ledc.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include <string.h>
  7. #include "esp_types.h"
  8. #include "freertos/FreeRTOS.h"
  9. #include "freertos/semphr.h"
  10. #include "esp_log.h"
  11. #include "esp_check.h"
  12. #include "soc/gpio_periph.h"
  13. #include "soc/ledc_periph.h"
  14. #include "soc/rtc.h"
  15. #include "soc/soc_caps.h"
  16. #include "hal/ledc_hal.h"
  17. #include "hal/gpio_hal.h"
  18. #include "driver/ledc.h"
  19. #include "esp_rom_gpio.h"
  20. #include "esp_rom_sys.h"
  21. #include "soc/clk_ctrl_os.h"
  22. #include "esp_private/periph_ctrl.h"
  23. static __attribute__((unused)) const char *LEDC_TAG = "ledc";
  24. #define LEDC_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, LEDC_TAG, "%s", str)
  25. #define LEDC_ARG_CHECK(a, param) ESP_RETURN_ON_FALSE(a, ESP_ERR_INVALID_ARG, LEDC_TAG, param " argument is invalid")
  26. typedef enum {
  27. LEDC_FSM_IDLE,
  28. LEDC_FSM_HW_FADE,
  29. LEDC_FSM_ISR_CAL,
  30. LEDC_FSM_KILLED_PENDING,
  31. } ledc_fade_fsm_t;
  32. typedef struct {
  33. ledc_mode_t speed_mode;
  34. ledc_duty_direction_t direction;
  35. uint32_t target_duty;
  36. int cycle_num;
  37. int scale;
  38. ledc_fade_mode_t mode;
  39. SemaphoreHandle_t ledc_fade_sem;
  40. SemaphoreHandle_t ledc_fade_mux;
  41. #if CONFIG_SPIRAM_USE_MALLOC
  42. StaticQueue_t ledc_fade_sem_storage;
  43. #endif
  44. ledc_cb_t ledc_fade_callback;
  45. void *cb_user_arg;
  46. volatile ledc_fade_fsm_t fsm;
  47. } ledc_fade_t;
  48. typedef struct {
  49. ledc_hal_context_t ledc_hal; /*!< LEDC hal context*/
  50. } ledc_obj_t;
  51. static ledc_obj_t *p_ledc_obj[LEDC_SPEED_MODE_MAX] = {0};
  52. static ledc_fade_t *s_ledc_fade_rec[LEDC_SPEED_MODE_MAX][LEDC_CHANNEL_MAX];
  53. static ledc_isr_handle_t s_ledc_fade_isr_handle = NULL;
  54. static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
  55. #define LEDC_VAL_NO_CHANGE (-1)
  56. #define LEDC_STEP_NUM_MAX (1023)
  57. #define LEDC_DUTY_DECIMAL_BIT_NUM (4)
  58. #define LEDC_TIMER_DIV_NUM_MAX (0x3FFFF)
  59. #define LEDC_DUTY_NUM_MAX (LEDC_DUTY_NUM_LSCH0_V)
  60. #define LEDC_DUTY_CYCLE_MAX (LEDC_DUTY_CYCLE_LSCH0_V)
  61. #define LEDC_DUTY_SCALE_MAX (LEDC_DUTY_SCALE_LSCH0_V)
  62. #define LEDC_HPOINT_VAL_MAX (LEDC_HPOINT_LSCH1_V)
  63. #define DELAY_CLK8M_CLK_SWITCH (5)
  64. #define SLOW_CLK_CYC_CALIBRATE (13)
  65. #define LEDC_FADE_TOO_SLOW_STR "LEDC FADE TOO SLOW"
  66. #define LEDC_FADE_TOO_FAST_STR "LEDC FADE TOO FAST"
  67. #define DIM(array) (sizeof(array)/sizeof(*array))
  68. #define LEDC_IS_DIV_INVALID(div) ((div) <= LEDC_LL_FRACTIONAL_MAX || (div) > LEDC_TIMER_DIV_NUM_MAX)
  69. static __attribute__((unused)) const char *LEDC_NOT_INIT = "LEDC is not initialized";
  70. static __attribute__((unused)) const char *LEDC_FADE_SERVICE_ERR_STR = "LEDC fade service not installed";
  71. static __attribute__((unused)) const char *LEDC_FADE_INIT_ERROR_STR = "LEDC fade channel init error, not enough memory or service not installed";
  72. //This value will be calibrated when in use.
  73. static uint32_t s_ledc_slow_clk_8M = 0;
  74. static void ledc_ls_timer_update(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  75. {
  76. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  77. ledc_hal_ls_timer_update(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  78. }
  79. }
  80. static IRAM_ATTR void ledc_ls_channel_update(ledc_mode_t speed_mode, ledc_channel_t channel)
  81. {
  82. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  83. ledc_hal_ls_channel_update(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  84. }
  85. }
  86. //We know that CLK8M is about 8M, but don't know the actual value. So we need to do a calibration.
  87. static bool ledc_slow_clk_calibrate(void)
  88. {
  89. if (periph_rtc_dig_clk8m_enable()) {
  90. s_ledc_slow_clk_8M = periph_rtc_dig_clk8m_get_freq();
  91. ESP_LOGD(LEDC_TAG, "Calibrate CLK8M_CLK : %d Hz", s_ledc_slow_clk_8M);
  92. return true;
  93. }
  94. ESP_LOGE(LEDC_TAG, "Calibrate CLK8M_CLK failed");
  95. return false;
  96. }
  97. static uint32_t ledc_get_src_clk_freq(ledc_clk_cfg_t clk_cfg)
  98. {
  99. uint32_t src_clk_freq = 0;
  100. if (clk_cfg == LEDC_USE_APB_CLK) {
  101. src_clk_freq = LEDC_APB_CLK_HZ;
  102. } else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  103. src_clk_freq = s_ledc_slow_clk_8M;
  104. #if SOC_LEDC_SUPPORT_REF_TICK
  105. } else if (clk_cfg == LEDC_USE_REF_TICK) {
  106. src_clk_freq = LEDC_REF_CLK_HZ;
  107. #endif
  108. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  109. } else if (clk_cfg == LEDC_USE_XTAL_CLK) {
  110. src_clk_freq = rtc_clk_xtal_freq_get() * 1000000;
  111. #endif
  112. }
  113. return src_clk_freq;
  114. }
  115. /* Retrieve the clock frequency for global clocks only */
  116. static uint32_t ledc_get_glb_clk_freq(ledc_slow_clk_sel_t clk_cfg)
  117. {
  118. uint32_t src_clk_freq = 0;
  119. switch (clk_cfg) {
  120. case LEDC_SLOW_CLK_APB:
  121. src_clk_freq = LEDC_APB_CLK_HZ;
  122. break;
  123. case LEDC_SLOW_CLK_RTC8M:
  124. src_clk_freq = s_ledc_slow_clk_8M;
  125. break;
  126. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  127. case LEDC_SLOW_CLK_XTAL:
  128. src_clk_freq = rtc_clk_xtal_freq_get() * 1000000;
  129. break;
  130. #endif
  131. }
  132. return src_clk_freq;
  133. }
  134. static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_intr_type_t type)
  135. {
  136. if (type == LEDC_INTR_FADE_END) {
  137. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  138. } else {
  139. ledc_hal_set_fade_end_intr(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  140. }
  141. return ESP_OK;
  142. }
  143. static void _ledc_fade_hw_acquire(ledc_mode_t mode, ledc_channel_t channel)
  144. {
  145. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  146. if (fade) {
  147. xSemaphoreTake(fade->ledc_fade_sem, portMAX_DELAY);
  148. portENTER_CRITICAL(&ledc_spinlock);
  149. ledc_enable_intr_type(mode, channel, LEDC_INTR_DISABLE);
  150. portEXIT_CRITICAL(&ledc_spinlock);
  151. }
  152. }
  153. static void _ledc_fade_hw_release(ledc_mode_t mode, ledc_channel_t channel)
  154. {
  155. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  156. if (fade) {
  157. xSemaphoreGive(fade->ledc_fade_sem);
  158. }
  159. }
  160. static void _ledc_op_lock_acquire(ledc_mode_t mode, ledc_channel_t channel)
  161. {
  162. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  163. if (fade) {
  164. xSemaphoreTake(fade->ledc_fade_mux, portMAX_DELAY);
  165. }
  166. }
  167. static void _ledc_op_lock_release(ledc_mode_t mode, ledc_channel_t channel)
  168. {
  169. ledc_fade_t *fade = s_ledc_fade_rec[mode][channel];
  170. if (fade) {
  171. xSemaphoreGive(fade->ledc_fade_mux);
  172. }
  173. }
  174. static uint32_t ledc_get_max_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  175. {
  176. // The arguments are checked before internally calling this function.
