  252. while (UART[uart_num]->status.rxfifo_cnt) {
  253. READ_PERI_REG(UART_FIFO_REG(uart_num));
  254. }
  255. return ESP_OK;
  256. }
  257. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  258. {
  259. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  260. //intr_clr register is write-only
  261. UART[uart_num]->int_clr.val = clr_mask;
  262. return ESP_OK;
  263. }
  264. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  265. {
  266. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  267. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  268. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  269. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  270. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  271. return ESP_OK;
  272. }
  273. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  274. {
  275. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  276. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  277. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  278. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  279. return ESP_OK;
  280. }
  281. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  285. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  286. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  287. UART[uart_num]->at_cmd_char.data = pattern_chr;
  288. UART[uart_num]->at_cmd_char.char_num = chr_num;
  289. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  290. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  291. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  292. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  293. }
  294. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  295. {
  296. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  297. }
  298. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  299. {
  300. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  301. }
  302. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  303. {
  304. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  305. }
  306. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  307. {
  308. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  309. }
  310. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  311. {
  312. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  313. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  314. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  315. UART[uart_num]->int_clr.txfifo_empty = 1;
  316. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  317. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  318. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  319. return ESP_OK;
  320. }
  321. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  322. {
  323. int ret;
  324. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  325. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  326. switch(uart_num) {
  327. case UART_NUM_1:
  328. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  329. break;
  330. case UART_NUM_2:
  331. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  332. break;
  333. case UART_NUM_0:
  334. default:
  335. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  336. break;
  337. }
  338. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  339. return ret;
  340. }
  341. esp_err_t uart_isr_free(uart_port_t uart_num)
  342. {
  343. esp_err_t ret;
  344. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  345. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  346. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  347. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  348. p_uart_obj[uart_num]->intr_handle=NULL;
  349. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  350. return ret;
  351. }
  352. //internal signal can be output to multiple GPIO pads
  353. //only one GPIO pad can connect with input signal
  354. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  355. {
  356. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  357. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  358. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  359. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  360. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  361. int tx_sig, rx_sig, rts_sig, cts_sig;
  362. switch(uart_num) {
  363. case UART_NUM_0:
  364. tx_sig = U0TXD_OUT_IDX;
  365. rx_sig = U0RXD_IN_IDX;
  366. rts_sig = U0RTS_OUT_IDX;
  367. cts_sig = U0CTS_IN_IDX;
  368. break;
  369. case UART_NUM_1:
  370. tx_sig = U1TXD_OUT_IDX;
  371. rx_sig = U1RXD_IN_IDX;
  372. rts_sig = U1RTS_OUT_IDX;
  373. cts_sig = U1CTS_IN_IDX;
  374. break;
  375. case UART_NUM_2:
  376. tx_sig = U2TXD_OUT_IDX;
  377. rx_sig = U2RXD_IN_IDX;
  378. rts_sig = U2RTS_OUT_IDX;
  379. cts_sig = U2CTS_IN_IDX;
  380. break;
  381. case UART_NUM_MAX:
  382. default:
  383. tx_sig = U0TXD_OUT_IDX;
  384. rx_sig = U0RXD_IN_IDX;
  385. rts_sig = U0RTS_OUT_IDX;
  386. cts_sig = U0CTS_IN_IDX;
  387. break;
  388. }
  389. if(tx_io_num >= 0) {
  390. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  391. gpio_set_level(tx_io_num, 1);
  392. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  393. }
  394. if(rx_io_num >= 0) {
  395. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  396. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  397. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  398. gpio_matrix_in(rx_io_num, rx_sig, 0);
  399. }
  400. if(rts_io_num >= 0) {
  401. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  402. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  403. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  404. }
  405. if(cts_io_num >= 0) {
  406. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  407. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  408. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  409. gpio_matrix_in(cts_io_num, cts_sig, 0);
