core_dump.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "freertos/FreeRTOS.h"
  15. #include "freertos/task.h"
  16. #include "soc/uart_reg.h"
  17. #include "soc/io_mux_reg.h"
  18. #include "soc/timer_group_struct.h"
  19. #include "soc/timer_group_reg.h"
  20. #include "driver/gpio.h"
  21. #include "esp_panic.h"
  22. #include "esp_partition.h"
  23. #if CONFIG_ESP32_ENABLE_COREDUMP
  24. #define LOG_LOCAL_LEVEL CONFIG_ESP32_CORE_DUMP_LOG_LEVEL
  25. #include "esp_log.h"
  26. const static char *TAG = "esp_core_dump";
  27. #define ESP_COREDUMP_LOGE( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_ERROR) { ets_printf(LOG_FORMAT(E, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
  28. #define ESP_COREDUMP_LOGW( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_WARN) { ets_printf(LOG_FORMAT(W, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
  29. #define ESP_COREDUMP_LOGI( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_INFO) { ets_printf(LOG_FORMAT(I, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
  30. #define ESP_COREDUMP_LOGD( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
  31. #define ESP_COREDUMP_LOGV( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_VERBOSE) { ets_printf(LOG_FORMAT(V, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
  32. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
  33. #define ESP_COREDUMP_LOG_PROCESS( format, ... ) if (LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG) { ets_printf(LOG_FORMAT(D, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); }
  34. #else
  35. #define ESP_COREDUMP_LOG_PROCESS( format, ... ) do{/*(__VA_ARGS__);*/}while(0)
  36. #endif
  37. // TODO: allow user to set this in menuconfig or get tasks iteratively
  38. #define COREDUMP_MAX_TASKS_NUM 32
  39. typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len);
  40. typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv);
  41. typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv);
  42. typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len);
  43. typedef struct _core_dump_write_config_t
  44. {
  45. esp_core_dump_write_prepare_t prepare;
  46. esp_core_dump_write_start_t start;
  47. esp_core_dump_write_end_t end;
  48. esp_core_dump_flash_write_data_t write;
  49. void * priv;
  50. } core_dump_write_config_t;
  51. static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg)
  52. {
  53. union
  54. {
  55. uint8_t data8[12];
  56. uint32_t data32[3];
  57. } rom_data;
  58. esp_err_t err;
  59. TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM];
  60. UBaseType_t tcb_sz, task_num;
  61. uint32_t data_len = 0, i, len;
  62. task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz);
  63. // take TCB padding into account, actual TCB size will be stored in header
  64. if (tcb_sz % sizeof(uint32_t))
  65. len = (tcb_sz / sizeof(uint32_t) + 1) * sizeof(uint32_t);
  66. else
  67. len = tcb_sz;
  68. // header + tasknum*(tcb + stack start/end + tcb addr)
  69. data_len = 3*sizeof(uint32_t) + task_num*(len + 2*sizeof(uint32_t) + sizeof(uint32_t *));
  70. for (i = 0; i < task_num; i++) {
  71. if (tasks[i].pxTCB == xTaskGetCurrentTaskHandleForCPU(xPortGetCoreID())) {
  72. // set correct stack top for current task
  73. tasks[i].pxTopOfStack = (StackType_t *)frame;
  74. ESP_COREDUMP_LOG_PROCESS("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x", frame->exit, frame->pc, frame->ps, frame->a0, frame->a1);
  75. }
  76. else {
  77. XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack;
  78. if (task_frame->exit == 0) {
  79. ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x", task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1);
  80. }
  81. else {
  82. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
  83. XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack;
  84. #endif
  85. ESP_COREDUMP_LOG_PROCESS("Task EXIT/PC/PS/A0/SP %x %x %x %x %x", task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1);