  177. uint32_t max_duty;
  178. ledc_hal_get_max_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &max_duty);
  179. return max_duty;
  180. }
  181. esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider, uint32_t duty_resolution,
  182. ledc_clk_src_t clk_src)
  183. {
  184. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  185. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  186. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  187. portENTER_CRITICAL(&ledc_spinlock);
  188. ledc_hal_set_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clock_divider);
  189. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  190. /* Clock source can only be configured on boards which support timer-specific
  191. * source clock. */
  192. ledc_hal_set_clock_source(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, clk_src);
  193. #endif
  194. ledc_hal_set_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel, duty_resolution);
  195. ledc_ls_timer_update(speed_mode, timer_sel);
  196. portEXIT_CRITICAL(&ledc_spinlock);
  197. return ESP_OK;
  198. }
  199. static IRAM_ATTR esp_err_t ledc_duty_config(ledc_mode_t speed_mode, ledc_channel_t channel, int hpoint_val,
  200. int duty_val, ledc_duty_direction_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
  201. {
  202. if (hpoint_val >= 0) {
  203. ledc_hal_set_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, hpoint_val);
  204. }
  205. if (duty_val >= 0) {
  206. ledc_hal_set_duty_int_part(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_val);
  207. }
  208. ledc_hal_set_duty_direction(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_direction);
  209. ledc_hal_set_duty_num(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_num);
  210. ledc_hal_set_duty_cycle(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_cycle);
  211. ledc_hal_set_duty_scale(&(p_ledc_obj[speed_mode]->ledc_hal), channel, duty_scale);
  212. ledc_ls_channel_update(speed_mode, channel);
  213. return ESP_OK;
  214. }
  215. esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_timer_t timer_sel)
  216. {
  217. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  218. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  219. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  220. portENTER_CRITICAL(&ledc_spinlock);
  221. ledc_hal_bind_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, timer_sel);
  222. ledc_ls_channel_update(speed_mode, channel);
  223. portEXIT_CRITICAL(&ledc_spinlock);
  224. return ESP_OK;
  225. }
  226. esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  227. {
  228. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  229. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  230. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  231. portENTER_CRITICAL(&ledc_spinlock);
  232. ledc_hal_timer_rst(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  233. ledc_ls_timer_update(speed_mode, timer_sel);
  234. portEXIT_CRITICAL(&ledc_spinlock);
  235. return ESP_OK;
  236. }
  237. esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  238. {
  239. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  240. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  241. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  242. portENTER_CRITICAL(&ledc_spinlock);
  243. ledc_hal_timer_pause(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  244. ledc_ls_timer_update(speed_mode, timer_sel);
  245. portEXIT_CRITICAL(&ledc_spinlock);
  246. return ESP_OK;
  247. }
  248. esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, ledc_timer_t timer_sel)
  249. {
  250. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  251. LEDC_ARG_CHECK(timer_sel < LEDC_TIMER_MAX, "timer_select");
  252. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  253. portENTER_CRITICAL(&ledc_spinlock);
  254. ledc_hal_timer_resume(&(p_ledc_obj[speed_mode]->ledc_hal), timer_sel);
  255. ledc_ls_timer_update(speed_mode, timer_sel);
  256. portEXIT_CRITICAL(&ledc_spinlock);
  257. return ESP_OK;
  258. }
  259. esp_err_t ledc_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, ledc_isr_handle_t *handle)
  260. {
  261. esp_err_t ret;
  262. LEDC_ARG_CHECK(fn, "fn");
  263. portENTER_CRITICAL(&ledc_spinlock);
  264. ret = esp_intr_alloc(ETS_LEDC_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
  265. portEXIT_CRITICAL(&ledc_spinlock);
  266. return ret;
  267. }
  268. static inline uint32_t ledc_calculate_divisor(uint32_t src_clk_freq, int freq_hz, uint32_t precision)
  269. {
  270. /**
  271. * In order to find the right divisor, we need to divide the source clock
  272. * frequency by the desired frequency. However, two things to note here:
  273. * - The lowest LEDC_LL_FRACTIONAL_BITS bits of the result are the FRACTIONAL
  274. * part. The higher bits represent the integer part, this is why we need
  275. * to right shift the source frequency.
  276. * - The `precision` parameter represents the granularity of the clock. It
  277. * **must** be a power of 2. It means that the resulted divisor is
  278. * a multiplier of `precision`.
  279. *
  280. * Let's take a concrete example, we need to generate a 5KHz clock out of
  281. * a 80MHz clock (APB).
  282. * If the precision is 1024 (10 bits), the resulted multiplier is:
  283. * (80000000 << 8) / (5000 * 1024) = 4000 (0xfa0)
  284. * Let's ignore the fractional part to simplify the explanation, so we get
  285. * a result of 15 (0xf).
  286. * This can be interpreted as: every 15 "precision" ticks, the resulted
  287. * clock will go high, where one precision tick is made out of 1024 source
  288. * clock ticks.
  289. * Thus, every `15 * 1024` source clock ticks, the resulted clock will go
  290. * high.