  410. }
  411. return ESP_OK;
  412. }
  413. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  414. {
  415. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  416. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  417. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  418. UART[uart_num]->conf0.sw_rts = level & 0x1;
  419. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  420. return ESP_OK;
  421. }
  422. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  423. {
  424. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  425. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  426. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  427. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  428. return ESP_OK;
  429. }
  430. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  431. {
  432. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  433. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  434. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  435. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  436. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  437. return ESP_OK;
  438. }
  439. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  440. {
  441. esp_err_t r;
  442. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  443. UART_CHECK((uart_config), "param null", ESP_FAIL);
  444. if(uart_num == UART_NUM_0) {
  445. periph_module_enable(PERIPH_UART0_MODULE);
  446. } else if(uart_num == UART_NUM_1) {
  447. periph_module_enable(PERIPH_UART1_MODULE);
  448. } else if(uart_num == UART_NUM_2) {
  449. periph_module_enable(PERIPH_UART2_MODULE);
  450. }
  451. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  452. if (r != ESP_OK) return r;
  453. UART[uart_num]->conf0.val =
  454. (uart_config->parity << UART_PARITY_S)
  455. | (uart_config->data_bits << UART_BIT_NUM_S)
  456. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  457. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  458. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  459. if (r != ESP_OK) return r;
  460. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  461. if (r != ESP_OK) return r;
  462. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  463. return r;
  464. }
  465. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  466. {
  467. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  468. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  469. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  470. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  471. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  472. UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
  473. UART[uart_num]->conf1.rx_tout_en = 1;
  474. } else {
  475. UART[uart_num]->conf1.rx_tout_en = 0;
  476. }
  477. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  478. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  479. }
  480. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  481. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  482. }
  483. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  484. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  485. return ESP_OK;
  486. }
  487. //internal isr handler for default driver code.
  488. static void uart_rx_intr_handler_default(void *param)
  489. {
  490. uart_obj_t *p_uart = (uart_obj_t*) param;
  491. uint8_t uart_num = p_uart->uart_num;
  492. uart_dev_t* uart_reg = UART[uart_num];
  493. uint8_t buf_idx = 0;
  494. uint32_t uart_intr_status = UART[uart_num]->int_st.val;
  495. int rx_fifo_len = 0;
  496. uart_event_t uart_event;
  497. portBASE_TYPE HPTaskAwoken = 0;
  498. while(uart_intr_status != 0x0) {
  499. buf_idx = 0;
  500. uart_event.type = UART_EVENT_MAX;
  501. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  502. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  503. uart_reg->int_ena.txfifo_empty = 0;
  504. uart_reg->int_clr.txfifo_empty = 1;
  505. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  506. if(p_uart->tx_waiting_brk) {
  507. continue;
  508. }
  509. //TX semaphore will only be used when tx_buf_size is zero.
  510. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  511. p_uart->tx_waiting_fifo = false;
  512. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  513. if(HPTaskAwoken == pdTRUE) {
  514. portYIELD_FROM_ISR() ;
  515. }
  516. }
  517. else {
  518. //We don't use TX ring buffer, because the size is zero.
  519. if(p_uart->tx_buf_size == 0) {
  520. continue;
  521. }
  522. int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
  523. bool en_tx_flg = false;
  524. //We need to put a loop here, in case all the buffer items are very short.
  525. //That would cause a watch_dog reset because empty interrupt happens so often.
  526. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  527. while(tx_fifo_rem) {
  528. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  529. size_t size;
  530. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  531. if(p_uart->tx_head) {
  532. //The first item is the data description
  533. //Get the first item to get the data information
  534. if(p_uart->tx_len_tot == 0) {
  535. p_uart->tx_ptr = NULL;
  536. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  537. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  538. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  539. p_uart->tx_brk_flg = 1;
  540. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  541. }
  542. //We have saved the data description from the 1st item, return buffer.
  543. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  544. if(HPTaskAwoken == pdTRUE) {
  545. portYIELD_FROM_ISR() ;
  546. }
  547. }else if(p_uart->tx_ptr == NULL) {
  548. //Update the TX item pointer, we will need this to return item to buffer.