  86. }
  87. }
  88. #if( portSTACK_GROWTH < 0 )
  89. len = (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack;
  90. #else
  91. len = (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack;
  92. #endif
  93. ESP_COREDUMP_LOG_PROCESS("Stack len = %lu (%x %x)", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
  94. // take stack padding into account
  95. if (len % sizeof(uint32_t))
  96. len = (len / sizeof(uint32_t) + 1) * sizeof(uint32_t);
  97. data_len += len;
  98. }
  99. // prepare write
  100. if (write_cfg->prepare) {
  101. err = write_cfg->prepare(write_cfg->priv, &data_len);
  102. if (err != ESP_OK) {
  103. ESP_COREDUMP_LOGE("Failed to prepare core dump (%d)!", err);
  104. return;
  105. }
  106. }
  107. ESP_COREDUMP_LOG_PROCESS("Core dump len = %lu", data_len);
  108. // write start
  109. if (write_cfg->start) {
  110. err = write_cfg->start(write_cfg->priv);
  111. if (err != ESP_OK) {
  112. ESP_COREDUMP_LOGE("Failed to start core dump (%d)!", err);
  113. return;
  114. }
  115. }
  116. // write header
  117. rom_data.data32[0] = data_len;
  118. rom_data.data32[1] = task_num;
  119. rom_data.data32[2] = tcb_sz;
  120. err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
  121. if (err != ESP_OK) {
  122. ESP_COREDUMP_LOGE("Failed to write core dump header (%d)!", err);
  123. return;
  124. }
  125. // write tasks
  126. for (i = 0; i < task_num; i++) {
  127. ESP_COREDUMP_LOG_PROCESS("Dump task %x", tasks[i].pxTCB);
  128. // save TCB address, stack base and stack top addr
  129. rom_data.data32[0] = (uint32_t)tasks[i].pxTCB;
  130. rom_data.data32[1] = (uint32_t)tasks[i].pxTopOfStack;
  131. rom_data.data32[2] = (uint32_t)tasks[i].pxEndOfStack;
  132. err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t));
  133. if (err != ESP_OK) {
  134. ESP_COREDUMP_LOGE("Failed to write task header (%d)!", err);
  135. return;
  136. }
  137. // save TCB
  138. err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz);
  139. if (err != ESP_OK) {
  140. ESP_COREDUMP_LOGE("Failed to write TCB (%d)!", err);
  141. return;
  142. }
  143. // save task stack
  144. err = write_cfg->write(write_cfg->priv,
  145. #if( portSTACK_GROWTH < 0 )
  146. tasks[i].pxTopOfStack,
  147. (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack
  148. #else
  149. tasks[i].pxEndOfStack,
  150. (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack
  151. #endif
  152. );
  153. if (err != ESP_OK) {
  154. ESP_COREDUMP_LOGE("Failed to write task stack (%d)!", err);
  155. return;
  156. }
  157. }
  158. // write end
  159. if (write_cfg->end) {
  160. err = write_cfg->end(write_cfg->priv);
  161. if (err != ESP_OK) {
  162. ESP_COREDUMP_LOGE("Failed to end core dump (%d)!", err);
  163. return;
  164. }
  165. }
  166. }
  167. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
  168. // magic numbers to control core dump data consistency
  169. #define COREDUMP_FLASH_MAGIC_START 0xE32C04EDUL
  170. #define COREDUMP_FLASH_MAGIC_END 0xE32C04EDUL
  171. typedef struct _core_dump_write_flash_data_t
  172. {
  173. uint32_t off;
  174. } core_dump_write_flash_data_t;
  175. // core dump partition start
  176. static uint32_t s_core_part_start;
  177. // core dump partition size
  178. static uint32_t s_core_part_size;
  179. static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint32_t data_size)
  180. {
  181. esp_err_t err;
  182. uint32_t data_len = 0, k, len;
  183. union
  184. {
  185. uint8_t data8[4];
  186. uint32_t data32;
  187. } rom_data;
  188. data_len = (data_size / sizeof(uint32_t)) * sizeof(uint32_t);
  189. err = spi_flash_write(off, data, data_len);
  190. if (err != ESP_OK) {
  191. ESP_COREDUMP_LOGE("Failed to write data to flash (%d)!", err);
  192. return 0;
  193. }
  194. len = data_size % sizeof(uint32_t);
  195. if (len) {
  196. // write last bytes with padding, actual TCB len can be retrieved by esptool from core dump header
