spi_master_example_main.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. /* SPI Master example
  2. This example code is in the Public Domain (or CC0 licensed, at your option.)
  3. Unless required by applicable law or agreed to in writing, this
  4. software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
  5. CONDITIONS OF ANY KIND, either express or implied.
  6. */
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #include "freertos/FreeRTOS.h"
  11. #include "freertos/task.h"
  12. #include "esp_system.h"
  13. #include "driver/spi_master.h"
  14. #include "soc/gpio_struct.h"
  15. #include "driver/gpio.h"
  16. /*
  17. This code displays some fancy graphics on the 320x240 LCD on an ESP-WROVER_KIT board.
  18. It is not very fast, even when the SPI transfer itself happens at 8MHz and with DMA, because
  19. the rest of the code is not very optimized. Especially calculating the image line-by-line
  20. is inefficient; it would be quicker to send an entire screenful at once. This example does, however,
  21. demonstrate the use of both spi_device_transmit as well as spi_device_queue_trans/spi_device_get_trans_result
  22. as well as pre-transmit callbacks.
  23. Some info about the ILI9341/ST7789V: It has an C/D line, which is connected to a GPIO here. It expects this
  24. line to be low for a command and high for data. We use a pre-transmit callback here to control that
  25. line: every transaction has as the user-definable argument the needed state of the D/C line and just
  26. before the transaction is sent, the callback will set this line to the correct state.
  27. */
  28. #define PIN_NUM_MISO 25
  29. #define PIN_NUM_MOSI 23
  30. #define PIN_NUM_CLK 19
  31. #define PIN_NUM_CS 22
  32. #define PIN_NUM_DC 21
  33. #define PIN_NUM_RST 18
  34. #define PIN_NUM_BCKL 5
  35. /*
  36. The LCD needs a bunch of command/argument values to be initialized. They are stored in this struct.
  37. */
  38. typedef struct {
  39. uint8_t cmd;
  40. uint8_t data[16];
  41. uint8_t databytes; //No of data in data; bit 7 = delay after set; 0xFF = end of cmds.
  42. } lcd_init_cmd_t;
  43. typedef enum {
  44. LCD_TYPE_ILI = 1,
  45. LCD_TYPE_ST,
  46. LCD_TYPE_MAX,
  47. } type_lcd_t;
  48. //Place data into DRAM. Constant data gets placed into DROM by default, which is not accessible by DMA.
  49. DRAM_ATTR static const lcd_init_cmd_t st_init_cmds[]={
  50. {0x36, {(1<<5)|(1<<6)}, 1},
  51. {0x3A, {0x55}, 1},
  52. {0xB2, {0x0c, 0x0c, 0x00, 0x33, 0x33}, 5},
  53. {0xB7, {0x45}, 1},
  54. {0xBB, {0x2B}, 1},
  55. {0xC0, {0x2C}, 1},
  56. {0xC2, {0x01, 0xff}, 2},
  57. {0xC3, {0x11}, 1},
  58. {0xC4, {0x20}, 1},