  549. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  550. en_tx_flg = true;
  551. p_uart->tx_len_cur = size;
  552. }
  553. }
  554. else {
  555. //Can not get data from ring buffer, return;
  556. break;
  557. }
  558. }
  559. if(p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  560. //To fill the TX FIFO.
  561. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  562. for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
  563. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
  564. }
  565. p_uart->tx_len_tot -= send_len;
  566. p_uart->tx_len_cur -= send_len;
  567. tx_fifo_rem -= send_len;
  568. if(p_uart->tx_len_cur == 0) {
  569. //Return item to ring buffer.
  570. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  571. if(HPTaskAwoken == pdTRUE) {
  572. portYIELD_FROM_ISR() ;
  573. }
  574. p_uart->tx_head = NULL;
  575. p_uart->tx_ptr = NULL;
  576. //Sending item done, now we need to send break if there is a record.
  577. //Set TX break signal after FIFO is empty
  578. if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
  579. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  580. uart_reg->int_ena.tx_brk_done = 0;
  581. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  582. uart_reg->conf0.txd_brk = 1;
  583. uart_reg->int_clr.tx_brk_done = 1;
  584. uart_reg->int_ena.tx_brk_done = 1;
  585. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  586. p_uart->tx_waiting_brk = 1;
  587. } else {
  588. //enable TX empty interrupt
  589. en_tx_flg = true;
  590. }
  591. } else {
  592. //enable TX empty interrupt
  593. en_tx_flg = true;
  594. }
  595. }
  596. }
  597. if(en_tx_flg) {
  598. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  599. uart_reg->int_clr.txfifo_empty = 1;
  600. uart_reg->int_ena.txfifo_empty = 1;
  601. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  602. }
  603. }
  604. }
  605. else if((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M) || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)) {
  606. if(p_uart->rx_buffer_full_flg == false) {
  607. //Get the buffer from the FIFO
  608. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  609. p_uart->rx_stash_len = rx_fifo_len;
  610. //We have to read out all data in RX FIFO to clear the interrupt signal
  611. while(buf_idx < rx_fifo_len) {
  612. p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
  613. }
  614. //After Copying the Data From FIFO ,Clear intr_status
  615. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  616. uart_reg->int_clr.rxfifo_tout = 1;
  617. uart_reg->int_clr.rxfifo_full = 1;
  618. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  619. uart_event.size = rx_fifo_len;
  620. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  621. //Mainly for applications that uses flow control or small ring buffer.
  622. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  623. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  624. uart_reg->int_ena.rxfifo_full = 0;
  625. uart_reg->int_ena.rxfifo_tout = 0;
  626. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  627. p_uart->rx_buffer_full_flg = true;
  628. uart_event.type = UART_BUFFER_FULL;
  629. } else {
  630. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  631. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  632. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  633. uart_event.type = UART_DATA;
  634. }
  635. if(HPTaskAwoken == pdTRUE) {
  636. portYIELD_FROM_ISR() ;
  637. }
  638. } else {
  639. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  640. uart_reg->int_ena.rxfifo_full = 0;
  641. uart_reg->int_ena.rxfifo_tout = 0;
  642. uart_reg->int_clr.val = UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M;
  643. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  644. uart_event.type = UART_BUFFER_FULL;
  645. }
  646. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  647. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  648. // Read all data from the FIFO
  649. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  650. for (int i = 0; i < rx_fifo_len; i++) {
  651. READ_PERI_REG(UART_FIFO_REG(uart_num));
  652. }
