uart.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627
  1. // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. // http://www.apache.org/licenses/LICENSE-2.0
  7. //
  8. // Unless required by applicable law or agreed to in writing, software
  9. // distributed under the License is distributed on an "AS IS" BASIS,
  10. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  11. // See the License for the specific language governing permissions and
  12. // limitations under the License.
  13. #include <string.h>
  14. #include "esp_types.h"
  15. #include "esp_attr.h"
  16. #include "esp_intr_alloc.h"
  17. #include "esp_log.h"
  18. #include "esp_err.h"
  19. #include "esp32/clk.h"
  20. #include "malloc.h"
  21. #include "freertos/FreeRTOS.h"
  22. #include "freertos/semphr.h"
  23. #include "freertos/xtensa_api.h"
  24. #include "freertos/task.h"
  25. #include "freertos/ringbuf.h"
  26. #include "soc/uart_periph.h"
  27. #include "driver/uart.h"
  28. #include "driver/gpio.h"
  29. #include "driver/uart_select.h"
  30. #define UART_NUM SOC_UART_NUM
  31. #define XOFF (char)0x13
  32. #define XON (char)0x11
  33. static const char* UART_TAG = "uart";
  34. #define UART_CHECK(a, str, ret_val) \
  35. if (!(a)) { \
  36. ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
  37. return (ret_val); \
  38. }
  39. #define UART_EMPTY_THRESH_DEFAULT (10)
  40. #define UART_FULL_THRESH_DEFAULT (120)
  41. #define UART_TOUT_THRESH_DEFAULT (10)
  42. #define UART_CLKDIV_FRAG_BIT_WIDTH (3)
  43. #define UART_TOUT_REF_FACTOR_DEFAULT (UART_CLK_FREQ/(REF_CLK_FREQ<<UART_CLKDIV_FRAG_BIT_WIDTH))
  44. #define UART_TX_IDLE_NUM_DEFAULT (0)
  45. #define UART_PATTERN_DET_QLEN_DEFAULT (10)
  46. #define UART_MIN_WAKEUP_THRESH (2)
  47. #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux)
  48. #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux)
  49. #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux)
  50. #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux)
  51. // Check actual UART mode set
  52. #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
  53. typedef struct {
  54. uart_event_type_t type; /*!< UART TX data type */
  55. struct {
  56. int brk_len;
  57. size_t size;
  58. uint8_t data[0];
  59. } tx_data;
  60. } uart_tx_data_t;
  61. typedef struct {
  62. int wr;
  63. int rd;
  64. int len;
  65. int* data;
  66. } uart_pat_rb_t;
  67. typedef struct {
  68. uart_port_t uart_num; /*!< UART port number*/
  69. int queue_size; /*!< UART event queue size*/
  70. QueueHandle_t xQueueUart; /*!< UART queue handler*/
  71. intr_handle_t intr_handle; /*!< UART interrupt handle*/
  72. uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */
  73. bool coll_det_flg; /*!< UART collision detection flag */
  74. //rx parameters
  75. int rx_buffered_len; /*!< UART cached data length */
  76. SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/
  77. int rx_buf_size; /*!< RX ring buffer size */
  78. RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/
  79. bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */
  80. int rx_cur_remain; /*!< Data number that waiting to be read out in ring buffer item*/
  81. uint8_t* rx_ptr; /*!< pointer to the current data in ring buffer*/
  82. uint8_t* rx_head_ptr; /*!< pointer to the head of RX item*/
  83. uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
  84. uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
  85. uart_pat_rb_t rx_pattern_pos;
  86. //tx parameters
  87. SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/
  88. SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/
  89. SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/
  90. SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/
  91. int tx_buf_size; /*!< TX ring buffer size */
  92. RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/
  93. bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
  94. uint8_t* tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/
  95. uart_tx_data_t* tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/
  96. uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/
  97. uint32_t tx_len_cur;
  98. uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
  99. uint8_t tx_brk_len; /*!< TX break signal cycle length/number */
  100. uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
  101. uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
  102. } uart_obj_t;
  103. static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
  104. /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
  105. static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {
  106. &UART0,
  107. &UART1,
  108. #if UART_NUM > 2
  109. &UART2
  110. #endif
  111. };
  112. static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {
  113. portMUX_INITIALIZER_UNLOCKED,
  114. portMUX_INITIALIZER_UNLOCKED,
  115. #if UART_NUM > 2
  116. portMUX_INITIALIZER_UNLOCKED
  117. #endif
  118. };
  119. static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
  120. esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
  121. {
  122. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  123. UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
  124. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  125. UART[uart_num]->conf0.bit_num = data_bit;
  126. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  127. return ESP_OK;
  128. }
  129. esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
  130. {
  131. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  132. *(data_bit) = UART[uart_num]->conf0.bit_num;
  133. return ESP_OK;
  134. }
  135. esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
  136. {
  137. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  138. UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
  139. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  140. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  141. if (stop_bit == UART_STOP_BITS_2) {
  142. stop_bit = UART_STOP_BITS_1;
  143. UART[uart_num]->rs485_conf.dl1_en = 1;
  144. } else {
  145. UART[uart_num]->rs485_conf.dl1_en = 0;
  146. }
  147. UART[uart_num]->conf0.stop_bit_num = stop_bit;
  148. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  149. return ESP_OK;
  150. }
  151. esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
  152. {
  153. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  154. //workaround for hardware bug, when uart stop bit set as 2-bit mode.
