flash_ops.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdlib.h>
  15. #include <assert.h>
  16. #include <string.h>
  17. #include <stdio.h>
  18. #include <sys/param.h> // For MIN/MAX(a, b)
  19. #include <freertos/FreeRTOS.h>
  20. #include <freertos/task.h>
  21. #include <freertos/semphr.h>
  22. #include <rom/spi_flash.h>
  23. #include <rom/cache.h>
  24. #include <soc/soc.h>
  25. #include <soc/dport_reg.h>
  26. #include "sdkconfig.h"
  27. #include "esp_ipc.h"
  28. #include "esp_attr.h"
  29. #include "esp_spi_flash.h"
  30. #include "esp_log.h"
  31. #include "esp_clk.h"
  32. #include "esp_flash_partitions.h"
  33. #include "esp_ota_ops.h"
  34. #include "cache_utils.h"
  35. /* bytes erased by SPIEraseBlock() ROM function */
  36. #define BLOCK_ERASE_SIZE 65536
  37. /* Limit number of bytes written/read in a single SPI operation,
  38. as these operations disable all higher priority tasks from running.
  39. */
  40. #define MAX_WRITE_CHUNK 8192
  41. #define MAX_READ_CHUNK 16384
  42. static const char *TAG __attribute__((unused)) = "spi_flash";
  43. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  44. static spi_flash_counters_t s_flash_stats;
  45. #define COUNTER_START() uint32_t ts_begin = xthal_get_ccount()
  46. #define COUNTER_STOP(counter) \
  47. do{ \
  48. s_flash_stats.counter.count++; \
  49. s_flash_stats.counter.time += (xthal_get_ccount() - ts_begin) / (esp_clk_cpu_freq() / 1000000); \
  50. } while(0)
  51. #define COUNTER_ADD_BYTES(counter, size) \
  52. do { \
  53. s_flash_stats.counter.bytes += size; \
  54. } while (0)
  55. #else
  56. #define COUNTER_START()
  57. #define COUNTER_STOP(counter)
  58. #define COUNTER_ADD_BYTES(counter, size)
  59. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
  60. static esp_err_t spi_flash_translate_rc(esp_rom_spiflash_result_t rc);
  61. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_default_ops = {
  62. .start = spi_flash_disable_interrupts_caches_and_other_cpu,
  63. .end = spi_flash_enable_interrupts_caches_and_other_cpu,
  64. .op_lock = spi_flash_op_lock,
  65. .op_unlock = spi_flash_op_unlock
  66. };
  67. const DRAM_ATTR spi_flash_guard_funcs_t g_flash_guard_no_os_ops = {
  68. .start = spi_flash_disable_interrupts_caches_and_other_cpu_no_os,
  69. .end = spi_flash_enable_interrupts_caches_no_os,
  70. .op_lock = 0,
  71. .op_unlock = 0
  72. };
  73. static const spi_flash_guard_funcs_t *s_flash_guard_ops;
  74. #ifdef CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ABORTS
  75. #define UNSAFE_WRITE_ADDRESS abort()
  76. #else
  77. #define UNSAFE_WRITE_ADDRESS return false
  78. #endif
  79. /* CHECK_WRITE_ADDRESS macro to fail writes which land in the
  80. bootloader, partition table, or running application region.