  653. uart_reg->int_clr.rxfifo_ovf = 1;
  654. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  655. uart_event.type = UART_FIFO_OVF;
  656. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  657. uart_reg->int_clr.brk_det = 1;
  658. uart_event.type = UART_BREAK;
  659. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  660. uart_reg->int_clr.frm_err = 1;
  661. uart_event.type = UART_FRAME_ERR;
  662. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  663. uart_reg->int_clr.parity_err = 1;
  664. uart_event.type = UART_PARITY_ERR;
  665. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  666. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  667. uart_reg->conf0.txd_brk = 0;
  668. uart_reg->int_ena.tx_brk_done = 0;
  669. uart_reg->int_clr.tx_brk_done = 1;
  670. if(p_uart->tx_brk_flg == 1) {
  671. uart_reg->int_ena.txfifo_empty = 1;
  672. }
  673. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  674. if(p_uart->tx_brk_flg == 1) {
  675. p_uart->tx_brk_flg = 0;
  676. p_uart->tx_waiting_brk = 0;
  677. } else {
  678. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  679. if(HPTaskAwoken == pdTRUE) {
  680. portYIELD_FROM_ISR() ;
  681. }
  682. }
  683. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  684. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  685. uart_reg->int_ena.tx_brk_idle_done = 0;
  686. uart_reg->int_clr.tx_brk_idle_done = 1;
  687. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  688. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  689. uart_reg->int_clr.at_cmd_char_det = 1;
  690. uart_event.type = UART_PATTERN_DET;
  691. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  692. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  693. uart_reg->int_ena.tx_done = 0;
  694. uart_reg->int_clr.tx_done = 1;
  695. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  696. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  697. if(HPTaskAwoken == pdTRUE) {
  698. portYIELD_FROM_ISR() ;
  699. }
  700. } else {
  701. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  702. uart_event.type = UART_EVENT_MAX;
  703. }
  704. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  705. xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken);
  706. if(HPTaskAwoken == pdTRUE) {
  707. portYIELD_FROM_ISR() ;
  708. }
  709. }
  710. uart_intr_status = uart_reg->int_st.val;
  711. }
  712. }
  713. /**************************************************************/
  714. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  715. {
  716. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  717. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  718. BaseType_t res;
  719. portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
  720. //Take tx_mux
  721. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  722. if(res == pdFALSE) {
  723. return ESP_ERR_TIMEOUT;
  724. }
  725. ticks_to_wait = ticks_end - xTaskGetTickCount();
  726. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  727. ticks_to_wait = ticks_end - xTaskGetTickCount();
  728. if(UART[uart_num]->status.txfifo_cnt == 0) {
  729. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  730. return ESP_OK;
  731. }
  732. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  733. //take 2nd tx_done_sem, wait given from ISR
  734. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  735. if(res == pdFALSE) {
  736. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  737. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  738. return ESP_ERR_TIMEOUT;
  739. }
  740. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  741. return ESP_OK;
  742. }
  743. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  744. {
  745. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  746. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  747. UART[uart_num]->conf0.txd_brk = 1;
  748. UART[uart_num]->int_clr.tx_brk_done = 1;
  749. UART[uart_num]->int_ena.tx_brk_done = 1;
  750. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  751. return ESP_OK;
  752. }
  753. //Fill UART tx_fifo and return a number,
  754. //This function by itself is not thread-safe, always call from within a muxed section.