  155. if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
  156. (*stop_bit) = UART_STOP_BITS_2;
  157. } else {
  158. (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
  159. }
  160. return ESP_OK;
  161. }
  162. esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
  163. {
  164. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  165. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  166. UART[uart_num]->conf0.parity = parity_mode & 0x1;
  167. UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
  168. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  169. return ESP_OK;
  170. }
  171. esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
  172. {
  173. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  174. int val = UART[uart_num]->conf0.val;
  175. if(val & UART_PARITY_EN_M) {
  176. if(val & UART_PARITY_M) {
  177. (*parity_mode) = UART_PARITY_ODD;
  178. } else {
  179. (*parity_mode) = UART_PARITY_EVEN;
  180. }
  181. } else {
  182. (*parity_mode) = UART_PARITY_DISABLE;
  183. }
  184. return ESP_OK;
  185. }
  186. esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
  187. {
  188. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  189. esp_err_t ret = ESP_OK;
  190. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  191. int uart_clk_freq;
  192. if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
  193. /* this UART has been configured to use REF_TICK */
  194. uart_clk_freq = REF_CLK_FREQ;
  195. } else {
  196. uart_clk_freq = esp_clk_apb_freq();
  197. }
  198. uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
  199. if (clk_div < 16) {
  200. /* baud rate is too high for this clock frequency */
  201. ret = ESP_ERR_INVALID_ARG;
  202. } else {
  203. UART[uart_num]->clk_div.div_int = clk_div >> 4;
  204. UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
  205. }
  206. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  207. return ret;
  208. }
  209. esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
  210. {
  211. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  212. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  213. uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
  214. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  215. uint32_t uart_clk_freq = esp_clk_apb_freq();
  216. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  217. uart_clk_freq = REF_CLK_FREQ;
  218. }
  219. (*baudrate) = ((uart_clk_freq) << 4) / clk_div;
  220. return ESP_OK;
  221. }
  222. esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
  223. {
  224. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  225. UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
  226. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  227. CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
  228. SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
  229. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  230. return ESP_OK;
  231. }
  232. esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff)
  233. {
  234. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  235. UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  236. UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
  237. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  238. UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
  239. UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
  240. UART[uart_num]->swfc_conf.xon_threshold = rx_thresh_xon;
  241. UART[uart_num]->swfc_conf.xoff_threshold = rx_thresh_xoff;
  242. UART[uart_num]->swfc_conf.xon_char = XON;
  243. UART[uart_num]->swfc_conf.xoff_char = XOFF;
  244. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  245. return ESP_OK;
  246. }
  247. //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
  248. esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
  249. {
  250. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  251. UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
  252. UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
  253. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  254. if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
  255. UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
  256. UART[uart_num]->conf1.rx_flow_en = 1;
  257. } else {
  258. UART[uart_num]->conf1.rx_flow_en = 0;
  259. }
  260. if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
  261. UART[uart_num]->conf0.tx_flow_en = 1;
  262. } else {
  263. UART[uart_num]->conf0.tx_flow_en = 0;
  264. }
  265. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  266. return ESP_OK;
  267. }
  268. esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
  269. {
  270. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  271. uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
  272. if(UART[uart_num]->conf1.rx_flow_en) {
  273. val |= UART_HW_FLOWCTRL_RTS;
  274. }
  275. if(UART[uart_num]->conf0.tx_flow_en) {
  276. val |= UART_HW_FLOWCTRL_CTS;
  277. }
  278. (*flow_ctrl) = val;
  279. return ESP_OK;
  280. }
  281. static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
  282. {
  283. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  284. //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
  285. //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
  286. // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
  287. while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
  288. READ_PERI_REG(UART_FIFO_REG(uart_num));
  289. }
  290. return ESP_OK;
  291. }
  292. esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
  293. {
  294. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  295. //intr_clr register is write-only
  296. UART[uart_num]->int_clr.val = clr_mask;
  297. return ESP_OK;
  298. }
  299. esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
  300. {
  301. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  302. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  303. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  304. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  305. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  306. return ESP_OK;
  307. }
  308. esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
  309. {
  310. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  311. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  312. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  313. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  314. return ESP_OK;
  315. }
  316. static void uart_disable_intr_mask_from_isr(uart_port_t uart_num, uint32_t disable_mask)
  317. {
  318. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  319. CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
  320. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  321. }
  322. static void uart_enable_intr_mask_from_isr(uart_port_t uart_num, uint32_t enable_mask)
  323. {
  324. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  325. SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
  326. SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
  327. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  328. }
  329. static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
  330. {
  331. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  332. if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
  333. int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
  334. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  335. p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
  336. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  337. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  338. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  339. free(pdata);
  340. }
  341. return ESP_OK;
  342. }
  343. static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
  344. {
  345. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  346. esp_err_t ret = ESP_OK;
  347. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  348. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  349. int next = p_pos->wr + 1;
  350. if (next >= p_pos->len) {
  351. next = 0;
  352. }
  353. if (next == p_pos->rd) {
  354. ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
  355. ret = ESP_FAIL;
  356. } else {
  357. p_pos->data[p_pos->wr] = pos;
  358. p_pos->wr = next;
  359. ret = ESP_OK;
  360. }
  361. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  362. return ret;
  363. }
  364. static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
  365. {
  366. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  367. if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
  368. return ESP_ERR_INVALID_STATE;
  369. } else {
  370. esp_err_t ret = ESP_OK;
  371. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  372. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  373. if (p_pos->rd == p_pos->wr) {
  374. ret = ESP_FAIL;
  375. } else {
  376. p_pos->rd++;
  377. }
  378. if (p_pos->rd >= p_pos->len) {
  379. p_pos->rd = 0;
  380. }
  381. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  382. return ret;
  383. }
  384. }
  385. static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
  386. {
  387. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  388. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  389. uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  390. int rd = p_pos->rd;
  391. while(rd != p_pos->wr) {
  392. p_pos->data[rd] -= diff_len;
  393. int rd_rec = rd;
  394. rd ++;
  395. if (rd >= p_pos->len) {
  396. rd = 0;
  397. }
  398. if (p_pos->data[rd_rec] < 0) {
  399. p_pos->rd = rd;
  400. }
  401. }
  402. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  403. return ESP_OK;
  404. }