  197. rom_data.data32 = 0;
  198. for (k = 0; k < len; k++)
  199. rom_data.data8[k] = *(data + data_len + k);
  200. err = spi_flash_write(off + data_len, &rom_data, sizeof(uint32_t));
  201. if (err != ESP_OK) {
  202. ESP_COREDUMP_LOGE("Failed to finish write data to flash (%d)!", err);
  203. return 0;
  204. }
  205. data_len += sizeof(uint32_t);
  206. }
  207. return data_len;
  208. }
  209. static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len)
  210. {
  211. esp_err_t err;
  212. uint32_t sec_num;
  213. core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
  214. // add space for 2 magics. TODO: change to CRC
  215. if ((*data_len + 2*sizeof(uint32_t)) > s_core_part_size) {
  216. ESP_COREDUMP_LOGE("Not enough space to save core dump!");
  217. return ESP_ERR_NO_MEM;
  218. }
  219. *data_len += 2*sizeof(uint32_t);
  220. wr_data->off = 0;
  221. sec_num = *data_len / SPI_FLASH_SEC_SIZE;
  222. if (*data_len % SPI_FLASH_SEC_SIZE)
  223. sec_num++;
  224. err = spi_flash_erase_range(s_core_part_start + 0, sec_num * SPI_FLASH_SEC_SIZE);
  225. if (err != ESP_OK) {
  226. ESP_COREDUMP_LOGE("Failed to erase flash (%d)!", err);
  227. return err;
  228. }
  229. return err;
  230. }
  231. static esp_err_t esp_core_dump_flash_write_word(core_dump_write_flash_data_t *wr_data, uint32_t word)
  232. {
  233. esp_err_t err = ESP_OK;
  234. uint32_t data32 = word;
  235. err = spi_flash_write(s_core_part_start + wr_data->off, &data32, sizeof(uint32_t));
  236. if (err != ESP_OK) {
  237. ESP_COREDUMP_LOGE("Failed to write to flash (%d)!", err);
  238. return err;
  239. }
  240. wr_data->off += sizeof(uint32_t);
  241. return err;
  242. }
  243. static esp_err_t esp_core_dump_flash_write_start(void *priv)
  244. {
  245. core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
  246. // save magic 1
  247. return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START);
  248. }
  249. static esp_err_t esp_core_dump_flash_write_end(void *priv)
  250. {
  251. core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
  252. #if LOG_LOCAL_LEVEL >= ESP_LOG_DEBUG
  253. uint32_t i;
  254. union
  255. {
  256. uint8_t data8[16];
  257. uint32_t data32[4];
  258. } rom_data;
  259. esp_err_t err = spi_flash_read(s_core_part_start + 0, &rom_data, sizeof(rom_data));
  260. if (err != ESP_OK) {
  261. ESP_COREDUMP_LOGE("Failed to read flash (%d)!", err);
  262. return err;
  263. }
  264. else {
  265. ESP_COREDUMP_LOG_PROCESS("Data from flash:");
  266. for (i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
  267. ESP_COREDUMP_LOG_PROCESS("%x", rom_data.data32[i]);
  268. }
  269. }
  270. #endif
  271. // save magic 2
  272. return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END);
  273. }
  274. static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len)
  275. {
  276. esp_err_t err = ESP_OK;
  277. core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
  278. uint32_t len = esp_core_dump_write_flash_padded(s_core_part_start + wr_data->off, data, data_len);
  279. if (len != data_len)
  280. return ESP_FAIL;
  281. wr_data->off += len;
  282. return err;
  283. }
  284. void esp_core_dump_to_flash(XtExcFrame *frame)
  285. {
  286. core_dump_write_config_t wr_cfg;
  287. core_dump_write_flash_data_t wr_data;
  288. /* init non-OS flash access critical section */
  289. spi_flash_guard_set(&g_flash_guard_no_os_ops);
  290. wr_cfg.prepare = esp_core_dump_flash_write_prepare;
  291. wr_cfg.start = esp_core_dump_flash_write_start;
  292. wr_cfg.end = esp_core_dump_flash_write_end;
  293. wr_cfg.write = esp_core_dump_flash_write_data;
  294. wr_cfg.priv = &wr_data;
  295. ESP_COREDUMP_LOGI("Save core dump to flash...");
  296. esp_core_dump_write(frame, &wr_cfg);
  297. ESP_COREDUMP_LOGI("Core dump has been saved to flash.");
  298. }
  299. #endif
  300. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