  755. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  756. {
  757. uint8_t i = 0;
  758. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  759. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  760. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  761. for(i = 0; i < copy_cnt; i++) {
  762. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  763. }
  764. return copy_cnt;
  765. }
  766. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  767. {
  768. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  769. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  770. UART_CHECK(buffer, "buffer null", (-1));
  771. if(len == 0) {
  772. return 0;
  773. }
  774. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  775. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  776. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  777. return tx_len;
  778. }
  779. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  780. {
  781. if(size == 0) {
  782. return 0;
  783. }
  784. size_t original_size = size;
  785. //lock for uart_tx
  786. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  787. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  788. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  789. int offset = 0;
  790. uart_tx_data_t evt;
  791. evt.tx_data.size = size;
  792. evt.tx_data.brk_len = brk_len;
  793. if(brk_en) {
  794. evt.type = UART_DATA_BREAK;
  795. } else {
  796. evt.type = UART_DATA;
  797. }
  798. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  799. while(size > 0) {
  800. int send_size = size > max_size / 2 ? max_size / 2 : size;
  801. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  802. size -= send_size;
  803. offset += send_size;
  804. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  805. }
  806. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  807. } else {
  808. while(size) {
  809. //semaphore for tx_fifo available
  810. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  811. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  812. if(sent < size) {
  813. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  814. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  815. }
  816. size -= sent;
  817. src += sent;
  818. }
  819. }
  820. if(brk_en) {
  821. uart_set_break(uart_num, brk_len);
  822. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  823. }
  824. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  825. }
  826. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  827. return original_size;
  828. }
  829. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  830. {
  831. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  832. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  833. UART_CHECK(src, "buffer null", (-1));
  834. return uart_tx_all(uart_num, src, size, 0, 0);
  835. }
  836. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  837. {
  838. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  839. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  840. UART_CHECK((size > 0), "uart size error", (-1));
  841. UART_CHECK((src), "uart data null", (-1));
  842. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  843. return uart_tx_all(uart_num, src, size, 1, brk_len);
  844. }
  845. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  846. {
  847. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  848. UART_CHECK((buf), "uart data null", (-1));
  849. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  850. uint8_t* data = NULL;
  851. size_t size;
  852. size_t copy_len = 0;
  853. int len_tmp;
  854. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  855. return -1;
  856. }
  857. while(length) {
  858. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  859. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  860. if(data) {
  861. p_uart_obj[uart_num]->rx_head_ptr = data;
  862. p_uart_obj[uart_num]->rx_ptr = data;
  863. p_uart_obj[uart_num]->rx_cur_remain = size;
  864. } else {
  865. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  866. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  867. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  868. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  869. return copy_len;
  870. }
  871. }
  872. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  873. len_tmp = length;
  874. } else {
  875. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  876. }
  877. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  878. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  879. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  880. copy_len += len_tmp;
  881. length -= len_tmp;
  882. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  883. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  884. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  885. p_uart_obj[uart_num]->rx_ptr = NULL;
  886. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  887. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  888. if(res == pdTRUE) {
  889. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  890. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  891. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  892. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  893. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  894. }
  895. }
  896. }
  897. }
  898. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  899. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  900. p_uart_obj[uart_num]->rx_buffered_len -= copy_len;
  901. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  902. return copy_len;
  903. }
  904. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  905. {
  906. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  907. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  908. *size = p_uart_obj[uart_num]->rx_buffered_len;
  909. return ESP_OK;
  910. }
  911. esp_err_t uart_flush(uart_port_t uart_num)
  912. {
  913. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  914. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  915. uart_obj_t* p_uart = p_uart_obj[uart_num];
  916. uint8_t* data;
  917. size_t size;
  918. //rx sem protect the ring buffer read related functions
  919. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  920. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  921. while(true) {
  922. if(p_uart->rx_head_ptr) {
  923. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  924. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  925. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  926. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  927. p_uart->rx_ptr = NULL;