  81. */
  82. #if CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  83. #define CHECK_WRITE_ADDRESS(ADDR, SIZE)
  84. #else /* FAILS or ABORTS */
  85. #define CHECK_WRITE_ADDRESS(ADDR, SIZE) do { \
  86. if (!is_safe_write_address(ADDR, SIZE)) { \
  87. return ESP_ERR_INVALID_ARG; \
  88. } \
  89. } while(0)
  90. #endif // CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
  91. static __attribute__((unused)) bool is_safe_write_address(size_t addr, size_t size)
  92. {
  93. bool result = true;
  94. if (addr <= ESP_PARTITION_TABLE_OFFSET + ESP_PARTITION_TABLE_MAX_LEN) {
  95. UNSAFE_WRITE_ADDRESS;
  96. }
  97. const esp_partition_t *p = esp_ota_get_running_partition();
  98. if (addr >= p->address && addr < p->address + p->size) {
  99. UNSAFE_WRITE_ADDRESS;
  100. }
  101. if (addr < p->address && addr + size > p->address) {
  102. UNSAFE_WRITE_ADDRESS;
  103. }
  104. return result;
  105. }
  106. void spi_flash_init()
  107. {
  108. spi_flash_init_lock();
  109. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  110. spi_flash_reset_counters();
  111. #endif
  112. }
  113. void IRAM_ATTR spi_flash_guard_set(const spi_flash_guard_funcs_t *funcs)
  114. {
  115. s_flash_guard_ops = funcs;
  116. }
  117. const spi_flash_guard_funcs_t *IRAM_ATTR spi_flash_guard_get()
  118. {
  119. return s_flash_guard_ops;
  120. }
  121. size_t IRAM_ATTR spi_flash_get_chip_size()
  122. {
  123. return g_rom_flashchip.chip_size;
  124. }
  125. static inline void IRAM_ATTR spi_flash_guard_start()
  126. {
  127. if (s_flash_guard_ops && s_flash_guard_ops->start) {
  128. s_flash_guard_ops->start();
  129. }
  130. }
  131. static inline void IRAM_ATTR spi_flash_guard_end()
  132. {
  133. if (s_flash_guard_ops && s_flash_guard_ops->end) {
  134. s_flash_guard_ops->end();
  135. }
  136. }
  137. static inline void IRAM_ATTR spi_flash_guard_op_lock()
  138. {
  139. if (s_flash_guard_ops && s_flash_guard_ops->op_lock) {
  140. s_flash_guard_ops->op_lock();
  141. }
  142. }
  143. static inline void IRAM_ATTR spi_flash_guard_op_unlock()
  144. {
  145. if (s_flash_guard_ops && s_flash_guard_ops->op_unlock) {
  146. s_flash_guard_ops->op_unlock();
  147. }
  148. }
  149. static esp_rom_spiflash_result_t IRAM_ATTR spi_flash_unlock()
  150. {
  151. static bool unlocked = false;
  152. if (!unlocked) {
  153. spi_flash_guard_start();
  154. esp_rom_spiflash_result_t rc = esp_rom_spiflash_unlock();
  155. spi_flash_guard_end();
  156. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  157. return rc;
  158. }
  159. unlocked = true;
  160. }
  161. return ESP_ROM_SPIFLASH_RESULT_OK;
  162. }
  163. esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
  164. {
  165. CHECK_WRITE_ADDRESS(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  166. return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
  167. }
  168. esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
  169. {
  170. CHECK_WRITE_ADDRESS(start_addr, size);
  171. if (start_addr % SPI_FLASH_SEC_SIZE != 0) {
  172. return ESP_ERR_INVALID_ARG;
  173. }
  174. if (size % SPI_FLASH_SEC_SIZE != 0) {
  175. return ESP_ERR_INVALID_SIZE;
  176. }
  177. if (size + start_addr > spi_flash_get_chip_size()) {
  178. return ESP_ERR_INVALID_SIZE;
  179. }
  180. size_t start = start_addr / SPI_FLASH_SEC_SIZE;
  181. size_t end = start + size / SPI_FLASH_SEC_SIZE;
  182. const size_t sectors_per_block = BLOCK_ERASE_SIZE / SPI_FLASH_SEC_SIZE;
  183. COUNTER_START();
  184. esp_rom_spiflash_result_t rc;
  185. rc = spi_flash_unlock();
  186. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  187. for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) {
  188. spi_flash_guard_start();
  189. if (sector % sectors_per_block == 0 && end - sector > sectors_per_block) {
  190. rc = esp_rom_spiflash_erase_block(sector / sectors_per_block);
  191. sector += sectors_per_block;
  192. COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE);
  193. } else {
  194. rc = esp_rom_spiflash_erase_sector(sector);
  195. ++sector;
  196. COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE);
  197. }
  198. spi_flash_guard_end();
  199. }
  200. }
  201. COUNTER_STOP(erase);
  202. return spi_flash_translate_rc(rc);
  203. }
  204. /* Wrapper around esp_rom_spiflash_write() that verifies data as written if CONFIG_SPI_FLASH_VERIFY_WRITE is set.