  301. static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) {
  302. static const char *b64 =
  303. "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
  304. int i, j, a, b, c;
  305. for (i = j = 0; i < src_len; i += 3) {
  306. a = src[i];
  307. b = i + 1 >= src_len ? 0 : src[i + 1];
  308. c = i + 2 >= src_len ? 0 : src[i + 2];
  309. dst[j++] = b64[a >> 2];
  310. dst[j++] = b64[((a & 3) << 4) | (b >> 4)];
  311. if (i + 1 < src_len) {
  312. dst[j++] = b64[(b & 0x0F) << 2 | (c >> 6)];
  313. }
  314. if (i + 2 < src_len) {
  315. dst[j++] = b64[c & 0x3F];
  316. }
  317. }
  318. while (j % 4 != 0) {
  319. dst[j++] = '=';
  320. }
  321. dst[j++] = '\0';
  322. }
  323. static esp_err_t esp_core_dump_uart_write_start(void *priv)
  324. {
  325. esp_err_t err = ESP_OK;
  326. ets_printf("================= CORE DUMP START =================\r\n");
  327. return err;
  328. }
  329. static esp_err_t esp_core_dump_uart_write_end(void *priv)
  330. {
  331. esp_err_t err = ESP_OK;
  332. ets_printf("================= CORE DUMP END =================\r\n");
  333. return err;
  334. }
  335. static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len)
  336. {
  337. esp_err_t err = ESP_OK;
  338. char buf[64 + 4], *addr = data;
  339. char *end = addr + data_len;
  340. while (addr < end) {
  341. size_t len = end - addr;
  342. if (len > 48) len = 48;
  343. /* Copy to stack to avoid alignment restrictions. */
  344. char *tmp = buf + (sizeof(buf) - len);
  345. memcpy(tmp, addr, len);
  346. esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf);
  347. addr += len;
  348. ets_printf("%s\r\n", buf);
  349. }
  350. return err;
  351. }
  352. static int esp_core_dump_uart_get_char() {
  353. int i;
  354. uint32_t reg = (READ_PERI_REG(UART_STATUS_REG(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
  355. if (reg)
  356. i = READ_PERI_REG(UART_FIFO_REG(0));
  357. else
  358. i = -1;
  359. return i;
  360. }
  361. void esp_core_dump_to_uart(XtExcFrame *frame)
  362. {
  363. core_dump_write_config_t wr_cfg;
  364. uint32_t tm_end, tm_cur;
  365. int ch;
  366. wr_cfg.prepare = NULL;
  367. wr_cfg.start = esp_core_dump_uart_write_start;
  368. wr_cfg.end = esp_core_dump_uart_write_end;
  369. wr_cfg.write = esp_core_dump_uart_write_data;
  370. wr_cfg.priv = NULL;
  371. //Make sure txd/rxd are enabled
  372. gpio_pullup_dis(1);
  373. PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_U0RXD);
  374. PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_U0TXD);
  375. ESP_COREDUMP_LOGI("Press Enter to print core dump to UART...");
  376. tm_end = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000) + CONFIG_ESP32_CORE_DUMP_UART_DELAY;
  377. ch = esp_core_dump_uart_get_char();
  378. while (!(ch == '\n' || ch == '\r')) {
  379. tm_cur = xthal_get_ccount() / (XT_CLOCK_FREQ / 1000);
  380. if (tm_cur >= tm_end)
  381. break;
  382. /* Feed the Cerberus. */
  383. TIMERG0.wdt_wprotect = TIMG_WDT_WKEY_VALUE;
  384. TIMERG0.wdt_feed = 1;
  385. TIMERG0.wdt_wprotect = 0;
  386. ch = esp_core_dump_uart_get_char();
  387. }
  388. ESP_COREDUMP_LOGI("Print core dump to uart...");
  389. esp_core_dump_write(frame, &wr_cfg);
  390. ESP_COREDUMP_LOGI("Core dump has been written to uart.");
  391. }
  392. #endif
  393. void esp_core_dump_init()
  394. {
  395. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
  396. const esp_partition_t *core_part;
  397. ESP_LOGI(TAG, "Init core dump to flash");
  398. core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL);
  399. if (!core_part) {
  400. ESP_LOGE(TAG, "No core dump partition found!");
  401. return;
  402. }
  403. ESP_LOGI(TAG, "Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size);
  404. s_core_part_start = core_part->address;
  405. s_core_part_size = core_part->size;
  406. #endif
  407. #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
  408. ESP_LOGI(TAG, "Init core dump to UART");
  409. #endif
  410. }
  411. #endif