  59. {0xC6, {0x0f}, 1},
  60. {0xD0, {0xA4, 0xA1}, 1},
  61. {0xE0, {0xD0, 0x00, 0x05, 0x0E, 0x15, 0x0D, 0x37, 0x43, 0x47, 0x09, 0x15, 0x12, 0x16, 0x19}, 14},
  62. {0xE1, {0xD0, 0x00, 0x05, 0x0D, 0x0C, 0x06, 0x2D, 0x44, 0x40, 0x0E, 0x1C, 0x18, 0x16, 0x19}, 14},
  63. {0x11, {0}, 0x80},
  64. {0x29, {0}, 0x80},
  65. {0, {0}, 0xff}
  66. };
  67. DRAM_ATTR static const lcd_init_cmd_t ili_init_cmds[]={
  68. {0xCF, {0x00, 0x83, 0X30}, 3},
  69. {0xED, {0x64, 0x03, 0X12, 0X81}, 4},
  70. {0xE8, {0x85, 0x01, 0x79}, 3},
  71. {0xCB, {0x39, 0x2C, 0x00, 0x34, 0x02}, 5},
  72. {0xF7, {0x20}, 1},
  73. {0xEA, {0x00, 0x00}, 2},
  74. {0xC0, {0x26}, 1},
  75. {0xC1, {0x11}, 1},
  76. {0xC5, {0x35, 0x3E}, 2},
  77. {0xC7, {0xBE}, 1},
  78. {0x36, {0x28}, 1},
  79. {0x3A, {0x55}, 1},
  80. {0xB1, {0x00, 0x1B}, 2},
  81. {0xF2, {0x08}, 1},
  82. {0x26, {0x01}, 1},
  83. {0xE0, {0x1F, 0x1A, 0x18, 0x0A, 0x0F, 0x06, 0x45, 0X87, 0x32, 0x0A, 0x07, 0x02, 0x07, 0x05, 0x00}, 15},
  84. {0XE1, {0x00, 0x25, 0x27, 0x05, 0x10, 0x09, 0x3A, 0x78, 0x4D, 0x05, 0x18, 0x0D, 0x38, 0x3A, 0x1F}, 15},
  85. {0x2A, {0x00, 0x00, 0x00, 0xEF}, 4},
  86. {0x2B, {0x00, 0x00, 0x01, 0x3f}, 4},
  87. {0x2C, {0}, 0},
  88. {0xB7, {0x07}, 1},
  89. {0xB6, {0x0A, 0x82, 0x27, 0x00}, 4},
  90. {0x11, {0}, 0x80},
  91. {0x29, {0}, 0x80},
  92. {0, {0}, 0xff},
  93. };
  94. //Send a command to the LCD. Uses spi_device_transmit, which waits until the transfer is complete.
  95. void lcd_cmd(spi_device_handle_t spi, const uint8_t cmd)
  96. {
  97. esp_err_t ret;
  98. spi_transaction_t t;
  99. memset(&t, 0, sizeof(t)); //Zero out the transaction
  100. t.length=8; //Command is 8 bits
  101. t.tx_buffer=&cmd; //The data is the cmd itself
  102. t.user=(void*)0; //D/C needs to be set to 0
  103. ret=spi_device_transmit(spi, &t); //Transmit!
  104. assert(ret==ESP_OK); //Should have had no issues.
  105. }
  106. //Send data to the LCD. Uses spi_device_transmit, which waits until the transfer is complete.
  107. void lcd_data(spi_device_handle_t spi, const uint8_t *data, int len)
  108. {
  109. esp_err_t ret;
  110. spi_transaction_t t;
  111. if (len==0) return; //no need to send anything
  112. memset(&t, 0, sizeof(t)); //Zero out the transaction
  113. t.length=len*8; //Len is in bytes, transaction length is in bits.
  114. t.tx_buffer=data; //Data
  115. t.user=(void*)1; //D/C needs to be set to 1
  116. ret=spi_device_transmit(spi, &t); //Transmit!
  117. assert(ret==ESP_OK); //Should have had no issues.
  118. }
  119. //This function is called (in irq context!) just before a transmission starts. It will
  120. //set the D/C line to the value indicated in the user field.