  291. *
  292. * NOTE: We are also going to round up the value when necessary, thanks to:
  293. * (freq_hz * precision) / 2
  294. */
  295. return ( ( (uint64_t) src_clk_freq << LEDC_LL_FRACTIONAL_BITS ) + ((freq_hz * precision) / 2 ) )
  296. / (freq_hz * precision);
  297. }
  298. static inline uint32_t ledc_auto_global_clk_divisor(int freq_hz, uint32_t precision, ledc_slow_clk_sel_t* clk_target)
  299. {
  300. uint32_t div_param = 0;
  301. uint32_t i = 0;
  302. uint32_t clk_freq = 0;
  303. /* This function will go through all the following clock sources to look
  304. * for a valid divisor which generates the requested frequency. */
  305. const ledc_slow_clk_sel_t glb_clks[] = LEDC_LL_GLOBAL_CLOCKS;
  306. for (i = 0; i < DIM(glb_clks); i++) {
  307. /* Before calculating the divisor, we need to have the RTC frequency.
  308. * If it hasn't been mesured yet, try calibrating it now. */
  309. if (glb_clks[i] == LEDC_SLOW_CLK_RTC8M && s_ledc_slow_clk_8M == 0 && !ledc_slow_clk_calibrate()) {
  310. ESP_LOGD(LEDC_TAG, "Unable to retrieve RTC clock frequency, skipping it\n");
  311. continue;
  312. }
  313. clk_freq = ledc_get_glb_clk_freq(glb_clks[i]);
  314. div_param = ledc_calculate_divisor(clk_freq, freq_hz, precision);
  315. /* If the divisor is valid, we can return this value. */
  316. if (!LEDC_IS_DIV_INVALID(div_param)) {
  317. *clk_target = glb_clks[i];
  318. break;
  319. }
  320. }
  321. return div_param;
  322. }
  323. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  324. static inline uint32_t ledc_auto_timer_specific_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  325. ledc_clk_src_t* clk_source)
  326. {
  327. uint32_t div_param = 0;
  328. uint32_t i = 0;
  329. /* Use an anonymous structure, only this function requires it.
  330. * Get the list of the timer-specific clocks, try to find one for the reuested frequency. */
  331. const struct { ledc_clk_src_t clk; uint32_t freq; } specific_clks[] = LEDC_LL_TIMER_SPECIFIC_CLOCKS;
  332. for (i = 0; i < DIM(specific_clks); i++) {
  333. div_param = ledc_calculate_divisor(specific_clks[i].freq, freq_hz, precision);
  334. /* If the divisor is valid, we can return this value. */
  335. if (!LEDC_IS_DIV_INVALID(div_param)) {
  336. *clk_source = specific_clks[i].clk;
  337. break;
  338. }
  339. }
  340. #if SOC_LEDC_SUPPORT_HS_MODE
  341. /* On board that support LEDC high-speed mode, APB clock becomes a timer-
  342. * specific clock when in high speed mode. Check if it is necessary here
  343. * to test APB. */
  344. if (speed_mode == LEDC_HIGH_SPEED_MODE && i == DIM(specific_clks)) {
  345. /* No divider was found yet, try with APB! */
  346. div_param = ledc_calculate_divisor(LEDC_APB_CLK_HZ, freq_hz, precision);
  347. if (!LEDC_IS_DIV_INVALID(div_param)) {
  348. *clk_source = LEDC_APB_CLK;
  349. }
  350. }
  351. #endif
  352. return div_param;
  353. }
  354. #endif
  355. /**
  356. * @brief Try to find the clock with its divisor giving the frequency requested
  357. * by the caller.
  358. */
  359. static uint32_t ledc_auto_clk_divisor(ledc_mode_t speed_mode, int freq_hz, uint32_t precision,
  360. ledc_clk_src_t* clk_source, ledc_slow_clk_sel_t* clk_target)
  361. {
  362. uint32_t div_param = 0;
  363. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  364. /* If the SoC presents timer-specific clock(s), try to achieve the given frequency
  365. * thanks to it/them.
  366. * clk_source parameter will returned by this function. */
  367. div_param = ledc_auto_timer_specific_clk_divisor(speed_mode, freq_hz, precision, clk_source);
  368. if (!LEDC_IS_DIV_INVALID(div_param)) {
  369. /* The dividor is valid, no need try any other clock, return directly. */
  370. return div_param;
  371. }
  372. #endif
  373. /* On ESP32, only low speed channel can use the global clocks. For other
  374. * chips, there are no high speed channels. */
  375. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  376. div_param = ledc_auto_global_clk_divisor(freq_hz, precision, clk_target);
  377. }
  378. return div_param;
  379. }
  380. static ledc_slow_clk_sel_t ledc_clk_cfg_to_global_clk(const ledc_clk_cfg_t clk_cfg)
  381. {
  382. /* Initialization required for preventing a compiler warning */
  383. ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_APB;
  384. switch (clk_cfg) {
  385. case LEDC_USE_APB_CLK:
  386. glb_clk = LEDC_SLOW_CLK_APB;
  387. break;
  388. case LEDC_USE_RTC8M_CLK:
  389. glb_clk = LEDC_SLOW_CLK_RTC8M;
  390. break;
  391. #if SOC_LEDC_SUPPORT_XTAL_CLOCK
  392. case LEDC_USE_XTAL_CLK:
  393. glb_clk = LEDC_SLOW_CLK_XTAL;
  394. break;
  395. #endif
  396. #if SOC_LEDC_SUPPORT_REF_TICK
  397. case LEDC_USE_REF_TICK:
  398. #endif
  399. default:
  400. /* We should not get here, REF_TICK is NOT a global clock,
  401. * it is a timer-specific clock. */
  402. assert(false);
  403. }
  404. return glb_clk;
  405. }
  406. /**
  407. * @brief Function setting the LEDC timer divisor with the given source clock,
  408. * frequency and resolution. If the clock configuration passed is
  409. * LEDC_AUTO_CLK, the clock will be determined automatically (if possible).
  410. */
  411. static esp_err_t ledc_set_timer_div(ledc_mode_t speed_mode, ledc_timer_t timer_num, ledc_clk_cfg_t clk_cfg, int freq_hz, int duty_resolution)
  412. {
  413. uint32_t div_param = 0;
  414. const uint32_t precision = ( 0x1 << duty_resolution );
  415. /* This variable represents the timer's mux value. It will be overwritten
  416. * if a timer-specific clock is used. */
  417. ledc_clk_src_t timer_clk_src = LEDC_SCLK;
  418. /* Store the global clock. */
  419. ledc_slow_clk_sel_t glb_clk = LEDC_SLOW_CLK_APB;
  420. uint32_t src_clk_freq = 0;
  421. if (clk_cfg == LEDC_AUTO_CLK) {
  422. /* User hasn't specified the speed, we should try to guess it. */
  423. div_param = ledc_auto_clk_divisor(speed_mode, freq_hz, precision, &timer_clk_src, &glb_clk);
  424. } else if (clk_cfg == LEDC_USE_RTC8M_CLK) {
  425. /* User specified source clock(RTC8M_CLK) for low speed channel.
  426. * Make sure the speed mode is correct. */
  427. ESP_RETURN_ON_FALSE((speed_mode == LEDC_LOW_SPEED_MODE), ESP_ERR_INVALID_ARG, LEDC_TAG, "RTC clock can only be used in low speed mode");
  428. /* Before calculating the divisor, we need to have the RTC frequency.