  405. int uart_pattern_pop_pos(uart_port_t uart_num)
  406. {
  407. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  408. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  409. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  410. int pos = -1;
  411. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  412. pos = pat_pos->data[pat_pos->rd];
  413. uart_pattern_dequeue(uart_num);
  414. }
  415. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  416. return pos;
  417. }
  418. int uart_pattern_get_pos(uart_port_t uart_num)
  419. {
  420. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  421. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  422. uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
  423. int pos = -1;
  424. if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
  425. pos = pat_pos->data[pat_pos->rd];
  426. }
  427. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  428. return pos;
  429. }
  430. esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
  431. {
  432. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  433. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  434. int* pdata = (int*) malloc(queue_length * sizeof(int));
  435. if(pdata == NULL) {
  436. return ESP_ERR_NO_MEM;
  437. }
  438. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  439. int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
  440. p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
  441. p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
  442. p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
  443. p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
  444. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  445. free(ptmp);
  446. return ESP_OK;
  447. }
  448. esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
  449. {
  450. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  451. UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
  452. UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  453. UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
  454. UART[uart_num]->at_cmd_char.data = pattern_chr;
  455. UART[uart_num]->at_cmd_char.char_num = chr_num;
  456. UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
  457. UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
  458. UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
  459. return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  460. }
  461. esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
  462. {
  463. return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
  464. }
  465. esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
  466. {
  467. return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  468. }
  469. esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
  470. {
  471. return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
  472. }
  473. esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
  474. {
  475. return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
  476. }
  477. esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
  478. {
  479. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  480. UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
  481. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  482. UART[uart_num]->int_clr.txfifo_empty = 1;
  483. UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
  484. UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
  485. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  486. return ESP_OK;
  487. }
  488. esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags, uart_isr_handle_t *handle)
  489. {
  490. int ret;
  491. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  492. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  493. switch(uart_num) {
  494. case UART_NUM_1:
  495. ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  496. break;
  497. #if UART_NUM > 2
  498. case UART_NUM_2:
  499. ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  500. break;
  501. #endif
  502. case UART_NUM_0:
  503. default:
  504. ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  505. break;
  506. }
  507. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  508. return ret;
  509. }
  510. esp_err_t uart_isr_free(uart_port_t uart_num)
  511. {
  512. esp_err_t ret;
  513. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  514. if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
  515. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  516. ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  517. p_uart_obj[uart_num]->intr_handle=NULL;
  518. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  519. return ret;
  520. }
  521. //internal signal can be output to multiple GPIO pads
  522. //only one GPIO pad can connect with input signal
  523. esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
  524. {
  525. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  526. UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
  527. UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
  528. UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
  529. UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
  530. int tx_sig, rx_sig, rts_sig, cts_sig;
  531. switch(uart_num) {
  532. case UART_NUM_0:
  533. tx_sig = U0TXD_OUT_IDX;
  534. rx_sig = U0RXD_IN_IDX;
  535. rts_sig = U0RTS_OUT_IDX;
  536. cts_sig = U0CTS_IN_IDX;
  537. break;
  538. case UART_NUM_1:
  539. tx_sig = U1TXD_OUT_IDX;
  540. rx_sig = U1RXD_IN_IDX;
  541. rts_sig = U1RTS_OUT_IDX;
  542. cts_sig = U1CTS_IN_IDX;
  543. break;
  544. #if UART_NUM > 2
  545. case UART_NUM_2:
  546. tx_sig = U2TXD_OUT_IDX;
  547. rx_sig = U2RXD_IN_IDX;
  548. rts_sig = U2RTS_OUT_IDX;
  549. cts_sig = U2CTS_IN_IDX;
  550. break;
  551. #endif
  552. case UART_NUM_MAX:
  553. default:
  554. tx_sig = U0TXD_OUT_IDX;
  555. rx_sig = U0RXD_IN_IDX;
  556. rts_sig = U0RTS_OUT_IDX;
  557. cts_sig = U0CTS_IN_IDX;
  558. break;
  559. }
  560. if(tx_io_num >= 0) {
  561. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
  562. gpio_set_level(tx_io_num, 1);
  563. gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
  564. }
  565. if(rx_io_num >= 0) {
  566. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
  567. gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
  568. gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
  569. gpio_matrix_in(rx_io_num, rx_sig, 0);
  570. }
  571. if(rts_io_num >= 0) {
  572. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
  573. gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
  574. gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
  575. }
  576. if(cts_io_num >= 0) {
  577. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
  578. gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
  579. gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
  580. gpio_matrix_in(cts_io_num, cts_sig, 0);
  581. }
  582. return ESP_OK;
  583. }
  584. esp_err_t uart_set_rts(uart_port_t uart_num, int level)
  585. {
  586. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  587. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
  588. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  589. UART[uart_num]->conf0.sw_rts = level & 0x1;
  590. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  591. return ESP_OK;
  592. }
  593. esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
  594. {
  595. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  596. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  597. UART[uart_num]->conf0.sw_dtr = level & 0x1;
  598. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  599. return ESP_OK;
  600. }
  601. esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
  602. {
  603. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  604. UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
  605. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  606. UART[uart_num]->idle_conf.tx_idle_num = idle_num;
  607. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  608. return ESP_OK;
  609. }
  610. static periph_module_t get_periph_module(uart_port_t uart_num)
  611. {
  612. periph_module_t periph_module = PERIPH_UART0_MODULE;
  613. if (uart_num == UART_NUM_0) {
  614. periph_module = PERIPH_UART0_MODULE;
  615. } else if (uart_num == UART_NUM_1) {
  616. periph_module = PERIPH_UART1_MODULE;
  617. }
  618. #if SOC_UART_NUM > 2
  619. else if (uart_num == UART_NUM_2) {
  620. periph_module = PERIPH_UART2_MODULE;
  621. }
  622. #endif
  623. else {
  624. assert(0 && "uart_num error");
  625. }
  626. return periph_module;
  627. }
  628. esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
  629. {
  630. esp_err_t r;
  631. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  632. UART_CHECK((uart_config), "param null", ESP_FAIL);
  633. periph_module_t periph_module = get_periph_module(uart_num);
  634. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  635. periph_module_reset(periph_module);
  636. }
  637. periph_module_enable(periph_module);
  638. r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
  639. if (r != ESP_OK) return r;
  640. UART[uart_num]->conf0.val =
  641. (uart_config->parity << UART_PARITY_S)
  642. | (uart_config->data_bits << UART_BIT_NUM_S)
  643. | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
  644. | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
  645. r = uart_set_baudrate(uart_num, uart_config->baud_rate);
  646. if (r != ESP_OK) return r;
  647. r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
  648. if (r != ESP_OK) return r;
  649. r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
  650. //A hardware reset does not reset the fifo,
  651. //so we need to reset the fifo manually.