  928. p_uart->rx_cur_remain = 0;
  929. p_uart->rx_head_ptr = NULL;
  930. }
  931. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  932. if(data == NULL) {
  933. break;
  934. }
  935. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  936. p_uart_obj[uart_num]->rx_buffered_len -= size;
  937. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  938. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  939. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  940. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  941. if(res == pdTRUE) {
  942. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  943. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  944. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  945. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  946. }
  947. }
  948. }
  949. p_uart->rx_ptr = NULL;
  950. p_uart->rx_cur_remain = 0;
  951. p_uart->rx_head_ptr = NULL;
  952. uart_reset_rx_fifo(uart_num);
  953. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  954. xSemaphoreGive(p_uart->rx_mux);
  955. return ESP_OK;
  956. }
  957. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  958. {
  959. esp_err_t r;
  960. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  961. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  962. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  963. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  964. if(p_uart_obj[uart_num] == NULL) {
  965. p_uart_obj[uart_num] = (uart_obj_t*) malloc(sizeof(uart_obj_t));
  966. if(p_uart_obj[uart_num] == NULL) {
  967. ESP_LOGE(UART_TAG, "UART driver malloc error");
  968. return ESP_FAIL;
  969. }
  970. p_uart_obj[uart_num]->uart_num = uart_num;
  971. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  972. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  973. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  974. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  975. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  976. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  977. p_uart_obj[uart_num]->queue_size = queue_size;
  978. p_uart_obj[uart_num]->tx_ptr = NULL;
  979. p_uart_obj[uart_num]->tx_head = NULL;
  980. p_uart_obj[uart_num]->tx_len_tot = 0;
  981. p_uart_obj[uart_num]->tx_brk_flg = 0;
  982. p_uart_obj[uart_num]->tx_brk_len = 0;
  983. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  984. p_uart_obj[uart_num]->rx_buffered_len = 0;
  985. if(uart_queue) {
  986. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  987. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  988. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  989. } else {
  990. p_uart_obj[uart_num]->xQueueUart = NULL;
  991. }
  992. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  993. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  994. p_uart_obj[uart_num]->rx_ptr = NULL;
  995. p_uart_obj[uart_num]->rx_cur_remain = 0;
  996. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  997. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  998. if(tx_buffer_size > 0) {
  999. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1000. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1001. } else {
  1002. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1003. p_uart_obj[uart_num]->tx_buf_size = 0;
  1004. }
  1005. } else {
  1006. ESP_LOGE(UART_TAG, "UART driver already installed");
  1007. return ESP_FAIL;
  1008. }
  1009. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1010. if (r!=ESP_OK) goto err;
  1011. uart_intr_config_t uart_intr = {
  1012. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1013. | UART_RXFIFO_TOUT_INT_ENA_M
  1014. | UART_FRM_ERR_INT_ENA_M
  1015. | UART_RXFIFO_OVF_INT_ENA_M
  1016. | UART_BRK_DET_INT_ENA_M
  1017. | UART_PARITY_ERR_INT_ENA_M,
  1018. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1019. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1020. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1021. };
  1022. r=uart_intr_config(uart_num, &uart_intr);
  1023. if (r!=ESP_OK) goto err;
  1024. return r;
  1025. err:
  1026. uart_driver_delete(uart_num);
  1027. return r;
  1028. }
  1029. //Make sure no other tasks are still using UART before you call this function
  1030. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1031. {
  1032. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1033. if(p_uart_obj[uart_num] == NULL) {
  1034. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1035. return ESP_OK;
  1036. }
  1037. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1038. uart_disable_rx_intr(uart_num);
  1039. uart_disable_tx_intr(uart_num);
  1040. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1041. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1042. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1043. }
  1044. if(p_uart_obj[uart_num]->tx_done_sem) {
  1045. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1046. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1047. }
  1048. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1049. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1050. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1051. }
  1052. if(p_uart_obj[uart_num]->tx_mux) {
  1053. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1054. p_uart_obj[uart_num]->tx_mux = NULL;
  1055. }
  1056. if(p_uart_obj[uart_num]->rx_mux) {
  1057. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1058. p_uart_obj[uart_num]->rx_mux = NULL;
  1059. }
  1060. if(p_uart_obj[uart_num]->xQueueUart) {
  1061. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1062. p_uart_obj[uart_num]->xQueueUart = NULL;
  1063. }
  1064. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1065. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1066. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1067. }
  1068. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1069. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1070. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1071. }
  1072. free(p_uart_obj[uart_num]);
  1073. p_uart_obj[uart_num] = NULL;
  1074. if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
  1075. if(uart_num == UART_NUM_0) {
  1076. periph_module_disable(PERIPH_UART0_MODULE);
  1077. } else if(uart_num == UART_NUM_1) {
  1078. periph_module_disable(PERIPH_UART1_MODULE);
  1079. } else if(uart_num == UART_NUM_2) {
  1080. periph_module_disable(PERIPH_UART2_MODULE);
  1081. }
  1082. }
  1083. return ESP_OK;
  1084. }