  205. If CONFIG_SPI_FLASH_VERIFY_WRITE is not set, this is esp_rom_spiflash_write().
  206. */
  207. static IRAM_ATTR esp_rom_spiflash_result_t spi_flash_write_inner(uint32_t target, const uint32_t *src_addr, int32_t len)
  208. {
  209. #ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
  210. return esp_rom_spiflash_write(target, src_addr, len);
  211. #else // CONFIG_SPI_FLASH_VERIFY_WRITE
  212. esp_rom_spiflash_result_t res = ESP_ROM_SPIFLASH_RESULT_OK;
  213. assert(len % sizeof(uint32_t) == 0);
  214. uint32_t before_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  215. uint32_t after_buf[ESP_ROM_SPIFLASH_BUFF_BYTE_READ_NUM / sizeof(uint32_t)];
  216. int32_t remaining = len;
  217. for(int i = 0; i < len; i += sizeof(before_buf)) {
  218. int i_w = i / sizeof(uint32_t); // index in words (i is an index in bytes)
  219. int32_t read_len = MIN(sizeof(before_buf), remaining);
  220. // Read "before" contents from flash
  221. res = esp_rom_spiflash_read(target + i, before_buf, read_len);
  222. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  223. break;
  224. }
  225. #ifdef CONFIG_SPI_FLASH_WARN_SETTING_ZERO_TO_ONE
  226. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  227. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  228. uint32_t write = src_addr[i_w + r_w];
  229. uint32_t before = before_buf[r_w];
  230. if ((before & write) != write) {
  231. spi_flash_guard_end();
  232. ESP_LOGW(TAG, "Write at offset 0x%x requests 0x%08x but will write 0x%08x -> 0x%08x",
  233. target + i + r, write, before, before & write);
  234. spi_flash_guard_start();
  235. }
  236. }
  237. #endif
  238. res = esp_rom_spiflash_write(target + i, &src_addr[i_w], read_len);
  239. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  240. break;
  241. }
  242. res = esp_rom_spiflash_read(target + i, after_buf, read_len);
  243. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  244. break;
  245. }
  246. for (int r = 0; r < read_len; r += sizeof(uint32_t)) {
  247. int r_w = r / sizeof(uint32_t); // index in words (r is index in bytes)
  248. uint32_t expected = src_addr[i_w + r_w] & before_buf[r_w];
  249. uint32_t actual = after_buf[r_w];
  250. if (expected != actual) {
  251. #ifdef CONFIG_SPI_FLASH_LOG_FAILED_WRITE
  252. spi_flash_guard_end();
  253. ESP_LOGE(TAG, "Bad write at offset 0x%x expected 0x%08x readback 0x%08x", target + i + r, expected, actual);
  254. spi_flash_guard_start();
  255. #endif
  256. res = ESP_ROM_SPIFLASH_RESULT_ERR;
  257. }
  258. }
  259. if (res != ESP_ROM_SPIFLASH_RESULT_OK) {
  260. break;
  261. }
  262. remaining -= read_len;
  263. }
  264. return res;
  265. #endif // CONFIG_SPI_FLASH_VERIFY_WRITE
  266. }
  267. esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
  268. {
  269. CHECK_WRITE_ADDRESS(dst, size);
  270. // Out of bound writes are checked in ROM code, but we can give better
  271. // error code here
  272. if (dst + size > g_rom_flashchip.chip_size) {
  273. return ESP_ERR_INVALID_SIZE;
  274. }
  275. if (size == 0) {
  276. return ESP_OK;
  277. }
  278. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  279. COUNTER_START();
  280. const uint8_t *srcc = (const uint8_t *) srcv;
  281. /*
  282. * Large operations are split into (up to) 3 parts:
  283. * - Left padding: 4 bytes up to the first 4-byte aligned destination offset.
  284. * - Middle part
  285. * - Right padding: 4 bytes from the last 4-byte aligned offset covered.