  652. uart_reset_rx_fifo(uart_num);
  653. return r;
  654. }
  655. esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
  656. {
  657. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  658. UART_CHECK((intr_conf), "param null", ESP_FAIL);
  659. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  660. UART[uart_num]->int_clr.val = UART_INTR_MASK;
  661. if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
  662. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  663. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  664. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  665. UART[uart_num]->conf1.rx_tout_thrhd = (intr_conf->rx_timeout_thresh * UART_TOUT_REF_FACTOR_DEFAULT);
  666. } else {
  667. UART[uart_num]->conf1.rx_tout_thrhd = intr_conf->rx_timeout_thresh;
  668. }
  669. UART[uart_num]->conf1.rx_tout_en = 1;
  670. } else {
  671. UART[uart_num]->conf1.rx_tout_en = 0;
  672. }
  673. if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
  674. UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
  675. }
  676. if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
  677. UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
  678. }
  679. UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
  680. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  681. return ESP_OK;
  682. }
  683. static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
  684. {
  685. int cnt = 0;
  686. int len = length;
  687. while (len >= 0) {
  688. if (buf[len] == pat_chr) {
  689. cnt++;
  690. } else {
  691. cnt = 0;
  692. }
  693. if (cnt >= pat_num) {
  694. break;
  695. }
  696. len --;
  697. }
  698. return len;
  699. }
  700. //internal isr handler for default driver code.
  701. static void uart_rx_intr_handler_default(void *param)
  702. {
  703. uart_obj_t *p_uart = (uart_obj_t*) param;
  704. uint8_t uart_num = p_uart->uart_num;
  705. uart_dev_t* uart_reg = UART[uart_num];
  706. int rx_fifo_len = 0;
  707. uint8_t buf_idx = 0;
  708. uint32_t uart_intr_status = 0;
  709. uart_event_t uart_event;
  710. portBASE_TYPE HPTaskAwoken = 0;
  711. static uint8_t pat_flg = 0;
  712. while(1) {
  713. uart_intr_status = uart_reg->int_st.val;
  714. // The `continue statement` may cause the interrupt to loop infinitely
  715. // we exit the interrupt here
  716. if(uart_intr_status == 0) {
  717. break;
  718. }
  719. uart_event.type = UART_EVENT_MAX;
  720. if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
  721. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  722. uart_disable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  723. if(p_uart->tx_waiting_brk) {
  724. continue;
  725. }
  726. //TX semaphore will only be used when tx_buf_size is zero.
  727. if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
  728. p_uart->tx_waiting_fifo = false;
  729. xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
  730. } else {
  731. //We don't use TX ring buffer, because the size is zero.
  732. if(p_uart->tx_buf_size == 0) {
  733. continue;
  734. }
  735. int tx_fifo_rem = UART_FIFO_LEN - uart_reg->status.txfifo_cnt;
  736. bool en_tx_flg = false;
  737. //We need to put a loop here, in case all the buffer items are very short.
  738. //That would cause a watch_dog reset because empty interrupt happens so often.
  739. //Although this is a loop in ISR, this loop will execute at most 128 turns.
  740. while(tx_fifo_rem) {
  741. if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
  742. size_t size;
  743. p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
  744. if(p_uart->tx_head) {
  745. //The first item is the data description
  746. //Get the first item to get the data information
  747. if(p_uart->tx_len_tot == 0) {
  748. p_uart->tx_ptr = NULL;
  749. p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
  750. if(p_uart->tx_head->type == UART_DATA_BREAK) {
  751. p_uart->tx_brk_flg = 1;
  752. p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
  753. }
  754. //We have saved the data description from the 1st item, return buffer.
  755. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  756. }else if(p_uart->tx_ptr == NULL) {
  757. //Update the TX item pointer, we will need this to return item to buffer.
  758. p_uart->tx_ptr = (uint8_t*) p_uart->tx_head;
  759. en_tx_flg = true;
  760. p_uart->tx_len_cur = size;
  761. }
  762. }
  763. else {
  764. //Can not get data from ring buffer, return;
  765. break;
  766. }
  767. }
  768. if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
  769. //To fill the TX FIFO.
  770. int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
  771. // Set RS485 RTS pin before transmission if the half duplex mode is enabled
  772. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  773. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  774. uart_reg->conf0.sw_rts = 0;
  775. uart_reg->int_ena.tx_done = 1;
  776. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  777. }
  778. for (buf_idx = 0; buf_idx < send_len; buf_idx++) {
  779. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num),
  780. *(p_uart->tx_ptr++) & 0xff);
  781. }
  782. p_uart->tx_len_tot -= send_len;
  783. p_uart->tx_len_cur -= send_len;
  784. tx_fifo_rem -= send_len;
  785. if (p_uart->tx_len_cur == 0) {
  786. //Return item to ring buffer.
  787. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
  788. p_uart->tx_head = NULL;
  789. p_uart->tx_ptr = NULL;
  790. //Sending item done, now we need to send break if there is a record.
  791. //Set TX break signal after FIFO is empty
  792. if(p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
  793. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  794. uart_reg->int_ena.tx_brk_done = 0;
  795. uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
  796. uart_reg->conf0.txd_brk = 1;
  797. uart_reg->int_clr.tx_brk_done = 1;
  798. uart_reg->int_ena.tx_brk_done = 1;
  799. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  800. p_uart->tx_waiting_brk = 1;
  801. //do not enable TX empty interrupt
  802. en_tx_flg = false;
  803. } else {
  804. //enable TX empty interrupt
  805. en_tx_flg = true;
  806. }
  807. } else {
  808. //enable TX empty interrupt
  809. en_tx_flg = true;
  810. }
  811. }
  812. }
  813. if (en_tx_flg) {
  814. uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
  815. uart_enable_intr_mask_from_isr(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
  816. }
  817. }
  818. }
  819. else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
  820. || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
  821. || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
  822. ) {
  823. rx_fifo_len = uart_reg->status.rxfifo_cnt;
  824. typeof(uart_reg->mem_rx_status) rx_status = uart_reg->mem_rx_status;
  825. // When using DPort to read fifo, fifo_cnt is not credible, we need to calculate the real cnt based on the fifo read and write pointer.
  826. // When using AHB to read FIFO, we can use fifo_cnt to indicate the data length in fifo.