  429. * If it hasn't been mesured yet, try calibrating it now. */
  430. if(s_ledc_slow_clk_8M == 0 && ledc_slow_clk_calibrate() == false) {
  431. goto error;
  432. }
  433. /* We have the RTC clock frequency now. */
  434. div_param = ledc_calculate_divisor(s_ledc_slow_clk_8M, freq_hz, precision);
  435. /* Set the global clock source */
  436. glb_clk = LEDC_SLOW_CLK_RTC8M;
  437. } else {
  438. #if SOC_LEDC_HAS_TIMER_SPECIFIC_MUX
  439. if (LEDC_LL_IS_TIMER_SPECIFIC_CLOCK(speed_mode, clk_cfg)) {
  440. /* Currently we can convert a timer-specific clock to a source clock that
  441. * easily because their values are identical in the enumerations (on purpose)
  442. * If we decide to change the values in the future, we should consider defining
  443. * a macro/function to convert timer-specific clock to clock source .*/
  444. timer_clk_src = (ledc_clk_src_t) clk_cfg;
  445. } else
  446. #endif
  447. {
  448. glb_clk = ledc_clk_cfg_to_global_clk(clk_cfg);
  449. }
  450. src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  451. div_param = ledc_calculate_divisor(src_clk_freq, freq_hz, precision);
  452. }
  453. if (LEDC_IS_DIV_INVALID(div_param)) {
  454. goto error;
  455. }
  456. /* The following debug message makes more sense for AUTO mode. */
  457. ESP_LOGD(LEDC_TAG, "Using clock source %d (in %s mode), divisor: 0x%x\n",
  458. timer_clk_src, (speed_mode == LEDC_LOW_SPEED_MODE ? "slow" : "fast"), div_param);
  459. /* The following block configures the global clock.
  460. * Thus, in theory, this only makes sense when the source clock is LEDC_SCLK
  461. * and in LOW_SPEED_MODE (as FAST_SPEED_MODE doesn't present any global clock)
  462. *
  463. * However, in practice, on modules that support high-speed mode, no matter
  464. * whether the source clock is a timer-specific one (e.g. REF_TICK) or not,
  465. * the global clock MUST be configured when in low speed mode.
  466. * When using high-speed mode, this is not necessary.
  467. */
  468. #if SOC_LEDC_SUPPORT_HS_MODE
  469. if (speed_mode == LEDC_LOW_SPEED_MODE) {
  470. #else
  471. if (timer_clk_src == LEDC_SCLK) {
  472. #endif
  473. ESP_LOGD(LEDC_TAG, "In slow speed mode, using clock %d", glb_clk);
  474. portENTER_CRITICAL(&ledc_spinlock);
  475. ledc_hal_set_slow_clk_sel(&(p_ledc_obj[speed_mode]->ledc_hal), glb_clk);
  476. portEXIT_CRITICAL(&ledc_spinlock);
  477. }
  478. /* The divisor is correct, we can write in the hardware. */
  479. ledc_timer_set(speed_mode, timer_num, div_param, duty_resolution, timer_clk_src);
  480. /* Reset the timer. */
  481. ledc_timer_rst(speed_mode, timer_num);
  482. return ESP_OK;
  483. error:
  484. ESP_LOGE(LEDC_TAG, "requested frequency and duty resolution can not be achieved, try reducing freq_hz or duty_resolution. div_param=%d",
  485. (uint32_t ) div_param);
  486. return ESP_FAIL;
  487. }
  488. esp_err_t ledc_timer_config(const ledc_timer_config_t *timer_conf)
  489. {
  490. LEDC_ARG_CHECK(timer_conf != NULL, "timer_conf");
  491. uint32_t freq_hz = timer_conf->freq_hz;
  492. uint32_t duty_resolution = timer_conf->duty_resolution;
  493. uint32_t timer_num = timer_conf->timer_num;
  494. uint32_t speed_mode = timer_conf->speed_mode;
  495. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  496. LEDC_ARG_CHECK(!((timer_conf->clk_cfg == LEDC_USE_RTC8M_CLK) && (speed_mode != LEDC_LOW_SPEED_MODE)), "Only low speed channel support RTC8M_CLK");
  497. periph_module_enable(PERIPH_LEDC_MODULE);
  498. if (freq_hz == 0 || duty_resolution == 0 || duty_resolution >= LEDC_TIMER_BIT_MAX) {
  499. ESP_LOGE(LEDC_TAG, "freq_hz=%u duty_resolution=%u", freq_hz, duty_resolution);
  500. return ESP_ERR_INVALID_ARG;
  501. }
  502. if (timer_num > LEDC_TIMER_3) {
  503. ESP_LOGE(LEDC_TAG, "invalid timer #%u", timer_num);
  504. return ESP_ERR_INVALID_ARG;
  505. }
  506. if (p_ledc_obj[speed_mode] == NULL) {
  507. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  508. if (p_ledc_obj[speed_mode] == NULL) {
  509. return ESP_ERR_NO_MEM;
  510. }
  511. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  512. }
  513. return ledc_set_timer_div(speed_mode, timer_num, timer_conf->clk_cfg, freq_hz, duty_resolution);
  514. }
  515. esp_err_t ledc_set_pin(int gpio_num, ledc_mode_t speed_mode, ledc_channel_t ledc_channel)
  516. {
  517. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  518. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  519. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  520. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  521. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  522. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, 0, 0);
  523. return ESP_OK;
  524. }
  525. esp_err_t ledc_channel_config(const ledc_channel_config_t *ledc_conf)
  526. {
  527. LEDC_ARG_CHECK(ledc_conf, "ledc_conf");
  528. uint32_t speed_mode = ledc_conf->speed_mode;
  529. uint32_t gpio_num = ledc_conf->gpio_num;
  530. uint32_t ledc_channel = ledc_conf->channel;
  531. uint32_t timer_select = ledc_conf->timer_sel;
  532. uint32_t intr_type = ledc_conf->intr_type;
  533. uint32_t duty = ledc_conf->duty;
  534. uint32_t hpoint = ledc_conf->hpoint;
  535. bool output_invert = ledc_conf->flags.output_invert;
  536. LEDC_ARG_CHECK(ledc_channel < LEDC_CHANNEL_MAX, "ledc_channel");
  537. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  538. LEDC_ARG_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(gpio_num), "gpio_num");
  539. LEDC_ARG_CHECK(timer_select < LEDC_TIMER_MAX, "timer_select");
  540. LEDC_ARG_CHECK(intr_type < LEDC_INTR_MAX, "intr_type");
  541. periph_module_enable(PERIPH_LEDC_MODULE);
  542. esp_err_t ret = ESP_OK;
  543. if (p_ledc_obj[speed_mode] == NULL) {
  544. p_ledc_obj[speed_mode] = (ledc_obj_t *) heap_caps_calloc(1, sizeof(ledc_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  545. if (p_ledc_obj[speed_mode] == NULL) {
  546. return ESP_ERR_NO_MEM;
  547. }
  548. ledc_hal_init(&(p_ledc_obj[speed_mode]->ledc_hal), speed_mode);
  549. }
  550. /*set channel parameters*/
  551. /* channel parameters decide how the waveform looks like in one period*/
  552. /* set channel duty and hpoint value, duty range is (0 ~ ((2 ** duty_resolution) - 1)), max hpoint value is 0xfffff*/
  553. ledc_set_duty_with_hpoint(speed_mode, ledc_channel, duty, hpoint);
  554. /*update duty settings*/
  555. ledc_update_duty(speed_mode, ledc_channel);
  556. /*bind the channel with the timer*/
  557. ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
  558. /*set interrupt type*/
  559. portENTER_CRITICAL(&ledc_spinlock);
  560. ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
  561. portEXIT_CRITICAL(&ledc_spinlock);
  562. ESP_LOGD(LEDC_TAG, "LEDC_PWM CHANNEL %1u|GPIO %02u|Duty %04u|Time %01u",
  563. ledc_channel, gpio_num, duty, timer_select
  564. );
  565. /*set LEDC signal in gpio matrix*/
  566. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
  567. gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
  568. esp_rom_gpio_connect_out_signal(gpio_num, ledc_periph_signal[speed_mode].sig_out0_idx + ledc_channel, output_invert, 0);
  569. return ret;
  570. }
  571. static void _ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  572. {
  573. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  574. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  575. ledc_ls_channel_update(speed_mode, channel);
