rtc_time.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. // Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdint.h>
  15. #include "rom/ets_sys.h"
  16. #include "soc/rtc.h"
  17. #include "soc/rtc_cntl_reg.h"
  18. #include "soc/timer_group_reg.h"
  19. #define MHZ (1000000)
  20. /* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
  21. * This feature counts the number of XTAL clock cycles within a given number of
  22. * RTC_SLOW_CLK cycles.
  23. *
  24. * Slow clock calibration feature has two modes of operation: one-off and cycling.
  25. * In cycling mode (which is enabled by default on SoC reset), counting of XTAL
  26. * cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
  27. * using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
  28. * once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
  29. * enabled using TIMG_RTC_CALI_START bit.
  30. */
  31. /**
  32. * @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
  33. * @param cal_clk which clock to calibrate
  34. * @param slowclk_cycles number of slow clock cycles to count
  35. * @return number of XTAL clock cycles within the given number of slow clock cycles
  36. */
  37. static uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  38. {
  39. /* Enable requested clock (150k clock is always on) */
  40. if (cal_clk == RTC_CAL_32K_XTAL) {
  41. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
  42. }
  43. if (cal_clk == RTC_CAL_8MD256) {
  44. SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
  45. }
  46. /* Prepare calibration */
  47. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
  48. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
  49. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
  50. /* Figure out how long to wait for calibration to finish */
  51. uint32_t expected_freq;
  52. rtc_slow_freq_t slow_freq = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
  53. if (cal_clk == RTC_CAL_32K_XTAL ||
  54. (cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_32K_XTAL)) {
  55. expected_freq = 32768; /* standard 32k XTAL */
  56. } else if (cal_clk == RTC_CAL_8MD256 ||
  57. (cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_8MD256)) {
  58. expected_freq = RTC_FAST_CLK_FREQ_APPROX / 256;
  59. } else {
  60. expected_freq = 150000; /* 150k internal oscillator */
  61. }
  62. uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
  63. /* Start calibration */
  64. CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  65. SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  66. /* Wait the expected time calibration should take.
  67. * TODO: if running under RTOS, and us_time_estimate > RTOS tick, use the
  68. * RTOS delay function.
  69. */
  70. ets_delay_us(us_time_estimate);
  71. /* Wait for calibration to finish up to another us_time_estimate */
  72. int timeout_us = us_time_estimate;
  73. while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY) &&
  74. timeout_us > 0) {
  75. timeout_us--;
  76. ets_delay_us(1);
  77. }
  78. if (cal_clk == RTC_CAL_32K_XTAL) {
  79. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
  80. }
  81. if (cal_clk == RTC_CAL_8MD256) {
  82. CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
  83. }
  84. if (timeout_us == 0) {
  85. /* timed out waiting for calibration */
  86. return 0;
  87. }
  88. return REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
  89. }
  90. uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  91. {
  92. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  93. uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
  94. uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
  95. return ratio;
  96. }
  97. uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
  98. {
  99. rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
  100. uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
  101. uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
  102. uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
  103. uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
  104. return period;
  105. }
  106. uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
  107. {
  108. /* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
  109. * TODO: fix overflow.
  110. */
  111. return (time_in_us << RTC_CLK_CAL_FRACT) / period;
  112. }
  113. uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
  114. {
  115. return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
  116. }
  117. uint64_t rtc_time_get()
  118. {
  119. SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
  120. while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
  121. ets_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus
  122. }
  123. SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
  124. uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
  125. t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
  126. return t;
  127. }
  128. void rtc_clk_wait_for_slow_cycle()
  129. {
  130. REG_CLR_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING | TIMG_RTC_CALI_START);
  131. REG_CLR_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY);
  132. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, RTC_CAL_RTC_MUX);
  133. /* Request to run calibration for 0 slow clock cycles.
  134. * RDY bit will be set on the nearest slow clock cycle.
  135. */
  136. REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, 0);
  137. REG_SET_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
  138. ets_delay_us(1); /* RDY needs some time to go low */
  139. while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
  140. ets_delay_us(1);
  141. }
  142. }