  827. if (rx_status.wr_addr > rx_status.rd_addr) {
  828. rx_fifo_len = rx_status.wr_addr - rx_status.rd_addr;
  829. } else if (rx_status.wr_addr < rx_status.rd_addr) {
  830. rx_fifo_len = (rx_status.wr_addr + 128) - rx_status.rd_addr;
  831. } else {
  832. rx_fifo_len = rx_fifo_len > 0 ? 128 : 0;
  833. }
  834. if(pat_flg == 1) {
  835. uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
  836. pat_flg = 0;
  837. }
  838. if (p_uart->rx_buffer_full_flg == false) {
  839. //We have to read out all data in RX FIFO to clear the interrupt signal
  840. for(buf_idx = 0; buf_idx < rx_fifo_len; buf_idx++) {
  841. p_uart->rx_data_buf[buf_idx] = uart_reg->fifo.rw_byte;
  842. }
  843. uint8_t pat_chr = uart_reg->at_cmd_char.data;
  844. int pat_num = uart_reg->at_cmd_char.char_num;
  845. int pat_idx = -1;
  846. //Get the buffer from the FIFO
  847. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  848. uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
  849. uart_event.type = UART_PATTERN_DET;
  850. uart_event.size = rx_fifo_len;
  851. pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
  852. } else {
  853. //After Copying the Data From FIFO ,Clear intr_status
  854. uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
  855. uart_event.type = UART_DATA;
  856. uart_event.size = rx_fifo_len;
  857. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  858. if (p_uart->uart_select_notif_callback) {
  859. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
  860. }
  861. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  862. }
  863. p_uart->rx_stash_len = rx_fifo_len;
  864. //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
  865. //Mainly for applications that uses flow control or small ring buffer.
  866. if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
  867. p_uart->rx_buffer_full_flg = true;
  868. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
  869. if (uart_event.type == UART_PATTERN_DET) {
  870. if (rx_fifo_len < pat_num) {
  871. //some of the characters are read out in last interrupt
  872. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  873. } else {
  874. uart_pattern_enqueue(uart_num,
  875. pat_idx <= -1 ?
  876. //can not find the pattern in buffer,
  877. p_uart->rx_buffered_len + p_uart->rx_stash_len :
  878. // find the pattern in buffer
  879. p_uart->rx_buffered_len + pat_idx);
  880. }
  881. if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
  882. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  883. }
  884. }
  885. uart_event.type = UART_BUFFER_FULL;
  886. } else {
  887. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  888. if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  889. if (rx_fifo_len < pat_num) {
  890. //some of the characters are read out in last interrupt
  891. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
  892. } else if(pat_idx >= 0) {
  893. // find pattern in statsh buffer.
  894. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
  895. }
  896. }
  897. p_uart->rx_buffered_len += p_uart->rx_stash_len;
  898. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  899. }
  900. } else {
  901. uart_disable_intr_mask_from_isr(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
  902. uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
  903. if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  904. uart_reg->int_clr.at_cmd_char_det = 1;
  905. uart_event.type = UART_PATTERN_DET;
  906. uart_event.size = rx_fifo_len;
  907. pat_flg = 1;
  908. }
  909. }
  910. } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
  911. // When fifo overflows, we reset the fifo.
  912. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  913. uart_reset_rx_fifo(uart_num);
  914. uart_reg->int_clr.rxfifo_ovf = 1;
  915. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  916. uart_event.type = UART_FIFO_OVF;
  917. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  918. if (p_uart->uart_select_notif_callback) {
  919. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  920. }
  921. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  922. } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
  923. uart_reg->int_clr.brk_det = 1;
  924. uart_event.type = UART_BREAK;
  925. } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
  926. uart_reg->int_clr.frm_err = 1;
  927. uart_event.type = UART_FRAME_ERR;
  928. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  929. if (p_uart->uart_select_notif_callback) {
  930. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  931. }
  932. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  933. } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
  934. uart_reg->int_clr.parity_err = 1;
  935. uart_event.type = UART_PARITY_ERR;
  936. UART_ENTER_CRITICAL_ISR(&uart_selectlock);
  937. if (p_uart->uart_select_notif_callback) {
  938. p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
  939. }
  940. UART_EXIT_CRITICAL_ISR(&uart_selectlock);
  941. } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
  942. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  943. uart_reg->conf0.txd_brk = 0;
  944. uart_reg->int_ena.tx_brk_done = 0;
  945. uart_reg->int_clr.tx_brk_done = 1;
  946. if(p_uart->tx_brk_flg == 1) {
  947. uart_reg->int_ena.txfifo_empty = 1;
  948. }
  949. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  950. if(p_uart->tx_brk_flg == 1) {
  951. p_uart->tx_brk_flg = 0;
  952. p_uart->tx_waiting_brk = 0;
  953. } else {
  954. xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
  955. }
  956. } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
  957. uart_disable_intr_mask_from_isr(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
  958. uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
  959. } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
  960. uart_reg->int_clr.at_cmd_char_det = 1;
  961. uart_event.type = UART_PATTERN_DET;
  962. } else if ((uart_intr_status & UART_RS485_CLASH_INT_ST_M)
  963. || (uart_intr_status & UART_RS485_FRM_ERR_INT_ENA)
  964. || (uart_intr_status & UART_RS485_PARITY_ERR_INT_ENA)) {
  965. // RS485 collision or frame error interrupt triggered
  966. uart_clear_intr_status(uart_num, UART_RS485_CLASH_INT_CLR_M);
  967. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  968. uart_reset_rx_fifo(uart_num);
  969. // Set collision detection flag
  970. p_uart_obj[uart_num]->coll_det_flg = true;
  971. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  972. uart_event.type = UART_EVENT_MAX;
  973. } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
  974. uart_disable_intr_mask_from_isr(uart_num, UART_TX_DONE_INT_ENA_M);
  975. uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
  976. // If RS485 half duplex mode is enable then reset FIFO and
  977. // reset RTS pin to start receiver driver
  978. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  979. UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
  980. uart_reset_rx_fifo(uart_num); // Allows to avoid hardware issue with the RXFIFO reset
  981. uart_reg->conf0.sw_rts = 1;
  982. UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
  983. }
  984. xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
  985. } else {
  986. uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
  987. uart_event.type = UART_EVENT_MAX;
  988. }
  989. if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
  990. if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
  991. ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
  992. }
  993. }
  994. }
  995. if(HPTaskAwoken == pdTRUE) {
  996. portYIELD_FROM_ISR();
  997. }
  998. }
  999. /**************************************************************/
  1000. esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
  1001. {
  1002. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1003. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1004. BaseType_t res;
  1005. portTickType ticks_start = xTaskGetTickCount();
  1006. //Take tx_mux
  1007. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
  1008. if(res == pdFALSE) {
  1009. return ESP_ERR_TIMEOUT;
  1010. }
  1011. xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
  1012. typeof(UART0.status) status = UART[uart_num]->status;
  1013. //Wait txfifo_cnt = 0, and the transmitter state machine is in idle state.
  1014. if(status.txfifo_cnt == 0 && status.st_utx_out == 0) {
  1015. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1016. return ESP_OK;
  1017. }
  1018. uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1019. TickType_t ticks_end = xTaskGetTickCount();
  1020. if (ticks_end - ticks_start > ticks_to_wait) {
  1021. ticks_to_wait = 0;
  1022. } else {
  1023. ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
  1024. }
  1025. //take 2nd tx_done_sem, wait given from ISR
  1026. res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
  1027. if(res == pdFALSE) {
  1028. uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
  1029. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1030. return ESP_ERR_TIMEOUT;
  1031. }
  1032. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1033. return ESP_OK;
  1034. }
  1035. static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
  1036. {
  1037. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1038. UART[uart_num]->idle_conf.tx_brk_num = break_num;
  1039. UART[uart_num]->conf0.txd_brk = 1;
  1040. UART[uart_num]->int_clr.tx_brk_done = 1;
  1041. UART[uart_num]->int_ena.tx_brk_done = 1;
  1042. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1043. return ESP_OK;
  1044. }
  1045. //Fill UART tx_fifo and return a number,
  1046. //This function by itself is not thread-safe, always call from within a muxed section.
  1047. static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
  1048. {
  1049. uint8_t i = 0;
  1050. uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
  1051. uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
  1052. uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
  1053. // Set the RTS pin if RS485 mode is enabled
  1054. if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
  1055. UART[uart_num]->conf0.sw_rts = 0;
  1056. UART[uart_num]->int_ena.tx_done = 1;
  1057. }
  1058. for (i = 0; i < copy_cnt; i++) {
  1059. WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
  1060. }
  1061. return copy_cnt;
  1062. }
  1063. int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
  1064. {
  1065. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1066. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1067. UART_CHECK(buffer, "buffer null", (-1));
  1068. if(len == 0) {
  1069. return 0;
  1070. }
  1071. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1072. int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
  1073. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1074. return tx_len;
  1075. }
  1076. static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
  1077. {
  1078. if(size == 0) {
  1079. return 0;
  1080. }
  1081. size_t original_size = size;
  1082. //lock for uart_tx
  1083. xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
  1084. p_uart_obj[uart_num]->coll_det_flg = false;
  1085. if(p_uart_obj[uart_num]->tx_buf_size > 0) {
  1086. int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
  1087. int offset = 0;
  1088. uart_tx_data_t evt;
  1089. evt.tx_data.size = size;
  1090. evt.tx_data.brk_len = brk_len;
  1091. if(brk_en) {
  1092. evt.type = UART_DATA_BREAK;
  1093. } else {
  1094. evt.type = UART_DATA;
  1095. }
  1096. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
  1097. while(size > 0) {
  1098. int send_size = size > max_size / 2 ? max_size / 2 : size;
  1099. xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
  1100. size -= send_size;
  1101. offset += send_size;
  1102. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1103. }
  1104. } else {
  1105. while(size) {
  1106. //semaphore for tx_fifo available
  1107. if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
  1108. size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
  1109. if(sent < size) {
  1110. p_uart_obj[uart_num]->tx_waiting_fifo = true;
  1111. uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
  1112. }
  1113. size -= sent;
  1114. src += sent;
  1115. }
  1116. }
  1117. if(brk_en) {
  1118. uart_set_break(uart_num, brk_len);
  1119. xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
  1120. }
  1121. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1122. }
  1123. xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
  1124. return original_size;
  1125. }
  1126. int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
  1127. {
  1128. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1129. UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
  1130. UART_CHECK(src, "buffer null", (-1));
  1131. return uart_tx_all(uart_num, src, size, 0, 0);
  1132. }
  1133. int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
  1134. {
  1135. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1136. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1137. UART_CHECK((size > 0), "uart size error", (-1));
  1138. UART_CHECK((src), "uart data null", (-1));
  1139. UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
  1140. return uart_tx_all(uart_num, src, size, 1, brk_len);
  1141. }
  1142. static bool uart_check_buf_full(uart_port_t uart_num)
  1143. {
  1144. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1145. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1146. if(res == pdTRUE) {
  1147. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1148. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1149. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1150. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1151. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1152. return true;
  1153. }
  1154. }
  1155. return false;
  1156. }
  1157. int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
  1158. {
  1159. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
  1160. UART_CHECK((buf), "uart data null", (-1));
  1161. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
  1162. uint8_t* data = NULL;
  1163. size_t size;
  1164. size_t copy_len = 0;
  1165. int len_tmp;
  1166. if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
  1167. return -1;
  1168. }
  1169. while(length) {
  1170. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1171. data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
  1172. if(data) {
  1173. p_uart_obj[uart_num]->rx_head_ptr = data;
  1174. p_uart_obj[uart_num]->rx_ptr = data;
  1175. p_uart_obj[uart_num]->rx_cur_remain = size;
  1176. } else {
  1177. //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
  1178. //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
  1179. //to solve the possible asynchronous issues.
  1180. if(uart_check_buf_full(uart_num)) {
  1181. //This condition will never be true if `uart_read_bytes`
  1182. //and `uart_rx_intr_handler_default` are scheduled on the same core.