  576. }
  577. esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  578. {
  579. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  580. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  581. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  582. portENTER_CRITICAL(&ledc_spinlock);
  583. _ledc_update_duty(speed_mode, channel);
  584. portEXIT_CRITICAL(&ledc_spinlock);
  585. return ESP_OK;
  586. }
  587. esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
  588. {
  589. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  590. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  591. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  592. portENTER_CRITICAL(&ledc_spinlock);
  593. ledc_hal_set_idle_level(&(p_ledc_obj[speed_mode]->ledc_hal), channel, idle_level);
  594. ledc_hal_set_sig_out_en(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  595. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, false);
  596. ledc_ls_channel_update(speed_mode, channel);
  597. portEXIT_CRITICAL(&ledc_spinlock);
  598. return ESP_OK;
  599. }
  600. esp_err_t ledc_set_fade(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
  601. uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
  602. {
  603. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  604. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  605. LEDC_ARG_CHECK(fade_direction < LEDC_DUTY_DIR_MAX, "fade_direction");
  606. LEDC_ARG_CHECK(step_num <= LEDC_DUTY_NUM_MAX, "step_num");
  607. LEDC_ARG_CHECK(duty_cyle_num <= LEDC_DUTY_CYCLE_MAX, "duty_cycle_num");
  608. LEDC_ARG_CHECK(duty_scale <= LEDC_DUTY_SCALE_MAX, "duty_scale");
  609. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  610. _ledc_fade_hw_acquire(speed_mode, channel);
  611. portENTER_CRITICAL(&ledc_spinlock);
  612. ledc_duty_config(speed_mode,
  613. channel, //uint32_t chan_num,
  614. LEDC_VAL_NO_CHANGE,
  615. duty, //uint32_t duty_val,
  616. fade_direction, //uint32_t increase,
  617. step_num, //uint32_t duty_num,
  618. duty_cyle_num, //uint32_t duty_cycle,
  619. duty_scale //uint32_t duty_scale
  620. );
  621. portEXIT_CRITICAL(&ledc_spinlock);
  622. _ledc_fade_hw_release(speed_mode, channel);
  623. return ESP_OK;
  624. }
  625. esp_err_t ledc_set_duty_with_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  626. {
  627. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  628. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  629. LEDC_ARG_CHECK(hpoint <= LEDC_HPOINT_VAL_MAX, "hpoint");
  630. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  631. /* The channel configuration should not be changed before the fade operation is done. */
  632. _ledc_fade_hw_acquire(speed_mode, channel);
  633. portENTER_CRITICAL(&ledc_spinlock);
  634. ledc_duty_config(speed_mode,
  635. channel, //uint32_t chan_num,
  636. hpoint, //uint32_t hpoint_val,
  637. duty, //uint32_t duty_val,
  638. 1, //uint32_t increase,
  639. 0, //uint32_t duty_num,
  640. 0, //uint32_t duty_cycle,
  641. 0 //uint32_t duty_scale
  642. );
  643. portEXIT_CRITICAL(&ledc_spinlock);
  644. _ledc_fade_hw_release(speed_mode, channel);
  645. return ESP_OK;
  646. }
  647. esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
  648. {
  649. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  650. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  651. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  652. /* The channel configuration should not be changed before the fade operation is done. */
  653. _ledc_fade_hw_acquire(speed_mode, channel);
  654. portENTER_CRITICAL(&ledc_spinlock);
  655. ledc_duty_config(speed_mode,
  656. channel, //uint32_t chan_num,
  657. LEDC_VAL_NO_CHANGE,
  658. duty, //uint32_t duty_val,
  659. 1, //uint32_t increase,
  660. 0, //uint32_t duty_num,
  661. 0, //uint32_t duty_cycle,
  662. 0 //uint32_t duty_scale
  663. );
  664. portEXIT_CRITICAL(&ledc_spinlock);
  665. _ledc_fade_hw_release(speed_mode, channel);
  666. return ESP_OK;
  667. }
  668. uint32_t ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
  669. {
  670. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  671. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  672. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  673. uint32_t duty = 0;
  674. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty);
  675. return duty;
  676. }
  677. int ledc_get_hpoint(ledc_mode_t speed_mode, ledc_channel_t channel)
  678. {
  679. LEDC_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode argument is invalid", LEDC_ERR_VAL);
  680. LEDC_CHECK(channel < LEDC_CHANNEL_MAX, "channel argument is invalid", LEDC_ERR_VAL);
  681. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  682. uint32_t hpoint = 0;
  683. ledc_hal_get_hpoint(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &hpoint);
  684. return hpoint;
  685. }
  686. esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
  687. {
  688. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  689. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  690. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  691. ledc_clk_cfg_t clk_cfg = LEDC_USE_APB_CLK;
  692. uint32_t duty_resolution = 0;
  693. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  694. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  695. return ledc_set_timer_div(speed_mode, timer_num, clk_cfg, freq_hz, duty_resolution);
  696. }
  697. uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
  698. {
  699. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  700. LEDC_ARG_CHECK(timer_num < LEDC_TIMER_MAX, "timer_num");
  701. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  702. portENTER_CRITICAL(&ledc_spinlock);
  703. uint32_t clock_divider = 0;
  704. uint32_t duty_resolution = 0;
  705. ledc_clk_cfg_t clk_cfg = LEDC_USE_APB_CLK;
  706. ledc_hal_get_clock_divider(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clock_divider);
  707. ledc_hal_get_duty_resolution(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &duty_resolution);
  708. ledc_hal_get_clk_cfg(&(p_ledc_obj[speed_mode]->ledc_hal), timer_num, &clk_cfg);
  709. uint32_t precision = (0x1 << duty_resolution);
  710. uint32_t src_clk_freq = ledc_get_src_clk_freq(clk_cfg);
  711. portEXIT_CRITICAL(&ledc_spinlock);
  712. return ((uint64_t) src_clk_freq << 8) / precision / clock_divider;
  713. }
  714. static inline void ledc_calc_fade_end_channel(uint32_t *fade_end_status, uint32_t *channel)
  715. {
  716. uint32_t i = __builtin_ffs((*fade_end_status)) - 1;
  717. (*fade_end_status) &= ~(1 << i);
  718. *channel = i;
  719. }
  720. void IRAM_ATTR ledc_fade_isr(void *arg)
  721. {
  722. bool cb_yield = false;
  723. portBASE_TYPE HPTaskAwoken = pdFALSE;
  724. uint32_t speed_mode = 0;
  725. uint32_t channel = 0;
  726. uint32_t intr_status = 0;
  727. ledc_fade_fsm_t state;
  728. for (speed_mode = 0; speed_mode < LEDC_SPEED_MODE_MAX; speed_mode++) {
  729. if (p_ledc_obj[speed_mode] == NULL) {
  730. continue;
  731. }
  732. ledc_hal_get_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), &intr_status);
  733. while (intr_status) {
  734. ledc_calc_fade_end_channel(&intr_status, &channel);
  735. // clear interrupt
  736. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  737. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  738. //fade object not initialized yet.
