bootloader_clock_init.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. /*
  2. * SPDX-FileCopyrightText: 2017-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include "sdkconfig.h"
  7. #include "soc/soc.h"
  8. #include "soc/rtc.h"
  9. #include "soc/chip_revision.h"
  10. #include "hal/efuse_hal.h"
  11. #if !CONFIG_IDF_TARGET_ESP32C6 && !CONFIG_IDF_TARGET_ESP32H2 // TODO: IDF-5645
  12. #include "soc/rtc_cntl_reg.h"
  13. #else
  14. #include "soc/lp_wdt_reg.h"
  15. #include "soc/lp_timer_reg.h"
  16. #include "soc/lp_analog_peri_reg.h"
  17. #include "soc/pmu_reg.h"
  18. #endif
  19. #if CONFIG_IDF_TARGET_ESP32
  20. #include "hal/clk_tree_ll.h"
  21. #endif
  22. #include "esp_rom_sys.h"
  23. #include "esp_rom_uart.h"
  24. __attribute__((weak)) void bootloader_clock_configure(void)
  25. {
  26. // ROM bootloader may have put a lot of text into UART0 FIFO.
  27. // Wait for it to be printed.
  28. // This is not needed on power on reset, when ROM bootloader is running at
  29. // 40 MHz. But in case of TG WDT reset, CPU may still be running at >80 MHZ,
  30. // and will be done with the bootloader much earlier than UART FIFO is empty.
  31. esp_rom_uart_tx_wait_idle(0);
  32. /* Set CPU to a higher certain frequency. Keep other clocks unmodified. */
  33. int cpu_freq_mhz = CPU_CLK_FREQ_MHZ_BTLD;
  34. #if CONFIG_IDF_TARGET_ESP32
  35. /* On ESP32 rev 0, switching to 80/160 MHz if clock was previously set to
  36. * 240 MHz may cause the chip to lock up (see section 3.5 of the errata
  37. * document). For rev. 0, switch to 240 instead if it has been enabled
  38. * previously.
  39. */
  40. if (!ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 100) &&
  41. clk_ll_cpu_get_freq_mhz_from_pll() == CLK_LL_PLL_240M_FREQ_MHZ) {
  42. cpu_freq_mhz = 240;
  43. }
  44. #endif
  45. if (esp_rom_get_reset_reason(0) != RESET_REASON_CPU0_SW || rtc_clk_apb_freq_get() < APB_CLK_FREQ) {
  46. rtc_clk_config_t clk_cfg = RTC_CLK_CONFIG_DEFAULT();
  47. clk_cfg.cpu_freq_mhz = cpu_freq_mhz;
  48. // Use RTC_SLOW clock source sel register field's default value, RC_SLOW, for 2nd stage bootloader
  49. // RTC_SLOW clock source will be switched according to Kconfig selection at application startup
  50. clk_cfg.slow_clk_src = rtc_clk_slow_src_get();
  51. if (clk_cfg.slow_clk_src == SOC_RTC_SLOW_CLK_SRC_INVALID) {
  52. clk_cfg.slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW;
  53. }
  54. #if CONFIG_IDF_TARGET_ESP32C6
  55. // TODO: IDF-5781 Some of esp32c6 SOC_RTC_FAST_CLK_SRC_XTAL_D2 rtc_fast clock has timing issue
  56. // Force to use SOC_RTC_FAST_CLK_SRC_RC_FAST since 2nd stage bootloader
  57. clk_cfg.fast_clk_src = SOC_RTC_FAST_CLK_SRC_RC_FAST;
  58. #else
  59. // Use RTC_FAST clock source sel register field's default value, XTAL_DIV, for 2nd stage bootloader
  60. // RTC_FAST clock source will be switched to RC_FAST at application startup
  61. clk_cfg.fast_clk_src = rtc_clk_fast_src_get();
  62. if (clk_cfg.fast_clk_src == SOC_RTC_FAST_CLK_SRC_INVALID) {
  63. clk_cfg.fast_clk_src = SOC_RTC_FAST_CLK_SRC_XTAL_DIV;
  64. }
  65. #endif
  66. rtc_clk_init(clk_cfg);
  67. }
  68. /* As a slight optimization, if 32k XTAL was enabled in sdkconfig, we enable
  69. * it here. Usually it needs some time to start up, so we amortize at least
  70. * part of the start up time by enabling 32k XTAL early.
  71. * App startup code will wait until the oscillator has started up.
  72. */
  73. #if CONFIG_ESP_SYSTEM_RTC_EXT_XTAL
  74. if (!rtc_clk_32k_enabled()) {
  75. rtc_clk_32k_bootstrap(CONFIG_ESP_SYSTEM_RTC_EXT_XTAL_BOOTSTRAP_CYCLES);
  76. }
  77. #endif // CONFIG_ESP_SYSTEM_RTC_EXT_XTAL
  78. // TODO: IDF-5645
  79. #if CONFIG_IDF_TARGET_ESP32C6
  80. // CLR ENA
  81. CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */
  82. CLEAR_PERI_REG_MASK(LP_TIMER_LP_INT_ENA_REG, LP_TIMER_MAIN_TIMER_LP_INT_ENA); /* MAIN_TIMER */
  83. CLEAR_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_ENA_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */
  84. CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */
  85. CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */
  86. CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */
  87. // SET CLR
  88. SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */
  89. SET_PERI_REG_MASK(LP_TIMER_LP_INT_CLR_REG, LP_TIMER_MAIN_TIMER_LP_INT_CLR); /* MAIN_TIMER */
  90. SET_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_CLR_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_CLR); /* BROWN_OUT */
  91. SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */
  92. #elif CONFIG_IDF_TARGET_ESP32H2
  93. // CLR ENA
  94. CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */
  95. CLEAR_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_ENA_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */
  96. CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */
  97. CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */
  98. CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */
  99. // SET CLR
  100. SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */
  101. SET_PERI_REG_MASK(LP_ANALOG_PERI_LP_ANA_LP_INT_CLR_REG, LP_ANALOG_PERI_LP_ANA_BOD_MODE0_LP_INT_CLR); /* BROWN_OUT */
  102. SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */
  103. SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_WAKEUP_INT_CLR); /* SLP_REJECT */
  104. SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_SLEEP_REJECT_INT_CLR); /* SLP_WAKEUP */
  105. #else
  106. REG_WRITE(RTC_CNTL_INT_ENA_REG, 0);
  107. REG_WRITE(RTC_CNTL_INT_CLR_REG, UINT32_MAX);
  108. #endif
  109. }