  1183. continue;
  1184. } else {
  1185. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1186. return copy_len;
  1187. }
  1188. }
  1189. }
  1190. if(p_uart_obj[uart_num]->rx_cur_remain > length) {
  1191. len_tmp = length;
  1192. } else {
  1193. len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
  1194. }
  1195. memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
  1196. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1197. p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
  1198. uart_pattern_queue_update(uart_num, len_tmp);
  1199. p_uart_obj[uart_num]->rx_ptr += len_tmp;
  1200. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1201. p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
  1202. copy_len += len_tmp;
  1203. length -= len_tmp;
  1204. if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
  1205. vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
  1206. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1207. p_uart_obj[uart_num]->rx_ptr = NULL;
  1208. uart_check_buf_full(uart_num);
  1209. }
  1210. }
  1211. xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
  1212. return copy_len;
  1213. }
  1214. esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
  1215. {
  1216. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1217. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1218. *size = p_uart_obj[uart_num]->rx_buffered_len;
  1219. return ESP_OK;
  1220. }
  1221. esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
  1222. esp_err_t uart_flush_input(uart_port_t uart_num)
  1223. {
  1224. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1225. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
  1226. uart_obj_t* p_uart = p_uart_obj[uart_num];
  1227. uint8_t* data;
  1228. size_t size;
  1229. //rx sem protect the ring buffer read related functions
  1230. xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
  1231. uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1232. while(true) {
  1233. if(p_uart->rx_head_ptr) {
  1234. vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
  1235. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1236. p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
  1237. uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
  1238. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1239. p_uart->rx_ptr = NULL;
  1240. p_uart->rx_cur_remain = 0;
  1241. p_uart->rx_head_ptr = NULL;
  1242. }
  1243. data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
  1244. if(data == NULL) {
  1245. if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
  1246. ESP_LOGE(UART_TAG, "rx_buffered_len error");
  1247. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1248. }
  1249. //We also need to clear the `rx_buffer_full_flg` here.
  1250. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1251. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1252. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1253. break;
  1254. }
  1255. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1256. p_uart_obj[uart_num]->rx_buffered_len -= size;
  1257. uart_pattern_queue_update(uart_num, size);
  1258. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1259. vRingbufferReturnItem(p_uart->rx_ring_buf, data);
  1260. if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
  1261. BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
  1262. if(res == pdTRUE) {
  1263. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1264. p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
  1265. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1266. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1267. }
  1268. }
  1269. }
  1270. p_uart->rx_ptr = NULL;
  1271. p_uart->rx_cur_remain = 0;
  1272. p_uart->rx_head_ptr = NULL;
  1273. uart_reset_rx_fifo(uart_num);
  1274. uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
  1275. xSemaphoreGive(p_uart->rx_mux);
  1276. return ESP_OK;
  1277. }
  1278. esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
  1279. {
  1280. esp_err_t r;
  1281. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1282. UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
  1283. UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
  1284. UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
  1285. if(p_uart_obj[uart_num] == NULL) {
  1286. p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
  1287. if(p_uart_obj[uart_num] == NULL) {
  1288. ESP_LOGE(UART_TAG, "UART driver malloc error");
  1289. return ESP_FAIL;
  1290. }
  1291. p_uart_obj[uart_num]->uart_num = uart_num;
  1292. p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
  1293. p_uart_obj[uart_num]->coll_det_flg = false;
  1294. p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
  1295. xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
  1296. p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
  1297. p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
  1298. p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
  1299. p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
  1300. p_uart_obj[uart_num]->queue_size = queue_size;
  1301. p_uart_obj[uart_num]->tx_ptr = NULL;
  1302. p_uart_obj[uart_num]->tx_head = NULL;
  1303. p_uart_obj[uart_num]->tx_len_tot = 0;
  1304. p_uart_obj[uart_num]->tx_brk_flg = 0;
  1305. p_uart_obj[uart_num]->tx_brk_len = 0;
  1306. p_uart_obj[uart_num]->tx_waiting_brk = 0;
  1307. p_uart_obj[uart_num]->rx_buffered_len = 0;
  1308. uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
  1309. if(uart_queue) {
  1310. p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
  1311. *uart_queue = p_uart_obj[uart_num]->xQueueUart;
  1312. ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
  1313. } else {
  1314. p_uart_obj[uart_num]->xQueueUart = NULL;
  1315. }
  1316. p_uart_obj[uart_num]->rx_buffer_full_flg = false;
  1317. p_uart_obj[uart_num]->tx_waiting_fifo = false;
  1318. p_uart_obj[uart_num]->rx_ptr = NULL;
  1319. p_uart_obj[uart_num]->rx_cur_remain = 0;
  1320. p_uart_obj[uart_num]->rx_head_ptr = NULL;
  1321. p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
  1322. if(tx_buffer_size > 0) {
  1323. p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
  1324. p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
  1325. } else {
  1326. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1327. p_uart_obj[uart_num]->tx_buf_size = 0;
  1328. }
  1329. p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
  1330. } else {
  1331. ESP_LOGE(UART_TAG, "UART driver already installed");
  1332. return ESP_FAIL;
  1333. }
  1334. r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
  1335. if (r!=ESP_OK) goto err;
  1336. uart_intr_config_t uart_intr = {
  1337. .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
  1338. | UART_RXFIFO_TOUT_INT_ENA_M
  1339. | UART_FRM_ERR_INT_ENA_M
  1340. | UART_RXFIFO_OVF_INT_ENA_M
  1341. | UART_BRK_DET_INT_ENA_M
  1342. | UART_PARITY_ERR_INT_ENA_M,
  1343. .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
  1344. .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
  1345. .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
  1346. };
  1347. r=uart_intr_config(uart_num, &uart_intr);
  1348. if (r!=ESP_OK) goto err;
  1349. return r;
  1350. err:
  1351. uart_driver_delete(uart_num);
  1352. return r;
  1353. }
  1354. //Make sure no other tasks are still using UART before you call this function
  1355. esp_err_t uart_driver_delete(uart_port_t uart_num)