  739. continue;
  740. }
  741. // Switch fade state to ISR_CAL if current state is HW_FADE
  742. bool already_stopped = false;
  743. portENTER_CRITICAL_ISR(&ledc_spinlock);
  744. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  745. assert(state != LEDC_FSM_ISR_CAL && state != LEDC_FSM_KILLED_PENDING);
  746. if (state == LEDC_FSM_HW_FADE) {
  747. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_ISR_CAL;
  748. } else if (state == LEDC_FSM_IDLE) {
  749. // interrupt seen, but has already been stopped by task
  750. already_stopped = true;
  751. }
  752. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  753. if (already_stopped) {
  754. continue;
  755. }
  756. bool set_to_idle = false;
  757. int cycle = 0;
  758. int delta = 0;
  759. int step = 0;
  760. int next_duty = 0;
  761. uint32_t duty_cur = 0;
  762. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  763. uint32_t duty_tar = s_ledc_fade_rec[speed_mode][channel]->target_duty;
  764. int scale = s_ledc_fade_rec[speed_mode][channel]->scale;
  765. if (duty_cur == duty_tar || scale == 0) {
  766. // Target duty has reached
  767. set_to_idle = true;
  768. } else {
  769. // Calculate new duty config parameters
  770. delta = (s_ledc_fade_rec[speed_mode][channel]->direction == LEDC_DUTY_DIR_DECREASE) ?
  771. (duty_cur - duty_tar) : (duty_tar - duty_cur);
  772. if (delta > scale) {
  773. next_duty = duty_cur;
  774. step = (delta / scale > LEDC_STEP_NUM_MAX) ? LEDC_STEP_NUM_MAX : (delta / scale);
  775. cycle = s_ledc_fade_rec[speed_mode][channel]->cycle_num;
  776. } else {
  777. next_duty = duty_tar;
  778. step = 1;
  779. cycle = 1;
  780. scale = 0;
  781. }
  782. }
  783. bool finished = false;
  784. portENTER_CRITICAL_ISR(&ledc_spinlock);
  785. state = s_ledc_fade_rec[speed_mode][channel]->fsm;
  786. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_HW_FADE);
  787. if (set_to_idle || state == LEDC_FSM_KILLED_PENDING) {
  788. // Either fade has completed or has been killed, skip HW duty config
  789. finished = true;
  790. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  791. } else if (state == LEDC_FSM_ISR_CAL) {
  792. // Loading new fade to start
  793. ledc_duty_config(speed_mode,
  794. channel,
  795. LEDC_VAL_NO_CHANGE,
  796. next_duty,
  797. s_ledc_fade_rec[speed_mode][channel]->direction,
  798. step,
  799. cycle,
  800. scale);
  801. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_HW_FADE;
  802. ledc_hal_set_duty_start(&(p_ledc_obj[speed_mode]->ledc_hal), channel, true);
  803. }
  804. portEXIT_CRITICAL_ISR(&ledc_spinlock);
  805. if (finished) {
  806. xSemaphoreGiveFromISR(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem, &HPTaskAwoken);
  807. ledc_cb_t fade_cb = s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback;
  808. if (fade_cb) {
  809. ledc_cb_param_t param = {
  810. .event = LEDC_FADE_END_EVT,
  811. .speed_mode = speed_mode,
  812. .channel = channel,
  813. .duty = duty_cur
  814. };
  815. cb_yield |= fade_cb(&param, s_ledc_fade_rec[speed_mode][channel]->cb_user_arg);
  816. }
  817. }
  818. }
  819. }
  820. if (HPTaskAwoken == pdTRUE || cb_yield) {
  821. portYIELD_FROM_ISR();
  822. }
  823. }
  824. static esp_err_t ledc_fade_channel_deinit(ledc_mode_t speed_mode, ledc_channel_t channel)
  825. {
  826. if (s_ledc_fade_rec[speed_mode][channel]) {
  827. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux) {
  828. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux);
  829. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = NULL;
  830. }
  831. if (s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  832. vSemaphoreDelete(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  833. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = NULL;
  834. }
  835. free(s_ledc_fade_rec[speed_mode][channel]);
  836. s_ledc_fade_rec[speed_mode][channel] = NULL;
  837. }
  838. return ESP_OK;
  839. }
  840. static esp_err_t ledc_fade_channel_init_check(ledc_mode_t speed_mode, ledc_channel_t channel)
  841. {
  842. if (s_ledc_fade_isr_handle == NULL) {
  843. ESP_LOGE(LEDC_TAG, "Fade service not installed, call ledc_fade_func_install");
  844. return ESP_FAIL;
  845. }
  846. if (s_ledc_fade_rec[speed_mode][channel] == NULL) {
  847. #if CONFIG_SPIRAM_USE_MALLOC
  848. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) heap_caps_calloc(1, sizeof(ledc_fade_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
  849. if (!s_ledc_fade_rec[speed_mode][channel]) {
  850. ledc_fade_channel_deinit(speed_mode, channel);
  851. return ESP_FAIL;
  852. }
  853. memset(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage, 0, sizeof(StaticQueue_t));
  854. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinaryStatic(&s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem_storage);
  855. #else
  856. s_ledc_fade_rec[speed_mode][channel] = (ledc_fade_t *) calloc(1, sizeof(ledc_fade_t));
  857. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem = xSemaphoreCreateBinary();
  858. #endif
  859. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux = xSemaphoreCreateMutex();
  860. xSemaphoreGive(s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem);
  861. s_ledc_fade_rec[speed_mode][channel]->fsm = LEDC_FSM_IDLE;
  862. }
  863. if (s_ledc_fade_rec[speed_mode][channel]
  864. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_mux
  865. && s_ledc_fade_rec[speed_mode][channel]->ledc_fade_sem) {
  866. return ESP_OK;
  867. } else {
  868. ledc_fade_channel_deinit(speed_mode, channel);
  869. return ESP_FAIL;
  870. }
  871. }
  872. static esp_err_t _ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int scale, int cycle_num)
  873. {
  874. portENTER_CRITICAL(&ledc_spinlock);
  875. uint32_t duty_cur = 0;
  876. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  877. // When duty == max_duty, meanwhile, if scale == 1 and fade_down == 1, counter would overflow.