  286. */
  287. size_t left_off = dst & ~3U;
  288. size_t left_size = MIN(((dst + 3) & ~3U) - dst, size);
  289. size_t mid_off = left_size;
  290. size_t mid_size = (size - left_size) & ~3U;
  291. size_t right_off = left_size + mid_size;
  292. size_t right_size = size - mid_size - left_size;
  293. rc = spi_flash_unlock();
  294. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  295. goto out;
  296. }
  297. if (left_size > 0) {
  298. uint32_t t = 0xffffffff;
  299. memcpy(((uint8_t *) &t) + (dst - left_off), srcc, left_size);
  300. spi_flash_guard_start();
  301. rc = spi_flash_write_inner(left_off, &t, 4);
  302. spi_flash_guard_end();
  303. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  304. goto out;
  305. }
  306. COUNTER_ADD_BYTES(write, 4);
  307. }
  308. if (mid_size > 0) {
  309. /* If src buffer is 4-byte aligned as well and is not in a region that requires cache access to be enabled, we
  310. * can write directly without buffering in RAM. */
  311. #ifdef ESP_PLATFORM
  312. bool direct_write = esp_ptr_internal(srcc)
  313. && esp_ptr_byte_accessible(srcc)
  314. && ((uintptr_t) srcc + mid_off) % 4 == 0;
  315. #else
  316. bool direct_write = true;
  317. #endif
  318. while(mid_size > 0 && rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  319. uint32_t write_buf[8];
  320. uint32_t write_size = MIN(mid_size, MAX_WRITE_CHUNK);
  321. const uint8_t *write_src = srcc + mid_off;
  322. if (!direct_write) {
  323. write_size = MIN(write_size, sizeof(write_buf));
  324. memcpy(write_buf, write_src, write_size);
  325. write_src = (const uint8_t *)write_buf;
  326. }
  327. spi_flash_guard_start();
  328. rc = spi_flash_write_inner(dst + mid_off, (const uint32_t *) write_src, write_size);
  329. spi_flash_guard_end();
  330. COUNTER_ADD_BYTES(write, write_size);
  331. mid_size -= write_size;
  332. mid_off += write_size;
  333. }
  334. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  335. goto out;
  336. }
  337. }
  338. if (right_size > 0) {
  339. uint32_t t = 0xffffffff;
  340. memcpy(&t, srcc + right_off, right_size);
  341. spi_flash_guard_start();
  342. rc = spi_flash_write_inner(dst + right_off, &t, 4);
  343. spi_flash_guard_end();
  344. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  345. goto out;
  346. }
  347. COUNTER_ADD_BYTES(write, 4);
  348. }
  349. out:
  350. COUNTER_STOP(write);
  351. spi_flash_guard_op_lock();
  352. spi_flash_mark_modified_region(dst, size);
  353. spi_flash_guard_op_unlock();
  354. return spi_flash_translate_rc(rc);
  355. }
  356. esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
  357. {
  358. CHECK_WRITE_ADDRESS(dest_addr, size);
  359. const uint8_t *ssrc = (const uint8_t *)src;
  360. if ((dest_addr % 16) != 0) {
  361. return ESP_ERR_INVALID_ARG;
  362. }
  363. if ((size % 16) != 0) {
  364. return ESP_ERR_INVALID_SIZE;
  365. }
  366. COUNTER_START();
  367. esp_rom_spiflash_result_t rc;
  368. rc = spi_flash_unlock();
  369. if (rc == ESP_ROM_SPIFLASH_RESULT_OK) {
  370. /* esp_rom_spiflash_write_encrypted encrypts data in RAM as it writes,
  371. so copy to a temporary buffer - 32 bytes at a time.
  372. Each call to esp_rom_spiflash_write_encrypted takes a 32 byte "row" of
  373. data to encrypt, and each row is two 16 byte AES blocks
  374. that share a key (as derived from flash address).
  375. */
  376. uint8_t encrypt_buf[32] __attribute__((aligned(4)));
  377. uint32_t row_size;
  378. for (size_t i = 0; i < size; i += row_size) {
  379. uint32_t row_addr = dest_addr + i;
  380. if (i == 0 && (row_addr % 32) != 0) {
  381. /* writing to second block of a 32 byte row */
  382. row_size = 16;
  383. row_addr -= 16;
  384. /* copy to second block in buffer */
  385. memcpy(encrypt_buf + 16, ssrc + i, 16);
  386. /* decrypt the first block from flash, will reencrypt to same bytes */
  387. spi_flash_read_encrypted(row_addr, encrypt_buf, 16);
  388. } else if (size - i == 16) {
  389. /* 16 bytes left, is first block of a 32 byte row */
  390. row_size = 16;
  391. /* copy to first block in buffer */
  392. memcpy(encrypt_buf, ssrc + i, 16);
  393. /* decrypt the second block from flash, will reencrypt to same bytes */
  394. spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16);
  395. } else {