  1356. {
  1357. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
  1358. if(p_uart_obj[uart_num] == NULL) {
  1359. ESP_LOGI(UART_TAG, "ALREADY NULL");
  1360. return ESP_OK;
  1361. }
  1362. esp_intr_free(p_uart_obj[uart_num]->intr_handle);
  1363. uart_disable_rx_intr(uart_num);
  1364. uart_disable_tx_intr(uart_num);
  1365. uart_pattern_link_free(uart_num);
  1366. if(p_uart_obj[uart_num]->tx_fifo_sem) {
  1367. vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
  1368. p_uart_obj[uart_num]->tx_fifo_sem = NULL;
  1369. }
  1370. if(p_uart_obj[uart_num]->tx_done_sem) {
  1371. vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
  1372. p_uart_obj[uart_num]->tx_done_sem = NULL;
  1373. }
  1374. if(p_uart_obj[uart_num]->tx_brk_sem) {
  1375. vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
  1376. p_uart_obj[uart_num]->tx_brk_sem = NULL;
  1377. }
  1378. if(p_uart_obj[uart_num]->tx_mux) {
  1379. vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
  1380. p_uart_obj[uart_num]->tx_mux = NULL;
  1381. }
  1382. if(p_uart_obj[uart_num]->rx_mux) {
  1383. vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
  1384. p_uart_obj[uart_num]->rx_mux = NULL;
  1385. }
  1386. if(p_uart_obj[uart_num]->xQueueUart) {
  1387. vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
  1388. p_uart_obj[uart_num]->xQueueUart = NULL;
  1389. }
  1390. if(p_uart_obj[uart_num]->rx_ring_buf) {
  1391. vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
  1392. p_uart_obj[uart_num]->rx_ring_buf = NULL;
  1393. }
  1394. if(p_uart_obj[uart_num]->tx_ring_buf) {
  1395. vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
  1396. p_uart_obj[uart_num]->tx_ring_buf = NULL;
  1397. }
  1398. free(p_uart_obj[uart_num]);
  1399. p_uart_obj[uart_num] = NULL;
  1400. if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
  1401. periph_module_t periph_module = get_periph_module(uart_num);
  1402. periph_module_disable(periph_module);
  1403. }
  1404. return ESP_OK;
  1405. }
  1406. bool uart_is_driver_installed(uart_port_t uart_num)
  1407. {
  1408. return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
  1409. }
  1410. void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
  1411. {
  1412. if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
  1413. p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
  1414. }
  1415. }
  1416. portMUX_TYPE *uart_get_selectlock()
  1417. {
  1418. return &uart_selectlock;
  1419. }
  1420. // Set UART mode
  1421. esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
  1422. {
  1423. UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
  1424. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1425. if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
  1426. || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
  1427. UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1),
  1428. "disable hw flowctrl before using RS485 mode", ESP_ERR_INVALID_ARG);
  1429. }
  1430. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1431. UART[uart_num]->rs485_conf.en = 0;
  1432. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1433. UART[uart_num]->rs485_conf.rx_busy_tx_en = 0;
  1434. UART[uart_num]->conf0.irda_en = 0;
  1435. UART[uart_num]->conf0.sw_rts = 0;
  1436. switch (mode) {
  1437. case UART_MODE_UART:
  1438. break;
  1439. case UART_MODE_RS485_COLLISION_DETECT:
  1440. // This mode allows read while transmitting that allows collision detection
  1441. p_uart_obj[uart_num]->coll_det_flg = false;
  1442. // Transmitter’s output signal loop back to the receiver’s input signal
  1443. UART[uart_num]->rs485_conf.tx_rx_en = 0 ;
  1444. // Transmitter should send data when its receiver is busy
  1445. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1446. UART[uart_num]->rs485_conf.en = 1;
  1447. // Enable collision detection interrupts
  1448. uart_enable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA
  1449. | UART_RXFIFO_FULL_INT_ENA
  1450. | UART_RS485_CLASH_INT_ENA
  1451. | UART_RS485_FRM_ERR_INT_ENA
  1452. | UART_RS485_PARITY_ERR_INT_ENA);
  1453. break;
  1454. case UART_MODE_RS485_APP_CTRL:
  1455. // Application software control, remove echo
  1456. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1457. UART[uart_num]->rs485_conf.en = 1;
  1458. break;
  1459. case UART_MODE_RS485_HALF_DUPLEX:
  1460. // Enable receiver, sw_rts = 1 generates low level on RTS pin
  1461. UART[uart_num]->conf0.sw_rts = 1;
  1462. UART[uart_num]->rs485_conf.en = 1;
  1463. // Must be set to 0 to automatically remove echo
  1464. UART[uart_num]->rs485_conf.tx_rx_en = 0;
  1465. // This is to void collision
  1466. UART[uart_num]->rs485_conf.rx_busy_tx_en = 1;
  1467. break;
  1468. case UART_MODE_IRDA:
  1469. UART[uart_num]->conf0.irda_en = 1;
  1470. break;
  1471. default:
  1472. UART_CHECK(1, "unsupported uart mode", ESP_ERR_INVALID_ARG);
  1473. break;
  1474. }
  1475. p_uart_obj[uart_num]->uart_mode = mode;
  1476. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1477. return ESP_OK;
  1478. }
  1479. esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
  1480. {
  1481. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1482. UART_CHECK((tout_thresh < 127), "tout_thresh max value is 126", ESP_ERR_INVALID_ARG);
  1483. UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
  1484. // The tout_thresh = 1, defines TOUT interrupt timeout equal to
  1485. // transmission time of one symbol (~11 bit) on current baudrate
  1486. if (tout_thresh > 0) {
  1487. //Hardware issue workaround: when using ref_tick, the rx timeout threshold needs increase to 10 times.
  1488. //T_ref = T_apb * APB_CLK/(REF_TICK << CLKDIV_FRAG_BIT_WIDTH)
  1489. if(UART[uart_num]->conf0.tick_ref_always_on == 0) {
  1490. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh * UART_TOUT_REF_FACTOR_DEFAULT;
  1491. } else {
  1492. UART[uart_num]->conf1.rx_tout_thrhd = tout_thresh;
  1493. }
  1494. UART[uart_num]->conf1.rx_tout_en = 1;
  1495. } else {
  1496. UART[uart_num]->conf1.rx_tout_en = 0;
  1497. }
  1498. UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
  1499. return ESP_OK;
  1500. }
  1501. esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool* collision_flag)
  1502. {
  1503. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1504. UART_CHECK((collision_flag != NULL), "wrong parameter pointer", ESP_ERR_INVALID_ARG);
  1505. UART_CHECK((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)
  1506. || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
  1507. "wrong mode", ESP_ERR_INVALID_ARG);
  1508. *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
  1509. return ESP_OK;
  1510. }
  1511. esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
  1512. {
  1513. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1514. UART_CHECK((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V &&
  1515. wakeup_threshold > UART_MIN_WAKEUP_THRESH),
  1516. "wakeup_threshold out of bounds", ESP_ERR_INVALID_ARG);
  1517. UART[uart_num]->sleep_conf.active_threshold = wakeup_threshold - UART_MIN_WAKEUP_THRESH;
  1518. return ESP_OK;
  1519. }
  1520. esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold)
  1521. {
  1522. UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_ERR_INVALID_ARG);
  1523. UART_CHECK((out_wakeup_threshold != NULL), "argument is NULL", ESP_ERR_INVALID_ARG);
  1524. *out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
  1525. return ESP_OK;
  1526. }