  878. if (duty_cur == ledc_get_max_duty(speed_mode, channel)) {
  879. duty_cur -= 1;
  880. }
  881. s_ledc_fade_rec[speed_mode][channel]->speed_mode = speed_mode;
  882. s_ledc_fade_rec[speed_mode][channel]->target_duty = target_duty;
  883. s_ledc_fade_rec[speed_mode][channel]->cycle_num = cycle_num;
  884. s_ledc_fade_rec[speed_mode][channel]->scale = scale;
  885. int step_num = 0;
  886. int dir = LEDC_DUTY_DIR_DECREASE;
  887. if (scale > 0) {
  888. if (duty_cur > target_duty) {
  889. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_DECREASE;
  890. step_num = (duty_cur - target_duty) / scale;
  891. step_num = step_num > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : step_num;
  892. } else {
  893. s_ledc_fade_rec[speed_mode][channel]->direction = LEDC_DUTY_DIR_INCREASE;
  894. dir = LEDC_DUTY_DIR_INCREASE;
  895. step_num = (target_duty - duty_cur) / scale;
  896. step_num = step_num > LEDC_STEP_NUM_MAX ? LEDC_STEP_NUM_MAX : step_num;
  897. }
  898. }
  899. portEXIT_CRITICAL(&ledc_spinlock);
  900. if (scale > 0 && step_num > 0) {
  901. portENTER_CRITICAL(&ledc_spinlock);
  902. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, duty_cur, dir, step_num, cycle_num, scale);
  903. portEXIT_CRITICAL(&ledc_spinlock);
  904. ESP_LOGD(LEDC_TAG, "cur duty: %d; target: %d, step: %d, cycle: %d; scale: %d; dir: %d\n",
  905. duty_cur, target_duty, step_num, cycle_num, scale, dir);
  906. } else {
  907. portENTER_CRITICAL(&ledc_spinlock);
  908. ledc_duty_config(speed_mode, channel, LEDC_VAL_NO_CHANGE, target_duty, dir, 0, 1, 0);
  909. portEXIT_CRITICAL(&ledc_spinlock);
  910. ESP_LOGD(LEDC_TAG, "Set to target duty: %d", target_duty);
  911. }
  912. return ESP_OK;
  913. }
  914. static esp_err_t _ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  915. {
  916. ledc_timer_t timer_sel;
  917. uint32_t duty_cur = 0;
  918. ledc_hal_get_channel_timer(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &timer_sel);
  919. ledc_hal_get_duty(&(p_ledc_obj[speed_mode]->ledc_hal), channel, &duty_cur);
  920. uint32_t freq = ledc_get_freq(speed_mode, timer_sel);
  921. uint32_t duty_delta = target_duty > duty_cur ? target_duty - duty_cur : duty_cur - target_duty;
  922. if (duty_delta == 0) {
  923. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  924. }
  925. uint32_t total_cycles = max_fade_time_ms * freq / 1000;
  926. if (total_cycles == 0) {
  927. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  928. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, 0, 0);
  929. }
  930. int scale, cycle_num;
  931. if (total_cycles > duty_delta) {
  932. scale = 1;
  933. cycle_num = total_cycles / duty_delta;
  934. if (cycle_num > LEDC_DUTY_NUM_MAX) {
  935. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_SLOW_STR);
  936. cycle_num = LEDC_DUTY_NUM_MAX;
  937. }
  938. } else {
  939. cycle_num = 1;
  940. scale = duty_delta / total_cycles;
  941. if (scale > LEDC_DUTY_SCALE_MAX) {
  942. ESP_LOGW(LEDC_TAG, LEDC_FADE_TOO_FAST_STR);
  943. scale = LEDC_DUTY_SCALE_MAX;
  944. }
  945. }
  946. return _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  947. }
  948. static void _ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  949. {
  950. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  951. fade->mode = fade_mode;
  952. // Clear interrupt status of channel
  953. ledc_hal_clear_fade_end_intr_status(&(p_ledc_obj[speed_mode]->ledc_hal), channel);
  954. // Enable interrupt for channel
  955. portENTER_CRITICAL(&ledc_spinlock);
  956. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_FADE_END);
  957. // Set fade state to HW_FADE state for starting the fade
  958. assert(fade->fsm == LEDC_FSM_IDLE);
  959. fade->fsm = LEDC_FSM_HW_FADE;
  960. portEXIT_CRITICAL(&ledc_spinlock);
  961. // Trigger the fade
  962. ledc_update_duty(speed_mode, channel);
  963. if (fade_mode == LEDC_FADE_WAIT_DONE) {
  964. // Waiting for fade done
  965. _ledc_fade_hw_acquire(speed_mode, channel);
  966. // Release hardware to support next time fade configure
  967. _ledc_fade_hw_release(speed_mode, channel);
  968. }
  969. }
  970. esp_err_t ledc_set_fade_with_time(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, int max_fade_time_ms)
  971. {
  972. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  973. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  974. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  975. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  976. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  977. _ledc_fade_hw_acquire(speed_mode, channel);
  978. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  979. _ledc_fade_hw_release(speed_mode, channel);
  980. return ESP_OK;
  981. }
  982. esp_err_t ledc_set_fade_with_step(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num)
  983. {
  984. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  985. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  986. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_DUTY_SCALE_MAX), "fade scale");
  987. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_DUTY_CYCLE_MAX), "cycle_num");
  988. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  989. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  990. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  991. _ledc_fade_hw_acquire(speed_mode, channel);
  992. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  993. _ledc_fade_hw_release(speed_mode, channel);
  994. return ESP_OK;
  995. }
  996. esp_err_t ledc_fade_start(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_fade_mode_t fade_mode)
  997. {
  998. LEDC_CHECK(s_ledc_fade_rec[speed_mode][channel] != NULL, LEDC_FADE_SERVICE_ERR_STR, ESP_ERR_INVALID_STATE);
  999. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1000. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1001. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1002. _ledc_fade_hw_acquire(speed_mode, channel);
  1003. _ledc_fade_start(speed_mode, channel, fade_mode);
  1004. return ESP_OK;
  1005. }
  1006. // ESP32 does not support this functionality, fade cannot be overwritten with new duty config
  1007. #if SOC_LEDC_SUPPORT_FADE_STOP
  1008. esp_err_t ledc_fade_stop(ledc_mode_t speed_mode, ledc_channel_t channel)
  1009. {
  1010. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1011. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1012. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1013. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK , LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1014. ledc_fade_t *fade = s_ledc_fade_rec[speed_mode][channel];
  1015. ledc_fade_fsm_t state = fade->fsm;
  1016. bool wait_for_idle = false;
  1017. assert(state != LEDC_FSM_KILLED_PENDING);
  1018. if (state == LEDC_FSM_IDLE) {
  1019. // if there is no fade going on, do nothing
  1020. return ESP_OK;
  1021. }
  1022. // Fade state is either HW_FADE or ISR_CAL (there is a fade in process)
  1023. portENTER_CRITICAL(&ledc_spinlock);
  1024. // Disable ledc channel interrupt first
  1025. ledc_enable_intr_type(speed_mode, channel, LEDC_INTR_DISABLE);
  1026. // Config duty to the duty cycle at this moment
  1027. uint32_t duty_cur = ledc_get_duty(speed_mode, channel);
  1028. ledc_duty_config(speed_mode,
  1029. channel, //uint32_t chan_num,
  1030. LEDC_VAL_NO_CHANGE,
  1031. duty_cur, //uint32_t duty_val,
  1032. 1, //uint32_t increase,
  1033. 0, //uint32_t duty_num,
  1034. 0, //uint32_t duty_cycle,
  1035. 0 //uint32_t duty_scale
  1036. );
  1037. _ledc_update_duty(speed_mode, channel);
  1038. state = fade->fsm;
  1039. assert(state != LEDC_FSM_IDLE && state != LEDC_FSM_KILLED_PENDING);
  1040. if (state == LEDC_FSM_HW_FADE) {
  1041. fade->fsm = LEDC_FSM_IDLE;
  1042. } else if (state == LEDC_FSM_ISR_CAL) {
  1043. fade->fsm = LEDC_FSM_KILLED_PENDING;
  1044. wait_for_idle = true;
  1045. }
  1046. portEXIT_CRITICAL(&ledc_spinlock);
  1047. if (wait_for_idle) {
  1048. // Wait for ISR return, which gives the semaphore and switchs state to IDLE
  1049. _ledc_fade_hw_acquire(speed_mode, channel);
  1050. assert(fade->fsm == LEDC_FSM_IDLE);
  1051. }
  1052. _ledc_fade_hw_release(speed_mode, channel);
  1053. return ESP_OK;
  1054. }
  1055. #endif
  1056. esp_err_t ledc_fade_func_install(int intr_alloc_flags)
  1057. {
  1058. //OR intr_alloc_flags with ESP_INTR_FLAG_IRAM because the fade isr is in IRAM
  1059. return ledc_isr_register(ledc_fade_isr, NULL, intr_alloc_flags | ESP_INTR_FLAG_IRAM, &s_ledc_fade_isr_handle);
  1060. }
  1061. void ledc_fade_func_uninstall(void)
  1062. {
  1063. if (s_ledc_fade_isr_handle) {
  1064. esp_intr_free(s_ledc_fade_isr_handle);
  1065. s_ledc_fade_isr_handle = NULL;
  1066. }
  1067. int channel, mode;
  1068. for (mode = 0; mode < LEDC_SPEED_MODE_MAX; mode++) {
  1069. for (channel = 0; channel < LEDC_CHANNEL_MAX; channel++) {
  1070. ledc_fade_channel_deinit(mode, channel);
  1071. }
  1072. }
  1073. return;
  1074. }
  1075. esp_err_t ledc_cb_register(ledc_mode_t speed_mode, ledc_channel_t channel, ledc_cbs_t *cbs, void *user_arg)
  1076. {
  1077. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1078. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1079. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1080. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1081. s_ledc_fade_rec[speed_mode][channel]->ledc_fade_callback = cbs->fade_cb;
  1082. s_ledc_fade_rec[speed_mode][channel]->cb_user_arg = user_arg;
  1083. return ESP_OK;
  1084. }
  1085. /*
  1086. * The functions below are thread-safe version of APIs for duty and fade control.
  1087. * These APIs can be called from different tasks.
  1088. */
  1089. esp_err_t ledc_set_duty_and_update(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty, uint32_t hpoint)
  1090. {
  1091. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1092. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1093. LEDC_ARG_CHECK(duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1094. LEDC_ARG_CHECK(hpoint <= LEDC_HPOINT_VAL_MAX, "hpoint");
  1095. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1096. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1097. _ledc_fade_hw_acquire(speed_mode, channel);
  1098. portENTER_CRITICAL(&ledc_spinlock);
  1099. ledc_duty_config(speed_mode, channel, hpoint, duty, 1, 0, 0, 0);
  1100. _ledc_update_duty(speed_mode, channel);
  1101. portEXIT_CRITICAL(&ledc_spinlock);
  1102. _ledc_fade_hw_release(speed_mode, channel);
  1103. return ESP_OK;
  1104. }
  1105. esp_err_t ledc_set_fade_time_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t max_fade_time_ms, ledc_fade_mode_t fade_mode)
  1106. {
  1107. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1108. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1109. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1110. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1111. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1112. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1113. _ledc_op_lock_acquire(speed_mode, channel);
  1114. _ledc_fade_hw_acquire(speed_mode, channel);
  1115. _ledc_set_fade_with_time(speed_mode, channel, target_duty, max_fade_time_ms);
  1116. _ledc_fade_start(speed_mode, channel, fade_mode);
  1117. _ledc_op_lock_release(speed_mode, channel);
  1118. return ESP_OK;
  1119. }
  1120. esp_err_t ledc_set_fade_step_and_start(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t target_duty, uint32_t scale, uint32_t cycle_num, ledc_fade_mode_t fade_mode)
  1121. {
  1122. LEDC_ARG_CHECK(speed_mode < LEDC_SPEED_MODE_MAX, "speed_mode");
  1123. LEDC_ARG_CHECK(channel < LEDC_CHANNEL_MAX, "channel");
  1124. LEDC_ARG_CHECK(fade_mode < LEDC_FADE_MAX, "fade_mode");
  1125. LEDC_CHECK(p_ledc_obj[speed_mode] != NULL, LEDC_NOT_INIT, ESP_ERR_INVALID_STATE);
  1126. LEDC_CHECK(ledc_fade_channel_init_check(speed_mode, channel) == ESP_OK, LEDC_FADE_INIT_ERROR_STR, ESP_FAIL);
  1127. LEDC_ARG_CHECK((scale > 0) && (scale <= LEDC_DUTY_SCALE_MAX), "fade scale");
  1128. LEDC_ARG_CHECK((cycle_num > 0) && (cycle_num <= LEDC_DUTY_CYCLE_MAX), "cycle_num");
  1129. LEDC_ARG_CHECK(target_duty <= ledc_get_max_duty(speed_mode, channel), "target_duty");
  1130. _ledc_op_lock_acquire(speed_mode, channel);
  1131. _ledc_fade_hw_acquire(speed_mode, channel);
  1132. _ledc_set_fade_with_step(speed_mode, channel, target_duty, scale, cycle_num);
  1133. _ledc_fade_start(speed_mode, channel, fade_mode);
  1134. _ledc_op_lock_release(speed_mode, channel);
  1135. return ESP_OK;
  1136. }