  396. /* Writing a full 32 byte row (2 blocks) */
  397. row_size = 32;
  398. memcpy(encrypt_buf, ssrc + i, 32);
  399. }
  400. spi_flash_guard_start();
  401. rc = esp_rom_spiflash_write_encrypted(row_addr, (uint32_t *)encrypt_buf, 32);
  402. spi_flash_guard_end();
  403. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  404. break;
  405. }
  406. }
  407. bzero(encrypt_buf, sizeof(encrypt_buf));
  408. }
  409. COUNTER_ADD_BYTES(write, size);
  410. COUNTER_STOP(write);
  411. spi_flash_guard_op_lock();
  412. spi_flash_mark_modified_region(dest_addr, size);
  413. spi_flash_guard_op_unlock();
  414. return spi_flash_translate_rc(rc);
  415. }
  416. esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
  417. {
  418. // Out of bound reads are checked in ROM code, but we can give better
  419. // error code here
  420. if (src + size > g_rom_flashchip.chip_size) {
  421. return ESP_ERR_INVALID_SIZE;
  422. }
  423. if (size == 0) {
  424. return ESP_OK;
  425. }
  426. esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
  427. COUNTER_START();
  428. spi_flash_guard_start();
  429. /* To simplify boundary checks below, we handle small reads separately. */
  430. if (size < 16) {
  431. uint32_t t[6]; /* Enough for 16 bytes + 4 on either side for padding. */
  432. uint32_t read_src = src & ~3U;
  433. uint32_t left_off = src & 3U;
  434. uint32_t read_size = (left_off + size + 3) & ~3U;
  435. rc = esp_rom_spiflash_read(read_src, t, read_size);
  436. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  437. goto out;
  438. }
  439. COUNTER_ADD_BYTES(read, read_size);
  440. memcpy(dstv, ((uint8_t *) t) + left_off, size);
  441. goto out;
  442. }
  443. uint8_t *dstc = (uint8_t *) dstv;
  444. intptr_t dsti = (intptr_t) dstc;
  445. /*
  446. * Large operations are split into (up to) 3 parts:
  447. * - The middle part: from the first 4-aligned position in src to the first
  448. * 4-aligned position in dst.
  449. */
  450. size_t src_mid_off = (src % 4 == 0 ? 0 : 4 - (src % 4));
  451. size_t dst_mid_off = (dsti % 4 == 0 ? 0 : 4 - (dsti % 4));
  452. size_t mid_size = (size - MAX(src_mid_off, dst_mid_off)) & ~3U;
  453. /*
  454. * - Once the middle part is in place, src_mid_off bytes from the preceding
  455. * 4-aligned source location are added on the left.
  456. */
  457. size_t pad_left_src = src & ~3U;
  458. size_t pad_left_size = src_mid_off;
  459. /*
  460. * - Finally, the right part is added: from the end of the middle part to
  461. * the end. Depending on the alignment of source and destination, this may
  462. * be a 4 or 8 byte read from pad_right_src.
  463. */
  464. size_t pad_right_src = (src + pad_left_size + mid_size) & ~3U;
  465. size_t pad_right_off = (pad_right_src - src);
  466. size_t pad_right_size = (size - pad_right_off);
  467. #ifdef ESP_PLATFORM
  468. bool direct_read = esp_ptr_internal(dstc)
  469. && esp_ptr_byte_accessible(dstc)
  470. && ((uintptr_t) dstc + dst_mid_off) % 4 == 0;
  471. #else
  472. bool direct_read = true;
  473. #endif
  474. if (mid_size > 0) {
  475. uint32_t mid_remaining = mid_size;
  476. uint32_t mid_read = 0;
  477. while (mid_remaining > 0) {
  478. uint32_t read_size = MIN(mid_remaining, MAX_READ_CHUNK);
  479. uint32_t read_buf[8];
  480. uint8_t *read_dst_final = dstc + dst_mid_off + mid_read;
  481. uint8_t *read_dst = read_dst_final;
  482. if (!direct_read) {
  483. read_size = MIN(read_size, sizeof(read_buf));
  484. read_dst = (uint8_t *) read_buf;
  485. }
  486. rc = esp_rom_spiflash_read(src + src_mid_off + mid_read,
  487. (uint32_t *) read_dst, read_size);
  488. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  489. goto out;
  490. }
  491. mid_remaining -= read_size;
  492. mid_read += read_size;
  493. if (!direct_read) {
  494. spi_flash_guard_end();
  495. memcpy(read_dst_final, read_buf, read_size);
  496. spi_flash_guard_start();
  497. } else if (mid_remaining > 0) {
  498. /* Drop guard momentarily, allows other tasks to preempt */
  499. spi_flash_guard_end();
  500. spi_flash_guard_start();
  501. }
  502. }
  503. COUNTER_ADD_BYTES(read, mid_size);
  504. /*
  505. * If offsets in src and dst are different, perform an in-place shift
  506. * to put destination data into its final position.