  121. void lcd_spi_pre_transfer_callback(spi_transaction_t *t)
  122. {
  123. int dc=(int)t->user;
  124. gpio_set_level(PIN_NUM_DC, dc);
  125. }
  126. uint32_t lcd_get_id(spi_device_handle_t spi)
  127. {
  128. //get_id cmd
  129. lcd_cmd( spi, 0x04);
  130. spi_transaction_t t;
  131. memset(&t, 0, sizeof(t));
  132. t.length=8*3;
  133. t.flags = SPI_TRANS_USE_RXDATA;
  134. t.user = (void*)1;
  135. esp_err_t ret = spi_device_transmit(spi, &t);
  136. assert( ret == ESP_OK );
  137. return *(uint32_t*)t.rx_data;
  138. }
  139. //Initialize the display
  140. void lcd_init(spi_device_handle_t spi)
  141. {
  142. int cmd=0;
  143. const lcd_init_cmd_t* lcd_init_cmds;
  144. //Initialize non-SPI GPIOs
  145. gpio_set_direction(PIN_NUM_DC, GPIO_MODE_OUTPUT);
  146. gpio_set_direction(PIN_NUM_RST, GPIO_MODE_OUTPUT);
  147. gpio_set_direction(PIN_NUM_BCKL, GPIO_MODE_OUTPUT);
  148. //Reset the display
  149. gpio_set_level(PIN_NUM_RST, 0);
  150. vTaskDelay(100 / portTICK_RATE_MS);
  151. gpio_set_level(PIN_NUM_RST, 1);
  152. vTaskDelay(100 / portTICK_RATE_MS);
  153. //detect LCD type
  154. uint32_t lcd_id = lcd_get_id(spi);
  155. int lcd_detected_type = 0;
  156. int lcd_type;
  157. printf("LCD ID: %08X\n", lcd_id);
  158. if ( lcd_id == 0 ) {
  159. //zero, ili
  160. lcd_detected_type = LCD_TYPE_ILI;
  161. printf("ILI9341 detected...\n");
  162. } else {
  163. // none-zero, ST
  164. lcd_detected_type = LCD_TYPE_ST;
  165. printf("ST7789V detected...\n");
  166. }
  167. #ifdef CONFIG_LCD_TYPE_AUTO
  168. lcd_type = lcd_detected_type;
  169. #elif defined( CONFIG_LCD_TYPE_ST7789V )
  170. printf("kconfig: force CONFIG_LCD_TYPE_ST7789V.\n");
  171. lcd_type = LCD_TYPE_ST;
  172. #elif defined( CONFIG_LCD_TYPE_ILI9341 )
  173. printf("kconfig: force CONFIG_LCD_TYPE_ILI9341.\n");
  174. lcd_type = LCD_TYPE_ILI;
  175. #endif
  176. if ( lcd_type == LCD_TYPE_ST ) {
  177. printf("LCD ST7789V initialization.\n");
  178. lcd_init_cmds = st_init_cmds;
  179. } else {
  180. printf("LCD ILI9341 initialization.\n");
  181. lcd_init_cmds = ili_init_cmds;
  182. }
  183. //Send all the commands
  184. while (lcd_init_cmds[cmd].databytes!=0xff) {
  185. lcd_cmd(spi, lcd_init_cmds[cmd].cmd);
  186. lcd_data(spi, lcd_init_cmds[cmd].data, lcd_init_cmds[cmd].databytes&0x1F);
  187. if (lcd_init_cmds[cmd].databytes&0x80) {
  188. vTaskDelay(100 / portTICK_RATE_MS);
  189. }
  190. cmd++;
  191. }
  192. ///Enable backlight
  193. gpio_set_level(PIN_NUM_BCKL, 0);
  194. }
  195. //To send a line we have to send a command, 2 data bytes, another command, 2 more data bytes and another command
  196. //before sending the line data itself; a total of 6 transactions. (We can't put all of this in just one transaction
  197. //because the D/C line needs to be toggled in the middle.)
  198. //This routine queues these commands up so they get sent as quickly as possible.
  199. static void send_line(spi_device_handle_t spi, int ypos, uint16_t *line)
  200. {
  201. esp_err_t ret;
  202. int x;
  203. //Transaction descriptors. Declared static so they're not allocated on the stack; we need this memory even when this
  204. //function is finished because the SPI driver needs access to it even while we're already calculating the next line.
  205. static spi_transaction_t trans[6];
  206. //In theory, it's better to initialize trans and data only once and hang on to the initialized
  207. //variables. We allocate them on the stack, so we need to re-init them each call.
  208. for (x=0; x<6; x++) {
  209. memset(&trans[x], 0, sizeof(spi_transaction_t));
  210. if ((x&1)==0) {
  211. //Even transfers are commands
  212. trans[x].length=8;
  213. trans[x].user=(void*)0;
  214. } else {
  215. //Odd transfers are data
  216. trans[x].length=8*4;
  217. trans[x].user=(void*)1;
  218. }
  219. trans[x].flags=SPI_TRANS_USE_TXDATA;
  220. }
  221. trans[0].tx_data[0]=0x2A; //Column Address Set
  222. trans[1].tx_data[0]=0; //Start Col High
  223. trans[1].tx_data[1]=0; //Start Col Low
  224. trans[1].tx_data[2]=(320)>>8; //End Col High
  225. trans[1].tx_data[3]=(320)&0xff; //End Col Low
  226. trans[2].tx_data[0]=0x2B; //Page address set
  227. trans[3].tx_data[0]=ypos>>8; //Start page high
  228. trans[3].tx_data[1]=ypos&0xff; //start page low
  229. trans[3].tx_data[2]=(ypos+1)>>8; //end page high
  230. trans[3].tx_data[3]=(ypos+1)&0xff; //end page low
  231. trans[4].tx_data[0]=0x2C; //memory write
  232. trans[5].tx_buffer=line; //finally send the line data
  233. trans[5].length=320*2*8; //Data length, in bits
  234. trans[5].flags=0; //undo SPI_TRANS_USE_TXDATA flag
  235. //Queue all transactions.
  236. for (x=0; x<6; x++) {
  237. ret=spi_device_queue_trans(spi, &trans[x], portMAX_DELAY);
  238. assert(ret==ESP_OK);
  239. }
  240. //When we are here, the SPI driver is busy (in the background) getting the transactions sent. That happens
  241. //mostly using DMA, so the CPU doesn't have much to do here. We're not going to wait for the transaction to
  242. //finish because we may as well spend the time calculating the next line. When that is done, we can call
  243. //send_line_finish, which will wait for the transfers to be done and check their status.
  244. }
  245. static void send_line_finish(spi_device_handle_t spi)
  246. {
  247. spi_transaction_t *rtrans;
  248. esp_err_t ret;
  249. //Wait for all 6 transactions to be done and get back the results.
  250. for (int x=0; x<6; x++) {
  251. ret=spi_device_get_trans_result(spi, &rtrans, portMAX_DELAY);
  252. assert(ret==ESP_OK);
  253. //We could inspect rtrans now if we received any info back. The LCD is treated as write-only, though.
  254. }
  255. }
  256. //Simple routine to generate some patterns and send them to the LCD. Don't expect anything too
  257. //impressive. Because the SPI driver handles transactions in the background, we can calculate the next line
  258. //while the previous one is being sent.
  259. static void display_pretty_colors(spi_device_handle_t spi)
  260. {
  261. uint16_t line[2][320];
  262. int x, y, frame=0;
  263. //Indexes of the line currently being sent to the LCD and the line we're calculating.
  264. int sending_line=-1;
  265. int calc_line=0;
  266. while(1) {
  267. frame++;
  268. for (y=0; y<240; y++) {
  269. //Calculate a line.
  270. for (x=0; x<320; x++) {
  271. line[calc_line][x]=((x<<3)^(y<<3)^(frame+x*y));
  272. }
  273. //Finish up the sending process of the previous line, if any
  274. if (sending_line!=-1) send_line_finish(spi);
  275. //Swap sending_line and calc_line
  276. sending_line=calc_line;
  277. calc_line=(calc_line==1)?0:1;
  278. //Send the line we currently calculated.
  279. send_line(spi, y, line[sending_line]);
  280. //The line is queued up for sending now; the actual sending happens in the
  281. //background. We can go on to calculate the next line as long as we do not
  282. //touch line[sending_line]; the SPI sending process is still reading from that.
  283. }
  284. }
  285. }
  286. void app_main()
  287. {
  288. esp_err_t ret;
  289. spi_device_handle_t spi;
  290. spi_bus_config_t buscfg={
  291. .miso_io_num=PIN_NUM_MISO,
  292. .mosi_io_num=PIN_NUM_MOSI,
  293. .sclk_io_num=PIN_NUM_CLK,
  294. .quadwp_io_num=-1,
  295. .quadhd_io_num=-1
  296. };
  297. spi_device_interface_config_t devcfg={
  298. .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz
  299. .mode=0, //SPI mode 0
  300. .spics_io_num=PIN_NUM_CS, //CS pin
  301. .queue_size=7, //We want to be able to queue 7 transactions at a time
  302. .pre_cb=lcd_spi_pre_transfer_callback, //Specify pre-transfer callback to handle D/C line
  303. };
  304. //Initialize the SPI bus
  305. ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
  306. assert(ret==ESP_OK);
  307. //Attach the LCD to the SPI bus
  308. ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi);
  309. assert(ret==ESP_OK);
  310. //Initialize the LCD
  311. lcd_init(spi);
  312. //Go do nice stuff.
  313. display_pretty_colors(spi);
  314. }