  507. * Note that the shift can be left (src_mid_off < dst_mid_off) or right.
  508. */
  509. if (src_mid_off != dst_mid_off) {
  510. if (!direct_read) {
  511. spi_flash_guard_end();
  512. }
  513. memmove(dstc + src_mid_off, dstc + dst_mid_off, mid_size);
  514. if (!direct_read) {
  515. spi_flash_guard_start();
  516. }
  517. }
  518. }
  519. if (pad_left_size > 0) {
  520. uint32_t t;
  521. rc = esp_rom_spiflash_read(pad_left_src, &t, 4);
  522. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  523. goto out;
  524. }
  525. COUNTER_ADD_BYTES(read, 4);
  526. if (!direct_read) {
  527. spi_flash_guard_end();
  528. }
  529. memcpy(dstc, ((uint8_t *) &t) + (4 - pad_left_size), pad_left_size);
  530. if (!direct_read) {
  531. spi_flash_guard_start();
  532. }
  533. }
  534. if (pad_right_size > 0) {
  535. uint32_t t[2];
  536. int32_t read_size = (pad_right_size <= 4 ? 4 : 8);
  537. rc = esp_rom_spiflash_read(pad_right_src, t, read_size);
  538. if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
  539. goto out;
  540. }
  541. COUNTER_ADD_BYTES(read, read_size);
  542. if (!direct_read) {
  543. spi_flash_guard_end();
  544. }
  545. memcpy(dstc + pad_right_off, t, pad_right_size);
  546. if (!direct_read) {
  547. spi_flash_guard_start();
  548. }
  549. }
  550. out:
  551. spi_flash_guard_end();
  552. COUNTER_STOP(read);
  553. return spi_flash_translate_rc(rc);
  554. }
  555. esp_err_t IRAM_ATTR spi_flash_read_encrypted(size_t src, void *dstv, size_t size)
  556. {
  557. if (src + size > g_rom_flashchip.chip_size) {
  558. return ESP_ERR_INVALID_SIZE;
  559. }
  560. if (size == 0) {
  561. return ESP_OK;
  562. }
  563. esp_err_t err;
  564. const uint8_t *map;
  565. spi_flash_mmap_handle_t map_handle;
  566. size_t map_src = src & ~(SPI_FLASH_MMU_PAGE_SIZE - 1);
  567. size_t map_size = size + (src - map_src);
  568. err = spi_flash_mmap(map_src, map_size, SPI_FLASH_MMAP_DATA, (const void **)&map, &map_handle);
  569. if (err != ESP_OK) {
  570. return err;
  571. }
  572. memcpy(dstv, map + (src - map_src), size);
  573. spi_flash_munmap(map_handle);
  574. return err;
  575. }
  576. static esp_err_t IRAM_ATTR spi_flash_translate_rc(esp_rom_spiflash_result_t rc)
  577. {
  578. switch (rc) {
  579. case ESP_ROM_SPIFLASH_RESULT_OK:
  580. return ESP_OK;
  581. case ESP_ROM_SPIFLASH_RESULT_TIMEOUT:
  582. return ESP_ERR_FLASH_OP_TIMEOUT;
  583. case ESP_ROM_SPIFLASH_RESULT_ERR:
  584. default:
  585. return ESP_ERR_FLASH_OP_FAIL;
  586. }
  587. }
  588. #if CONFIG_SPI_FLASH_ENABLE_COUNTERS
  589. static inline void dump_counter(spi_flash_counter_t *counter, const char *name)
  590. {
  591. ESP_LOGI(TAG, "%s count=%8d time=%8dus bytes=%8d\n", name,
  592. counter->count, counter->time, counter->bytes);
  593. }
  594. const spi_flash_counters_t *spi_flash_get_counters()
  595. {
  596. return &s_flash_stats;
  597. }
  598. void spi_flash_reset_counters()
  599. {
  600. memset(&s_flash_stats, 0, sizeof(s_flash_stats));
  601. }
  602. void spi_flash_dump_counters()
  603. {
  604. dump_counter(&s_flash_stats.read, "read ");
  605. dump_counter(&s_flash_stats.write, "write");
  606. dump_counter(&s_flash_stats.erase, "erase");
  607. }
  608. #endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS